导航:首页 > 方法技巧 > pcr片段连接方法

pcr片段连接方法

发布时间:2022-11-16 19:51:51

⑴ PCR产物可以直接用于连接吗

标准的DNA片段与载体连接就是通过PCR的电泳回收胶进行,你说连接失败,给你三个可能的原因和对应的解决办法,供你参考,第一,PCR电泳胶回收率最好的才达到80%,所以你可能回收的时候由于量太少,连接失败,对应的解决办法就是你多做几管PCR,比如10管,然后把10个电泳结果统一回收后放入一个1.5mlEP管内,提高量来解决;第二,你的载体是否切开,很多时候如果你的载体如果由于酶失效,识别位点不对等原因,根本没被酶切开,你怎么插入呢,对应的解决办法就是,证实一下你的酶切是否成功,没成功就考虑换酶,验证方法是,酶切后用进行电泳,阳性参照就是酶切前的质粒额,切开的载体会跑的最快;第三,链接酶之类的如果出现问题,或者某些环节出现错误,你的目的片段与载体没有链接上,那么你还是无法实现表达,给你对应的检测办法是,用你的引物扩增连接完的目的片段,同时链接目的片段之前的质粒做阴性对照,如果发现链接目的片段的质粒无法通过PCR得到你的目的片段,那么就是说链接酶可能出现错误。

⑵ 通过PCR方法如何连接两个基因

看你的要求。
1楼那位同学的回答没有问题,通过在引物上设计酶切位点,做酶切、连接即可以连接两端基因。
但如果你的这两段基因不好设计酶切位点,或者你不希望在这两段基因之间存在有其余的多余碱基,而且你又特别强调用PCR的方法去做连接,那么我推荐overlap-PCR。把A基因3'端的序列加到扩增B基因的上游引物5'端,把B基因5'端的序列加到扩增A基因的下游引物的3'端。分别扩增A、B两基因,这样A的3’端和B的5‘端就形成了互补。切胶回收这两个PCR产物,稀释并混合,以此为模板,以A基因的上游引物和B基因的下游引物为引物对,扩增。这样就可以得到AB拼接到一起的产物。
具体的引物设计要求你可以多去看看overlap-PCR的文献,这种方法很方便的。

⑶ 如何通过pcr将两段已知序列链接到一块,成为一条片段

融合PCR可以将两端序列拼在一起,融合PCR技术(fusion PCR)采用具有互补末端的引物,形成具有重叠链的PCR产物,通过PCR产物重叠链的延伸,从而将不同来源的任意DNA片段连接起来,此技术在不需要内切酶消化和连接酶处理的条件下实现DNA片段的体外连接,为同源重组片段的构建提供了快速简捷的途径。第二个问题就设计引物,将你需要的片段分别PCR下来,在通过融合PCR连成一条就可以了

⑷ 普通PCR、原位PCR、反向PCR和反转录PCR的 基本原理和操作步骤(一)

1概述

聚合酶链式反应(Polymerase Chain Reaction),简称 PCR ,是一种 分子生物学 技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。 DNA聚合酶 (DNA polymerase I)最早于1955年发现,而较具有实验价值及实用性的Klenow fragment of E. Coli 则是于70年代的初期由Dr. H. Klenow 所发现,但由于此酶不耐高温,高温能使之变性, 因此不符合使用高温变性的聚合酶链式反应。现今所使用的酶(简称Taq polymerase), 则是于1976年从温泉中的细菌(Thermus aquaticus)分离出来的。它的特性就在于能耐高温,是一个很理想的酶,但它被广泛运用则于80年代之后。PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由 Dr. Kjell Kleppe 提出。他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。而现今所发展出来的PCR则于1983由 Dr. Kary B. Mullis发展出的,Dr. Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位。Dr. Mullis 并于1985年与Saiki 等人正式发表了第一篇相关的论文。此后,PCR的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背。随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术。Mullis也因此获得了1993年 诺贝尔 化学奖。

2 PCR原理

PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:

①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;

②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;

③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

3 PCR反应体系与反应条件

3.1标准的PCR反应体系

10×扩增缓冲液 10μl
4种dNTP混合物 200μl
引物 10~100μl
模板DNA 0.1~2μg
Taq DNA聚合酶 2.5 μl
Mg2+ 1.5mmol/L
加双或三蒸水 100 μl

