❶ 正弦定理是什么 内容及证明方法
正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA=b/sinB=c/sinC= 2r=D(r为外接圆半径,D为直径)。
正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角 A 、 B 、 C 和它们的对边 a 、 b 、 c 叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。正弦定理是解三角形的重要工具
在解三角形中,有以下的应用领域:
已知三角形的两角与一边,解三角形。
已知三角形的两边和其中一边所对的角,解三角形。
运用 a : b : c =sin A :sin B :sin C 解决角之间的转换关系。
物理学中,有的物理量可以构成矢量三角形 。因此, 在求解矢量三角形边角关系的物理问题时, 应用正弦定理,常可使一些本来复杂的运算,获得简捷的解答。
❷ 证明正弦定理的几种方法
步骤1.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
步骤3
记向量i
,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(C-90))+b·0+c·cos(90-A)
=-asinC+csinA=0
接着得到正弦定理
❸ 正弦定理的几种证明方法
为了对一个数学结论能够充分理解,必须明确它的原理,它的来龙去脉.只有这样才能真正地了解数学概念的内涵和外延,从而学好数学.正弦定理:在△ABC中,设BC=a,AC=b,AB=c,则a/sinA=b/sinB=c/sinC它的证明方法有很多种,本文列举六种,供同学们参考.
❹ 正弦定理的证明方法
证明方法有四种:
1、利用三角形高来证明正弦定理;
2、利用三角形面积来证明正弦定理;
3、向量法证明正弦定理;
4、外接圆证明正弦定理;
具体证明方面见下图:
❺ 正弦定理证明推导方法
正弦定理应用的学科是数学,使用的领域范围是几何。下面是我给大家整理的正弦定理证明推导方法,供大家参阅!
正弦定理证明推导方法
显然,只需证明任意三角形内,任一角的边与它所对应的正弦之比值为该三角形外接圆直径即可。
现将△ABC,做其外接圆,设圆心为O。我们考虑∠C及其对边AB。设AB长度为c。若
1 ∠C为直角,则AB就是⊙O的直径,即c= 2R。
正弦定理∵
(特殊角正弦函数值)
正弦定理∴
2 若∠C为锐角或钝角,过B作直径BC`'交 ⊙O于C`,连接C'A,显然BC'= 2R。
∵在同圆或等圆中直径所对的圆周角是直角。∴∠C'AB是直角。
2A 若∠C为锐角,则C'与C落于AB的同侧,此时
∵在同圆或等圆中同弧所对的圆周角相等。
∴∠C'=∠C
正弦定理∴
,有
。
示意图2B
若∠C为钝角,则C'与C落于AB的异侧,此时∠C'=180°-∠C,亦可推出
。
在△DAB中,应用正弦函数定义,知
因此,对任意三角形的任一角及其对边,均有上述结论。
考虑同一个三角形内的三个角及三条边,应用上述结果,分别列式可得
。故对任意三角形,定理得证。
实际上该定理也可以用向量方法证明。
正弦定理定义
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2R(R为外接圆半径)。正弦定理是解三角形的重要工具。正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况,可参考三角形性质、钝角三角形性质进行判断。
正弦定理意义
正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。正弦定理是解三角形的重要工具。
正弦定理实际应用
1、在解三角形中,有以下的应用领域:
已知三角形的两角与一边,解三角形。
已知三角形的两边和其中一边所对的角,解三角形。
运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。
注意:
锐角三角形解三角形时,已知两角与一边,三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题。
一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况,可参考三角形性质、钝角三角形性质进行判断。若已知A、A的对边a、A与a的夹边C,则:
对于钝角三角形,
若a≤b,则无解;
若a>b,则有一解;
对于锐角三角形,
若a
若a=bsinA,则有一解;
若bsinA
若a≥b,则有一解。
钝角三角形2、三角形面积的计算。
❻ 高中正弦和余弦公式定理
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA=b/sinB=c/sinC= 2r=D(r为外接圆半径,D为直径)。
余弦定理,欧氏平面几何学基本定理。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。cos A=(b²+c²-a²)/2bc
(6)正弦定理的技巧和方法扩展阅读:
在△ABC中,
sin²A+sin²B-sin²C
=[1-cos(2A)]/2+[1-cos(2B)]/2-[1-cos(2C)]/2(降幂公式)
