A. 分解因式的方法
三、分解因式主要方法:
1.提取公因式法:
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
提公因式法基本步骤:
(1)找出公因式
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
③提完公因式后,另一因式的项数与原多项式的项数相同。
2.公式法:
把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:
平方差公式:a2-b2=(a+b)·(a-b);
完全平方式:a2±2ab+b2=(a±b)2;
3.分组分解法:
利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)其原则:
①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。
②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。
4.十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。
5.解方程法:
通过解方程来进行因式分解,如
x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)
6.待定系数法:
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例:分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x -x -5x -6x-4
=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得 a=1,b=1,c=-2,d=-4
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
B. 分解因式的方法
分解因式的方法如下:
一、提公因式法
1.含义和概念:公因式是指各项都含有公共的因式。
提公因式法是指当一个多项式的各项都有公因式时,把这个公因式提出来,将多项式化成两个或多个因式乘积的形式。
二、公式法:
1.含义和概念:公式法主要是指平方差公式,完全平方公式,立方差公式,立方和公式
三、十字相乘:
1.含义和概念:十字相乘法口诀:首尾分解,交叉相乘,求和凑中
四、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
五、换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
六、求根公式法
令多项式f(x)=0,求出其根为x1,x,x3,……xn,
则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)
七、分组分解法
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难
练习题: 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
总之,在进行因数分解时要注意三原则
1. 分解要彻底
2. 最后结果只有小括号
3. 最后结果中多项式首项系数为正
C. 因式分解12种方法
因式分解12种方法
因式分解12种方法?在解决数学问题的时候,很多人都会用到因式分解法,因式分解法是很多高等数学的基础。我已经为大家搜集和整理好了因式分解12种方法的相关信息,一起来了解一下吧。
因式分解12种方法分别是:提公因法、应用公式法、分组分解法、十字相乘法、配方法、添项法、换元法、求根法、图象法、主元法、利用特殊值法、待定系数法 。方法详解:
1、提公因法,如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
2、应用公式法,由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
3、分组分解法,要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)。
4、十字相乘法,对于mx +px+q形式的多项式,如果a×b=m, c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)。
5、配方法,对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
6、拆、添项法,可以把多项式拆成若干部分,再用进行因式分解。
7、换元法,有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
8、求根法,令多项式f(x)=0,求出其根为x , x , x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )。
9、图象法,令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x , x , x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )。
10、主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
11、利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
因式分解的`概念是什么?
因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.
1、提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、运用公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)
3、分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
4、拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
D. 因式分解有几种方法
定义:
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。
方法:
1.提公因式法。
2.公式法。
3.分组分解法。
4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.组合分解法。
6.十字相乘法。
7.双十字相乘法。
8.配方法。
9.拆项补项法。
10.换元法。
11.长除法。
12.求根法。
13.图象法。
14.主元法。
15.待定系数法。
16.特殊值法。
17.因式定理法。
希望帮到你 望采纳 谢谢 加油
E. 因式分解有哪几种方法
1、提公因式法
几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
2、公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a²-b²=(a+b)(a-b);
完全平方公式:a²±2ab+b²=(a±b)²;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数的积的2倍。
3、待定系数法
例如,将ax2+bx+c因式分解,可令ax2+bx+c=0,再解这个方程。如果方程无解,则原式无法因式分解;如果方程有两个相同的实数根(设为m),则原式可以分解为(x-m)2如果方程有两个不相等的实数根(分别设为m,n),则原式可以分解为(x-m)(x-n)。
4、十字相乘法
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
(5)如何分解因式的方法扩展阅读:
因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。
对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。
如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
F. 如何分解因式
提公因法、应用公式法、分组分解法、十字相乘法、配方法、拆、添项法、换元法、求根法、图象法、利用特殊值法、待定系数法等方法进行因式分解。
G. 因式分解的基本方法
因式分解的基本方法:
1、提公因式法,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
2、应用公式法,最常用的是“平方差公式、完全平方公式”。
3、分组分解法,通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。
4、待定系数法,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。
5、十字相乘法,十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
H. 因式分解法的四种方法
因式分解法的四种方法:提公因式法、分组分解法、待定系数法、十字分解法。
1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。
3、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的。
由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。
4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
I. 怎么快速分解因式
因式分解的一般步骤是:一提二套三分解
一提:即提公因式,看到因式分解的题目,首先看有没有公因式,若有,则
先提公因式;若没有,则套用公式.
