㈠ 程序开发中json 存储结构化数据是怎么回事呢
使用 json 存储结构化数据就是从文件中读写字符串很容易。
1.数值就要多费点儿周折,因为 read() 方法只会返回字符串,应将其传入 int() 这样的函数,就可以将 '123' 这样的字符串转换为对应的数值 123。当你想要保存更为复杂的数据类型,例如嵌套的列表和字典,手工解析和序列化它们将变得更复杂。
好在用户不是非得自己编写和调试保存复杂数据类型的代码,Python 允许你使用常用的数据交换格式 JSON(JavaScript Object Notation)。标准模块 json 可以接受 Python 数据结构,并将它们转换为字符串表示形式;此过程称为 序列化。从字符串表示形式重新构建数据结构称为 反序列化。序列化和反序列化的过程中,表示该对象的字符串可以存储在文件或数据中,也可以通过网络连接传送给远程的机器。
Note
2.JSON 格式经常用于现代应用程序中进行数据交换。许多程序员都已经熟悉它了,使它成为相互协作的一个不错的选择。
如果你有一个对象 x,你可以用简单的一行代码查看其 JSON 字符串表示形式:
>>> json.mps([1, 'simple', 'list'])
'[1, "simple", "list"]'
mps() 函数的另外一个变体 mp(),直接将对象序列化到一个文件。所以如果 f 是为写入而打开的一个 文件对象,我们可以这样做:
json.mp(x, f)
为了重新解码对象,如果 f 是为读取而打开的 文件对象:
x = json.load(f)
3.这种简单的序列化技术可以处理列表和字典,但序列化任意类实例为 JSON 需要一点额外的努力。 json 模块的手册对此有详细的解释。
See also
pickle - pickle 模块
4.与 JSON 不同,pickle 是一个协议,它允许任意复杂的 Python 对象的序列化。因此,它只能用于 Python 而不能用来与其他语言编写的应用程序进行通信。默认情况下它也是不安全的:如果数据由熟练的攻击者精心设计, 反序列化来自一个不受信任源的 pickle 数据可以执行任意代码。
㈡ 将非结构化数据转化为结构化数据有哪些方法
非结构化数据转化为结构化数据有以下几个方法:
1. 传统方法——树
虽然绝大多数数据是非结构化格式的,但是结构化数据普遍存在于各类商业应用软件和系统中,例如产品数据存储,交易日志,ERP和CRM 系统中都存在大量结构化数据,这些结构化数据仍应用着陈旧的数据技术处理,如基于规则的系统,决策树等。这样的方法需要人工进行特征提取,操作繁琐且需要耗费大量人力进行数据标签。
非结构化数据,也就是通常使用的杂乱无章的文本数据。非结构化数据通常是不能用结构化数据的常规方法以传统方式进行分析或处理的,所以这也成为AI领域一个常见的难题,要理解非结构化数据通常需要输入整段文字,以识别其潜在的特征,然后查看这些特征是否出现在池中的其他文本中。因此,在处理此类任务时,深度学习以其出色的特征提取能力一骑绝尘,于是所有人都开始想着把神经网络用在结构化数据上——建个全连接层,把每一列的内容作为输入,再有一个确定好的标签,就可以进行训练和推理了。
2. 新型利器——深度学习
需要寻找结构化数据的语义,目前要解决的问题主要有:
①数据清洗。要在结构化数据 AI 应用上有所成果,首先需要解决人工数据清洗和准备的问题,找到极少或者没有人为干预的自动化方法,才能使得这一应用可落地可拓展。
②异构数据。处理结构化数据的其中一大挑战在于,结构化数据可能是异构的,同时组合了不同类型的数据结构,例如文本数据、定类数据、数字甚至图像数据。其次,数据表有可能非常稀疏。想象一个 100 列的表格,每列都有 10 到 1000 个可能值(例如制造商的类型,大小,价格等),行则有几百万行。由于只有一小部分列值的组合有意义,可以想象,这个表格可能的组合空间有多么“空”。
③语义理解。找到这些结构化数据的语义特征。处理结构化数据并不仅仅依赖于数据本身的特征 (稀疏,异构,丰富的语义和领域知识),数据表集合 (列名,字段类型,域和各种完整性约束等)可以解码各数据块之间的语义和可能存在的交互的重要信息。也就是说,存储在数据库表中的信息具有强大的底层结构,而现有的语言模型(例如 BERT)仅受过训练以编码自由格式的文本。
3. 结构化数据清洗
除了某些特定的需求外,经过预处理之后的结构化数据,应该满足以下特点:
①所有值都是数字–机器学习算法取决于所有数据都是数字;
②非数字值(在类别或文本列中的内容)需要替换为数字标识符;
③标识并清除具有无效值的记录;
④识别并消除了无关的类别;
⑤所有记录都需要使用相同的一致类别。
㈢ 如何把文本变成结构化数据
页面解析和数据提取
一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值。内容一般分为两部分,非结构化的数据
和
结构化的数据。
非结构化数据:先有数据,再有结构,
结构化数据:先有结构、再有数据
不同类型的数据,我们需要采用不同的方式来处理。
㈣ 如何将文本结构化并提取数据
页面解析和数据提取
一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值。内容一般分为两部分,非结构化的数据 和 结构化的数据。
非结构化数据:先有数据,再有结构,
结构化数据:先有结构、再有数据
不同类型的数据,我们需要采用不同的方式来处理。
㈤ 你所了解的针对结构化数据的传统数据处理方法有哪些
1、聚类分析(cluster analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。
2、因子分析(factor analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。
因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反复法。
3、相关分析(correlation analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以x和y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则x与y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。
4、对应分析(correspondence analysis)
对应分析(correspondence analysis)也称关联分析、r-q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量y对另一个(x)或一组(x1,x2,…,xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
6、方差分析(anova/analysis of variance)
又称“变异数分析”或“f检验”,是r.a.fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显着影响的变量。这个 还需要具体问题具体分析
㈥ 如何将非结构化数据转化结构化数据
在信息社会,信息可以划分为两大类.一类信息能够用数据或统一的结构加以表示,我们称之为结构化数据,如数字、符号;而另一类信息无法用数字或统一的结构表示,如文本、图像、声音、网页等,我们称之为非结构化数据.结构化数据属于非结构化数据,是非结构化数据的特例.