3.2 PCR反应五要素

参加PCR反应的物质主要有五种即引物(PCR引物为DNA片段,细胞内DNA复制的引物为一段RNA链)、酶、dNTP、模板和缓冲液(其中需要Mg2+)。[PCR步骤]

标准的PCR过程分为三步:

1.DNA变性(90℃-96℃):双链DNA模板在热作用下, 氢键断裂,形成单链DNA

2. 退火 (25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。

3.延伸(70℃-75℃):在 Taq酶 (在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。

每一循环经过变性、退火和延伸,DNA含量即增加一倍。现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。

4 PCR反应特点

4.1特异性强

PCR反应的特异性决定因素为:

①引物与模板DNA特异正确的结合;

②碱基配对原则;

③Taq DNA聚合酶合成反应的忠实性;

④靶基因的特异性与保守性。

其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。

4.2灵敏度高

PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12)量级的起始待测模板扩增到微克(μg=-6)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。

4.3简便、快速

PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。

4.4对标本的纯度要求低

不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测。

5 PCR常见问题

5.1假阴性,不出现扩增条带

PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及, ④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。

模板 :①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消 化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模 板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处 理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应 固定不宜随意更改。

酶失活 :需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而 导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。

引物 :引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不 理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度 高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单 位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。

Mg2+浓度 :Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特 异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。

反应体积的改变 :通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多 大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败。

物理原因 :变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一。

靶序列变异 :如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某 段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。

5.2假阳性

出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。

引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引物太短,容易出现假阳性。需重新设计引物。

靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。所用离心管及样进枪头等均应一次性使用。必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸。二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除。

5.3出现非特异性扩增带

PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带 与非特异性扩增带。非特异性条带的出现,其原因:一是引物与靶序列不完全互补、 或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数 过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶 则不出现,酶量过多有时也会出现非特异性扩增。其对策有:必要时重新设计引 物。减低酶量或调换另一来源的酶。降低引物量,适当增加模板量,减少循环次 数。适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。

5.4出现片状拖带或涂抹带

PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量 差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:①减少酶量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓 度。④增加模板量,减少循环次数。

⑸ 菌落PCR的具体方法

1、菌落PCR混合液(通俗称为pcr mix)的制备
Taq buffer(10×) 180ul
dNTP(2.5 mM) 20~25 ul
Primer Forward(引物浓度在10Pmol) 5 ul
Primer Reverse(引物浓度在10Pmol) 5 ul
ddH2O 720 ul
Taq(2U/ul) 12~15 ul
2、常温下随机挑选平板内的单一菌落,用灭菌的牙签或枪头挑取单一菌落(强调单一,不能是双克隆),在LB琼脂糖平板上轻点,做一拷贝;然后将沾有菌体的牙签或枪头置于相应的PCR8联管中或者96孔pcr反应板中(96孔反应板和挑选的菌落做好记号,如平板上点的是1#,2#,3#……则96空反应板也相应标1#,2#,3#……以便筛选到克隆后的扩大培养),再将挑取的96个单一菌落转移到48孔板培养基中培养,挑好单克隆菌落转移之后,由于96孔反应板内沾有挑选的菌落,可以用相应的通用引物和之前配制好的PCR混合液混合好之后加入到96孔反应板内。
3、将混有菌体的PCR混合物置于PCR仪中,按常规条件扩增。
4、在扩增出来的反应液中加入溴酚蓝或是其他染料,电泳检测是否得到目的片断。如有则为阳性克隆。
5、将已经筛选到的阳性克隆对应96孔反应板上的菌株挑选出来,37度继续培养达到一定时间可以抽提质粒,测序验证是否是需要的目的基因
注意事项:设计引物很关键。一般如果是定向克隆,用载体上的通用引物即可;如pET系列可用T7通用引物。如果是非定向克隆(如单酶切或平末端连接),一条引物用载体,一条引物用目的基因上的,这样就可以比较方便的鉴定了,而且错误概率很低。PCR条件的选择接近最佳,同时挑取的菌体不宜太多,否则会有非特异性扩增。
使用的引物浓度不能太高,浓度过高会导致非特异性扩增,反应的循环数也不能太多,一般不超过25个。同时因为扩增的片段的GC含量问题,有的GC含量很低,有的又很高,导致菌落PCR不容易扩增出目的条带,在此建议在设置PCR程序时以高GC的温度为上限,每一循环降0.2度左右。
48孔板 96孔反应板

