导航:首页 > 方法技巧 > 氟化氢采样连接方法

氟化氢采样连接方法

发布时间:2022-10-22 20:18:26

‘壹’ 无水氟化氢取样过程中如何做好安全防范措施

众所周知,无水氢氟酸(http://www.sdqingfusuan.com )生产过程中存在着中毒、灼伤、触电等主要危险危害因素。因此在设计及生产过程中必须严格遵守相关的规范标准,以免留下安全隐患。在此主要针对中毒、灼伤、触电等危害提出安全对策措施,限于篇幅,其他危险危害因素的安全对策措施,不在此进行讨论。
1、防中毒危害的对策措施
无水氢氟酸生产存在一些有毒物质,如无水氢氟酸、氢氟酸、硫酸、发烟硫酸和煤气等。尤其是无水氢氟酸、氢氟酸具有毒性高的特点,应作为防范重点。
(1)应当注意工艺参数的选择及量的控制,使无水氢氟酸生产装置在尾气风机抽吸下呈负压状态,在无水氢氟酸灌装口也设负压接口,以防止生产装置中的氟化氢气体泄漏到工作场所空气中,造成人员中毒。
(2)注意设备材质选型,为使泄漏的可能性降至最低,要注意设备和材质的选择。通过其他装置及同类工程的实践经验以及装置设计知识,选择耐腐蚀材料,确保设备的完整密闭性。
(3)对无水氢氟酸生产工段及岗位,如有毒物料在不正常操作时的排出口、取样口、贮罐阀、输送泵及压缩机等处可能泄漏或聚积有毒气体的地方,以及煤气站等处需设置有毒气体探测器,防止有毒物质浓度超标;若控制室、配电室与有毒物料的设备相距30米以内,也宜设相应的有毒气体探测器。
(4)设置不间断电源,在外电源断电时,可确保负压系统正常运转,以防止生产装置中的氟化氢气体外泄。
(5)无水氢氟酸生产厂房和煤气站等设计为半敞开式结构,以利于通风,减少有毒物质在工作场所的积聚。
(6)加强设备、管道、阀门密封材料检查和保养维修及岗位巡查,严防设备跑、冒、滴、漏。
(7)加强对现场操作人员的个体防护,有毒生产场所和岗位应配备专用的防毒面具、空气呼吸面具、手套和防护镜等劳动防护用品,并经常进行检查,对超过使用期限的劳动防护用品,如滤毒罐等应及时更换。对有毒岗位操作人员应定期体检,建立健康档案,防止慢性中毒。
2、防灼伤对策措施
(1)对高温设备如热风炉、回转炉、高温循环风机、煤气发生炉等采取应采取有效的隔热措施。设备及管道的保温设计应符合《设备及管道保温技术通则》(GB4272),以减少对操作环境的影响,预防发生灼烫事故。
(2)对存在无水氢氟酸、氢氟酸、硫酸和发烟硫酸等属强酸性腐蚀性物质的设备设施,在设计时应合理选择流程、设备和管道结构及材料,防止物料外泄或喷溅。
(3)具有化学灼伤危害作业应尽量采用机械化、管道化和自动化,并安装必要的信号报警、安全联锁和保险装置,禁止使用玻璃管道、管件、阀门、流量计、压力计等仪表。
(4)对无水氢氟酸等具有化学灼伤危险的生产装置,其设备布置应保证作业场所有足够空间,并保证作业场所畅通,危险作业点装设防护措施。
(5)对具有化学灼伤危险的作业区,应设计必要的洗眼器、淋洗器等安全防护措施,并在装置区设置救护箱。工作人员配备必要的个人防护用品。
3、防触电措施
(1)正常不带电而事故时可能带电的配电装置及电气设备外露可导电部分,均应按《工业与民用电力装置的接地设计规范》(GBJ65)的要求设计可靠接地装置。电气设备的保护接地装置,定期检测接地电阻。并根据中国气象局第八号令《防雷减灾管理办法》的规定,对防雷装置请有资质的单位实行定期进行检测。
(2)移动式电气设备应设置剩余电流动作保护器。
(3)对设备内检修等应采用安全电压的场所,应采用安全电压。
(4)设计时,应按照相关标准规范的要求确保检修、试验或运行中的电气设备的安全防护距离和采取安全防护措施。
(5)电气设备检查检修时,要严格执行作业票制度,为电气操作人员配备完好的电工作业工具;进行电器维修作业时,必须严格执行拉闸、断电、挂牌、接地、联锁等电力安全规章制度,防止误操作造成触电伤害。
(6)加强电气安全的技术培训,电工必须经培训合格持证上岗。不断提高职工的安全意识和技术水平,掌握触电急救知识,提高自救、互救能力。