随着网络技术的发展,特别是Internet和Intranet技术的飞快发展,使得非结构化数据的数量日趋增大.这时,主要用于管理结构化数据的关系数据库的局限性暴露地越来越明显.因而,数据库技术相应地进入了“后关系数据库时代”,发展进入基于网络应用的非结构化数据库时代.所谓非结构化数据库,是指数据库的变长纪录由若干不可重复和可重复的字段组成,而每个字段又可由若干不可重复和可重复的子字段组成.简单地说,非结构化数据库就是字段可变的数据库.
㈦ 结构化数据和非结构化数据分别是什么数据清洗是什么
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图象、声音、影视、超媒体等信息)。
(3)数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
㈧ 请教:关于结构化和非结构化数据存储
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图像、声音、影视、超媒体等信息)。
面对海量非结构数据存储,杉岩海量对象存储MOS,提供完整解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
㈨ 如何将非结构化数据转化为结构化数据
随着机器学习的发展,过去传统的结构化数据分析方法已经不能满足我们的需求了。如何在神经网络中利用非结构化数据是很重要的一点。所以很多研究者致力于将非结构化数据处理成结构化数据的工具开发。将非结构化数据转化为结构化数据有以下几个方法:
1. 传统方法——树
虽然绝大多数数据是非结构化格式的,但是结构化数据普遍存在于各类商业应用软件和系统中,例如产品数据存储,交易日志,ERP和CRM 系统中都存在大量结构化数据,这些结构化数据仍应用着陈旧的数据技术处理,如基于规则的系统,决策树等。这样的方法需要人工进行特征提取,操作繁琐且需要耗费大量人力进行数据标签。
非结构化数据,也就是通常使用的杂乱无章的文本数据。非结构化数据通常是不能用结构化数据的常规方法以传统方式进行分析或处理的,所以这也成为AI领域一个常见的难题,要理解非结构化数据通常需要输入整段文字,以识别其潜在的特征,然后查看这些特征是否出现在池中的其他文本中。因此,在处理此类任务时,深度学习以其出色的特征提取能力一骑绝尘,于是所有人都开始想着把神经网络用在结构化数据上——建个全连接层,把每一列的内容作为输入,再有一个确定好的标签,就可以进行训练和推理了。
2. 新型利器——深度学习
需要寻找结构化数据的语义,目前要解决的问题主要有:
①数据清洗。要在结构化数据 AI 应用上有所成果,首先需要解决人工数据清洗和准备的问题,找到极少或者没有人为干预的自动化方法,才能使得这一应用可落地可拓展。
②异构数据。处理结构化数据的其中一大挑战在于,结构化数据可能是异构的,同时组合了不同类型的数据结构,例如文本数据、定类数据、数字甚至图像数据。其次,数据表有可能非常稀疏。想象一个 100 列的表格,每列都有 10 到 1000 个可能值(例如制造商的类型,大小,价格等),行则有几百万行。由于只有一小部分列值的组合有意义,可以想象,这个表格可能的组合空间有多么“空”。
③语义理解。找到这些结构化数据的语义特征。处理结构化数据并不仅仅依赖于数据本身的特征 (稀疏,异构,丰富的语义和领域知识),数据表集合 (列名,字段类型,域和各种完整性约束等)可以解码各数据块之间的语义和可能存在的交互的重要信息。也就是说,存储在数据库表中的信息具有强大的底层结构,而现有的语言模型(例如 BERT)仅受过训练以编码自由格式的文本。
3. 结构化数据清洗
除了某些特定的需求外,经过预处理之后的结构化数据,应该满足以下特点:
①所有值都是数字–机器学习算法取决于所有数据都是数字;
②非数字值(在类别或文本列中的内容)需要替换为数字标识符;
③标识并清除具有无效值的记录;
④识别并消除了无关的类别;
⑤所有记录都需要使用相同的一致类别。
㈩ 什么是结构化数据非结构化数据半结构化数据
1、结构化数据
结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。
基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
2、非结构化数据
非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、XML, HTML、各类报表、图像和音频/视频信息等等。
3、半结构化数据
和普通纯文本相比,半结构化数据具有一定的结构性,OEM(Object exchange Model)是一种典型的半结构化数据模型。
半结构化数据(semi-structured data)。在做一个信息系统设计时肯定会涉及到数据的存储,一般我们都会将系统信息保存在某个指定的关系数据库中。我们会将数据按业务分类,并设计相应的表,然后将对应的信息保存到相应的表中。
数据:
数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。
它不仅指狭义上的数字,还可以是具有一定意义的文字、字母、数字符号的组合、图形、图像、视频、音频等,也是客观事物的属性、数量、位置及其相互关系的抽象表示。例如,“0、1、2…”、“阴、雨、下降、气温”、“学生的档案记录、货物的运输情况”等都是数据。数据经过加工后就成为信息。
在计算机科学中,数据是所有能输入计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。计算机存储和处理的对象十分广泛,表示这些对象的数据也随之变得越来越复杂。