⑹ 基因克隆的方法主要有哪几种,简述各种方法的原理和用途

基因克隆的方法主要有哪几种
选择目的基因,并设计相应引物;
用引物PCR扩增目的基因片段;
选择合适(抗性标记、酶切位点等)的克隆载体(为了保真扩增),并将PCR片段连接入克隆载体中;(一般用Taq酶的PCR产物在末尾会自带一个A,可在Solution 1作用下与两端各带一个T的线性T载体直接相连)
将连接产物转化入感受态大肠杆菌,使之在含有抗生素的培养基上生长扩增;
从大肠杆菌中提取质粒(即前面的连接产物),酶切鉴定和测序鉴定均无误后将目的基因片段切下并与新的表达载体连接,然后再次转化入大肠杆菌中扩增,再提质粒,即得到想要的目的基因片段克隆.

⑺ 基因克隆的基本步骤有哪些

基因克隆的基本步骤流程如下:

一、目的DNA片段的获得:

DNA克隆的第一步是获得包含目的基因在内的一群DNA分子,这些DNA分子或来自于目的生物基因组DNA或来自目的细胞mRNA逆转录合成的双链 cDNA分子。

由于基因组DNA较大,不利于克隆,因此有必要将其处理成适合克隆的DNA小片段,常用的方法有机械切割和核酸限制性内切酶消化。若是基因序列已知而且比较小就可用人工化学直接合成。如果基因的两端部分序列已知,根据已知序列设计引物,从基因组DNA 或cDNA中通过PCR技术可以获得目的基因。

二、载体的选择:

基因克隆常用的载体有:质粒载体、噬菌体载体、柯斯质粒载体、单链DNA噬菌体载体、噬粒载体及酵母人工染色体等。从总体上讲,根据载体的使用目的,载体可以分为克隆载体、表达载体、测序载体、穿梭载体等。

三、体外重组:

体外重组即体外将目的片断和载体分子连接的过程。大多数核酸限制性内切酶能够切割DNA分子形成有黏性末端,用同一种酶或同尾酶切割适当载体的多克隆位点便可获得相同的黏性末端,黏性末端彼此退火,通过T4 DNA连接酶的作用便可形成重组体,此为黏末端连接。

当目的DNA片断为平端,可以直接与带有平端载体相连,此为平末端连接,但连接效率比黏端相连差些。有时为了不同的克隆目的,如将平端DNA分子插入到带有黏末端的表达载体实现表达时,则要将平端DNA分子通过一些修饰;

如同聚物加尾,加衔接物或人工接头,PCR法引入酶切位点等,可以获得相应的黏末端,然后进行连接,此为修饰黏末端连接。

四、导入受体细胞:

载体DNA分子上具有能被原核宿主细胞识别的复制起始位点,因此可以在原核细胞如大肠杆菌中复制,重组载体中的目的基因随同载体一起被扩增,最终获得大量同一的重组DNA分子。

五、重组子的筛选:

从不同的重组DNA分子获得的转化子中鉴定出含有目的基因的转化子即阳性克隆的过程就是筛选。发展起来的成熟筛选方法如下:

(1)插入失活法:外源DNA片段插入到位于筛选标记基因(抗生素基因或β-半乳糖苷酶基因)的多克隆位点后,会造成标记基因失活,表现出转化子相应的抗生素抗性消失或转化子颜色改变,通过这些可以初步鉴定出转化子是重组子或非重组子。常用的是β-半乳糖苷酶显色法即蓝白筛选法(白色菌落是重组质粒)。

(2)PCR筛选和限制酶酶切法:提取转化子中的重组DNA分子作模板,根据目的基因已知的两端序列设计特异引物,通过PCR技术筛选阳性克隆。PCR法筛选出的阳性克隆,用限制性内切酶酶切法进一步鉴定插入片段的大小。

(3)核酸分子杂交法:制备目的基因特异的核酸探针,通过核酸分子杂交法从众多的转化子中筛选目的克隆。目的基因特异的核酸探针可以是已获得的部分目的基因片段,或目的基因表达蛋白的部分序列反推得到的一群寡聚核苷酸,或其它物种的同源基因。

(4)免疫学筛选法:获得目的基因表达的蛋白抗体,就可以采用免疫学筛选法获得目的基因克隆。这些抗体即可是从生物本身纯化出目的基因表达蛋白抗体,也可从目的基因部分ORF片段克隆在表达载体中获得表达蛋白的抗体。