=-[cos(2A)+cos(2B)]/2+1/2+1/2-1/2+[cos(2C)]/2
=-cos(A+B)cos(A-B)+[1+cos(2C)]/2(和差化积)
=-cos(A+B)cos(A-B)+cos²C(降幂公式)
=cosC*cos(A-B)-cosC*cos(A+B)(∠A+∠B=180°-∠C以及诱导公式)
=cosC[cos(A-B)-cos(A+B)]
=2cosC*sinA*sinB(和差化积)(由此证明余弦定理角元形式)
设△ABC的外接圆半径为R
∴(RsinA)²+(RsinB)²-(RsinC)²=2(RsinA)*(RsinB)*cosC
∴a²+b²-c²=2ab*cosC(正弦定理)
∴c²=a²+b²-2ab*cosC
❼ 正弦定理的证明方法
如图1,△ABC中,AD平分乙A交BC于D,由三角形内角平分线有AB BDAC一DC由正弦定理有:由(1)(2)(3,得:韶=韶幼朋=Ac:.△ABc为等腰三角形。证明‘三角证法,:BE平分匕B二器二黯…(l)AB AC AB滋nC舀石乙二蕊丽劝元二舀丽””’‘(2)CF平分二C幼器二默…(2);EF//BC
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证
正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC
证明如下:在三角形的外接圆里证明会比较方便
例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:
2RsinD=BC (R为三角形外接圆半径)
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
这样就得到正弦定理了
一种是用三角证asinB=bsinA
用面积证
用几何法,画三角形的外接圆
听说能用向量证,咋么证呢?
三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,
因为AB+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
所以asinB=bsinA
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证
步骤1.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到 a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
余弦定理
平面向量证法:
∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b)
∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
(以上粗体字符表示向量)
又∵Cos(π-θ)=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)
再拆开,得c^2=a^2+b^2-2*a*b*CosC
同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sinB²·c²+a^2+cosB²·c^2-2ac*cosB
b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
❽ 正弦定理sinA/a=sinB/b=sinC/c=2R是怎么证明的
在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到
a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD(直径)=2R
❾ 高中正弦余弦定理主要题型以及做题方法
1.根据正弦定理和余弦定理公式解三角形(余弦定理中要注意骄傲的的取值个数)
2.三角形解的个数的讨论:若已知a,b,A,由正弦定理得sinB=(b/a)sinA=m,由此试进一步求三角形时,需结合sinB的取值范围及A+B<180°来讨论:
(1)若m>1时,则不存在这样的角B,故三角形无解;
(2)若m≤1,则在[0°,180°]内存在角B,但此时三角形是否有解还需继续讨论。
①当m=1时,则B=90°,
a.若此时A<90°,则三角形有一解;
b.
.若此时A≥90°,则三角形无解。
②当0<m<1时,满足sinB=m的B为锐角时设为α,B为钝角时设为β。则
a.当A+α>180°时,三角形无解;
b.当A+α<180°时,三角形有解;
c..当A+β<180°时,三角形有两解;
d.当A+β≥180°时,三角形无解。
3.利用正弦定理和余弦定理判断三角形的形状(主要是公式的换算)
4利用正弦定理和余弦定理证明恒等式(主要是公式的换算)
5.求三角形的面积:公式:S△=½ah^a=½absinC=(abc)/4R=½(a+b+c)r=√p(p-a)(p-b)(p-c)
(海伦公式)=½√(
|向量AB|×|向量AC|)^2-(向量AB×向量AC)^2=2RsinAsinBsinC=(a^2sinBsinC)/2sinA
其中r为△ABC内切圆半径,R为△ABC外接圆半径,P=½(a+b+c)
6应用举例:①测量距离
②测量高度
③测量角度