二套:即套用公式,在没有公因式的前提下,则套用公式,
常用公式有:a^2-b^2=(a+b)(a-b)
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
十字相乘法:x^2+(a+b)x+ab=(x+a)(x+b)
举例:x^2+5x+6=(x+3)(x+2)
即分组分解法.对于四项或四项以上的,一般都采用这种方法
下面主要对分组分解法和其他常见的方法归纳如下.
一、分组分解因式的几种常用方法.
1.按公因式分解
例1 分解因式7x2-3y+xy+21x.
分析:第1、4项含公因式7x,第2、3项含公因式y,分组后又有公因式(x-3),
原式=(7x2-21x)+(xy-3y)=7x(x-3)+y(x-3)=(x-3)(7x+y).
2.按系数分解
例2 分解因式x3+3x2+3x+9.
分析:第1、2项和3、4项的系数之比1:3,把它们按系数分组.
解;原式=(x3+3x2)+(3x+9)=x2(x+3)+3(x+3)=(x+3)(x2+3).
3.按次数分组
例3 分解因式 m2+2m·n-3m-3n+n2.
分析:第1、2、5项是二次项,第3、4项是一次项,按次数分组后能用公式和提取公因式.
原式=(m2+2m·n+n2)+(-3m-3n)=(m+n)2-3(m+n)=(m+n)(m+n-3).
4.按乘法公式分组
分析:第1、3、4项结合正好是完全平方公式,分组后又与第二项用平方差公式.
5.展开后再分组
例5 分解因式ab(c2+d2)+cd(a2+b2).
分析:将括号展开后再重新分组.
原式=abc2+abd2+cda2十cdb2=(abc2+cda2)+(cdb2+abd2)=ac(bc+ad)+bd(bc+ad)=(bc+ad)(ac+bd).
6.拆项后再分组
例6 分解因式x2-y2+4x+2y+3.
分析:把常数拆开后再分组用乘法公式.
原式=x2-y2+4x+2y+4-1=(x2+4x+4)+(-y2+2y-1)=(x+2)2-(y-1)2=(x+y+1)(x-y+3).
7.添项后再分组
例7 分解因式x4+4.
分析:上式项数较少,较难分解,可添项后再分组.
原式=x4+4x2-4x2+4=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)
二、用换元法进行因式分解
用添加辅助元素的换元思想进行因式分解就是原式繁杂直接分解有困难,通过换元化为简单,从而分步完成.
例8 分解因式(x2+3x-2)(x2+3x+4)-16.
分析:将令y=x2+3x,则原式转化为(y-2)(y+4)-16再分解就简单了.
令y=x2+3x,则
原式=(y-2)(y+4)-16=y2+2y-24=(y+6)(y-4).
因此,原式=(x2+3x+6)(x2+3x-4)=(x-1)(x+4)(x2+3x+6).
三、用求根法进行因式分解
例9 分解因式x2+7x+2.
分析:x2+7x+2利用上述各方法皆不好完成,但仍可以分解,可用先求该多项式对应方程的根再分解.
四、用待定系数法分解因式.
例10 分解因式x2+6x-16.
分析:假设能分解,则应分解为两个一次项式的积形式,即(x+b1)(x+b2),将其展开得
x2+(b1+b2)x十b1·b2与x2+6x-16相比较得
b1+b2=6,b1·b2=-16,可得b1,b2即可分解.
设x2+6x-16=(x+b1)(x+b2)
则x2+6x-16=x2+(b1+b2)x+b1·b2
∴x2+6x-16=(x-2)(x+8).
J. 怎样解因式分解
因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:
1、提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.
例1、分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.
例2、分解因式a +4ab+4b (2003南通市中考题)
a +4ab+4b =(a+2b)
3、分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解.
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.
例7、分解因式2x -x -6x -x+2
2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.
例11、分解因式x +9x +23x+15
令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.
设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)它们都是常用的,希望对你有用!