(7)pcr片段连接方法扩展阅读:

基因克隆的注意事项:

1、平端连接:DNA连接酶可催化相同和不同限制性核酸内切酶切割的平端之间的连接。原则上讲,限制酶切割DNA后产生的平端也属配伍末端,可彼此相互连接;若产生的粘性末端经特殊酶处理,使单链突出处被补齐或削平,变为平端,也可实行平端连接。

2、加尾连接:同聚物加尾连接是利用同聚物序列,如多聚A与多聚T之间的退火作用完成连接。在末端转移酶作用下,在DNA片段端制造出粘性末端,而后进行粘性末端连接。这是一种人工提高连接效率的方法,也属于粘性末端连接的一种特殊形式。

3、人工接头连接:对平端DNA片段或载体DNA,可在连接前将磷酸化的接头(linker)或适当分子连到平端,使产生新的限制性内切酶位点。再用识别新位点的限制性内切酶切除接头的远端,产生粘性末端。

⑻ 现在有哪几种PCR的方法啊

Qβ复制酶反应

Kacian等于1972年首次报报Qβ复制酶催化RNA模板的自我复制功能,它能在常温30min,将其天然MDV扩增至109.1986年Chu等报道用生物标记的靶序列特异性探针,可与亲和素联接的MDV杂交,经洗脱未被结合的MDV后,再加入Qβ复制酶,扩增复制MDV拷贝,然后用溴乙锭染色检测或用同源性的第二探针杂交.

Qβ复制酶是一种RNA指导的RNA聚合酶,它有3个特点:①不需寡核苷酸引物的引导就可启动RNA的合成.②能特异地识别RNA基因中由于分子内碱基配对而形成的特有的RNA折叠结构.③在Qβ复制酶的天然模板MDV的非折叠结构区插入一短的核酸序列不影响该酶的复制.因而,如在此区插入核酸探针,则其序列照样可能被Qβ复制酶扩增.

1988年Lizardi等,将靶基因序列插进MDV质粒里,用T7RNA聚合酶催化转录出MDV探针,这种RNA探针可与靶序列杂交,然后洗去非杂交的探针,加入Qβ复制酶来扩增探针,被扩增的探针又可作为模板进行扩增,并呈指数递增.其产物按上述两种方法进行检测.现在该技术又发展了夹心杂交法,分子开关和靶依赖的复制等技术.
其扩增状况,此法可用来检测基因的突变,染色体重排或转位,基因缺失及微生物的型别鉴定等.
反向PCR
反向PCR是用反向的互补引物来扩增两引物以外的未知序列的片段,而常规PCR扩增的是已知序列的两引物之间DNA片段.实验时选择已知序列内部没有切点的限制性内切酶对该段DNA进行酶切,然后用连接酶使带有粘性末端的靶序列环化连接,再用一对反向的引物进行PCR,其扩增产物将含有两引物外未知序列,从而对未知序进行分析研究.
不对称PCR
不对称PCR是用不等量的一对引物,PCR扩增后产生大量的单链DNA这对引物分别称为非限制引物与限制性引物,其比例一般为50~100∶1.在PCR反应的最初10~15个循环中,其扩增产物主要是双链DNA,但当限制性引物低浓度引物消耗完后,非限制性引物高浓度引物引导的PCR就会产生大量的单链DNA.不对称PCR的关键是控制限制性引物的绝对量,需多次摸索优化两条引物的比例.还有一种方法是先用等浓度的引物PCR扩增,制备双键DNA,然后以此dsDNA为模板,再以其中的一条引物进行第二次PCR,制备ssDNA.不对称PCR制备的ssDNA,主要用于核酸序列测定.
重组PCR
使两个不相邻的DNA片段重组在一起的PCR称为重组PCR,1986年报道了由PCR扩增的两个DNA片段通过重组合后再经延伸而制备出新的DNA分子.其基本原理为将突变碱基,插入或缺失片段,或一种物质的几个基因片段均设计在引物中,先分段对模板扩增,除去多余的引物后,将产物混合,再用一对引物对其进行PCR扩增.其产物将是一重组合的DNA.重组PCR主要用于位点专一碱基置换,DNA片段的插入或缺失DNA片段的连接(如基因工程抗体
多重PCR
一般PCR仅应用一对引物,通过PCR扩增产生一个核酸片段,主要用于单一致病因子等的鉴定.多重PCR,又称多重引物PCR或复合PCR,它是在同一PCR反应体系里加上二对以上引物,同时扩增出多个核酸片段的PCR反应,其反应原理,反应试剂和操作过程与一般PCR相同.
免疫PCR
免疫试验的主要步骤有三个:①抗原抗体反应,②与嵌合连接分子结合,③PCR扩增嵌合连接分子中的DNA一般为质粒DNA该技术的关键环节是嵌合连接分子的制备.在免疫-PCR中,嵌合连接分子起着桥梁作用,它有两个结合位点,一个与抗原抗体复合物中的抗体结合,一个与质粒DNA结合,其基本原理与ELISA和免疫酶染色相似,不同之处在于其中的标记物不是酶而是质粒DNA,在操作反应中形成抗原抗体-连接分子复合物,通过PCR扩增DNA来判断是否存在特异性抗原.
免疫PCR优点为:①特异性较强,因为它建立在抗原抗体特异性反应的基础上.②敏感度高,PCR具有惊人的扩增能力,免疫PCR比ELISA敏感度高105倍以上,可用于单个抗原的检测.③操作简便,PCR扩增质粒DNA比扩增靶基因容易得多,一般实验室均能进行.
☆ PCR用于进化分析
进化遗传学具有两个并列的研究方向:系统发育的重建和种群分析。自1962年, Zuckerkandl和Pauling提出蛋白质序列和基因序列的比较可以象分子种一样用于标志现存物种分化的时间以来,各种生化方法被用于系统发育的研究。在最初二十年内,同功酶的电泳分析、免疫学比较和蛋白质序列分析被广泛地应用。而最近,DNA杂交和核糖体RNA序列分析为分类学做出了重要贡献。这些技术大多有局限性,因为它们是估计而不是直接测量序列的差别。
☆ 反向聚合酶链反应
通常测定一个与已知序列相邻的DNA序列是必要的,例如位于编码DNA的上游和下游两 侧的区域,转位因子的插入位点以及克隆于Lambda、科期粒或酵母人工染色体载体上 的DNA片段末段的未知序列的探针等。这种末端特异探针在Southern Blot或染色体要得到边侧序列的探针一般需要进行一系列费时、费力的工作,首先用内切酶裂解和 用已知边侧序列的探针Southern杂交以确定大小适合于克隆的末端片段;这些片段还 要经过凝胶分离、克隆,得到的物质再与已知边侧区域杂交以确定合适的克隆子。要 测定未吞边侧区序列时,通常需要从克隆中进行各种片段的亚克隆。
为避免这些步骤,我们采用扩展的PCR方法,使相邻边侧区域得以扩增。典型的PCR扩增使用与互补链杂交的寡聚核苷酸引物。引物是定向的,使延伸向内跨过两个引物之间的区域。一个引物的DNA合成产物作为另一个引物的模板,进行DNA变性、引物退 火,DNA聚合酶管伸反应的多次重复性循环,可使引物规定区域的拷贝数成指数增 加。但用传统PCR方法得不到紧邻引物外侧的DNA序列,因为寡聚核苷酸所引导的既有 目的DNA又有引物外侧区的DNA合成在拷贝过程中只呈线性增长,这种线性增长是因 为,对于每种引物来讲,其不能引导DNA反向合成几乎是同时,有三个实验室分别设计出一种方法,使PCR可以扩增边侧区域。该方法反向PCR的基本点是用适当内切酶裂解核心区外分子,使这些酶切片段自身连接形成环状分子,从而将边侧区域转化为内部区域。
反向PCR程序
用传统的缓冲液和其他提供者推荐的条件裂解DNA。反向PCR所扩增的片段的大小由 PCR扩增片段的大小决定,目前,PCR扩增的实际上限为3kb。在许多情况下,首先 需要进行Southern杂交来确定内切酶用以产生大小适于环化及反向PCR的片段的末端片段。能裂解核心区的内切酶使反向PCR只能扩增引物所定模板依赖于引物的上游或上游区,而不裂解核心区的酶则使两上边侧序列都扩增,并带有由内切酶和环化类 型决定的接点例如,互补突头连接与钝头连接。对于扩增左翼或右翼序列,初试时 最好靠近识别上个碱基位位的酶,并已知在核心区有其方便的裂解位点。如果用反向 PCR从含有大量不同的克隆片段的同一载体中探测杂交探针,建议事先在载体中引入 合适的酶切位点。
用T4连接酶在稀DNA浓度下环化更容易形成单环。在一些实验中,为产生对反向PCR大小适当的DNA片段需要两种内切酶,但这样所产生的片段末端则不适于连接,环 化前需用Klenow或噬菌体T4DNA聚合酶修理钝化。连接前,需用酚或热变性使内切 酶失活。在我们实验中,不必裂解环状分子核心区也可得到有效的PCR扩增。这显然不同于Silver和Keerikatter[7]的实验结果,他们报道在核心裂解使模板线性化后,PCR扩增率增加100倍,但Triglia等则发现裂解环状分子与加热引起随机缺口效果相同。
反向PCR的应用
反向PCR的应用已经证明该方法可以避免不方便的克隆和亚克隆步骤,因此可解决大 量问题。我们最初用反向PCR扩增E.coli天然分离物中转位插入序 列ISL的边侧序列;Triglia等将反向PCR用于编码疟原虫主裂殖子表面抗原前体的基因,在实验中,他们用RsaⅠ酶裂解基因组DNA,连接,得到的环再用HinfⅠ在内部位点酶切,然后进行扩增,得到预期的297bp大小的片段,并用DNA直接测序进行鉴定。他们认为反向PCR由于具有从全长cDNA得到序列信息的优 点,将对步查现转录基因的5端或3端的边侧区域有用。
反向PCR的另一个应用是Silver和Keerikatte进行的。他们将其应用于扩增拉于整合在小鼠细胞中的外生原病毒DNA边侧的细胞DNA。除强调反向PCR在染色体“步查” 或“跳查”中的用途,他们还指出,该技术用于扩增特征性弱的序列,这 些序列在E.Coli或其他宿主载体系统中很骓或不能克隆。

⑼ PCR产物片段链接到T载体上后,PCR片段是否会出现两种连接方向

PCR产物片段链接到T载体上后,PCR片段是会出现两种连接方向。

如果用1%的琼脂糖电泳30min,主带(超螺旋的闭环质粒dna)会在3kb-2kbmarker之间,如果是单酶切产物,则应该在3.5kb的marker附近。要连接到载体上,形成带有PCR目标片段的质粒,将这个质粒导入受体菌,才能检测这个片段的活性、作用等等。

摘要

从固体平板挑取转化带有目的基因的单菌落,用特异引物通过聚合酶链式反应可直接扩增和标记目的基因,不需经过菌的液体培养、质粒提取和酶解反应等复杂过程,能快速获得目的基因扩增产物和进行目的基因探针的标记。

探针是核酸分子杂交及分子标记研究进行的必要前提,在Southern blot、Northern blot、ALFP、 RFLP、RAPD、SSR等技术中得到了广泛应用,在分子生物学的研究中充分发挥着作用,尤其对核酸分子操作具有十分重要的意义。

⑽ 你好;我有两个片段,想先连接后在做pcr,可是一直扩不出来,你可以告诉我一下步骤吗谢谢!

你这两个片段是通过T4链接酶接的吗 连接完之后,是否跑电泳了呢
确定接上了吗

如果接上了,不应该PCR不出来啊

阅读全文

与pcr片段连接方法相关的资料

热点内容
迷迭香的使用方法 浏览:80
嗜铬细胞瘤的治疗方法有哪些 浏览:616
如何除湿疹最有效的方法 浏览:525
自制池塘简单方法 浏览:705
电泳检测的方法 浏览:787
工业cod检测方法 浏览:295
星辰变的种植方法 浏览:602
商品组合需求预测有哪些方法 浏览:962
卷发精油的使用方法 浏览:573
快速识字方法 浏览:185
华为大疆手机云台使用方法 浏览:499
小学语文有效教学方法之探析 浏览:559
和田玉白玉项链的鉴别方法 浏览:681
露娜洁面仪mini2使用方法 浏览:916
阉鸡快速止血的方法 浏览:879
苹果微信清理缓存在哪里设置方法 浏览:749
金钢窗安装方法 浏览:125
测排卵什么方法最准确 浏览:852
抒情方法有哪些 浏览:434
青岛梅毒治疗最好的方法 浏览:1000