‘贰’ 氟化氢国家标准是多少如何检测空气中氟化氢的浓度

卫生标准:大气中F的最高允许浓度一次量为0.02mg/m3 日平均为0.007mg/m3;
关于环境的GB3095-1996标准里有
一般用氟化氢气体检测仪可以检测。

‘叁’ 氢气的检测方法

在空气中燃烧火焰呈浅蓝色,有爆鸣声,生成物只有水。

氢气,无色、无味气体,具有还原性。

氢气是一种极易燃的气体,燃点只有574℃,在空气中的体积分数为4%至75%时都能燃烧。氢气燃烧的焓变为−286 kJ/mol。

氢气占4.1%至74.8%的浓度时与空气混合,或占18.3%至59激下易引爆。氢气的着火点为500 °C。纯净的氢气与氧气的混合物燃烧时放出紫外线。

因为氢气比空气轻,所以氢气的火焰倾向于快速上升,故其造成的危害小于碳氢化合物燃烧的危害。氢气与所有的氧化性元素单质反应。氢气在常温下可自发的和氯气(需要光照)反应 ,氢气和氟气在冷暗处混合就可爆炸,生成具有潜在危险性的酸氯化氢或氟化氢。

在带尖嘴的导管口点燃纯净的氢气,观察火焰的颜色。然后在火焰上方罩一个冷而干燥的烧杯,过一会儿,我们可以看到,纯净的氢气在空气里安静地燃烧,产生淡蓝色的火焰(氢气在玻璃导管口燃烧时,火焰常略带黄色)。用烧杯罩在火焰的上方时,烧杯壁上有水珠生成,接触烧杯的手能感到发烫。

氢气在空气里燃烧,实际上是氢气跟空气里的氧气发生了化合反应,生成了水并放出大量的热。

(3)氟化氢采样连接方法扩展阅读

氢气为一种无色、无嗅、无毒、易燃易爆的气体,和氟气、氯气、氧气、一氧化碳以及空气混合均有爆炸的危险,其中,氢气与氟气的混合物在低温和黑暗环境就能发生自发性爆炸,与氯气的混合体积比为1:1时,在光照下也可爆炸。

氢气由于无色无味,燃烧时火焰是透明的,因此其存在不易被感官发现,在许多情况下向氢气中加入有臭味的乙硫醇,以便使嗅觉察觉,并可同时赋予火焰以颜色。

氢气虽无毒,在生理上对人体是惰性的,但若空气中氢气含量增高,将引起缺氧性窒息。与所有低温液体一样,直接接触液氢将引起冻伤。液氢外溢并突然大面积蒸发还会造成环境缺氧,并有可能和空气一起形成爆炸混合物,引发燃烧爆炸事故。

与空气混合能形成爆炸性混合物,遇热或明火即会发生爆炸。气体比空气轻,在室内使用和储存时,漏气上升滞留屋顶不易排出,遇火星会引起爆炸。氢气与氟、氯、溴等卤素会剧烈反应。

氢气因为是易燃压缩气体,故应储存于阴凉、通风的仓间内。仓内温度不宜超过30℃。远离火种、热源。防止阳光直射。应与氧气、压缩空气、卤素(氟气、氯气、溴)、氧化剂等分开存放。切忌混储混运。

储存间内的照明、通风等设施应采用防爆型,开关设在仓外,配备相应品种和数量的消防器材。禁止使用易产生火花的机械设备工具。验收时要注意品名,注意验瓶日期,先进仓的先发用。搬运时轻装轻卸,防止钢瓶及附件破损。

‘肆’ 用什么检漏装有氟化氢的储罐

可使用肥皂泡沫法检漏方法进行检漏。
肥皂泡沫法检漏就是先向空调制冷系统充入10?20kg/cm2 (1?2MPa)压力的氮气或直接用真空泵加压,在怀疑泄漏区域 (如管道连接处)涂上肥皂液,如有泄漏,该处必然起肥皂泡。
此法简单易行,是目前修理行业经常用的一种方法,可用于已 充注制冷剂制冷装置的检漏,也可作为其他检漏方法的辅助手段。 检测时,首先将肥皂削成薄片,浸泡在热水中使之融化,成为稠状 的肥皂水。将被检测的部位上的油污擦干净,用毛刷浸沾肥皂水, 涂抹于检漏处,或用手持喷雾器在空调管路上喷涂肥皂液,静待几 分钟,并仔细进行观察。如果发现被检测部位有气泡不断逸出,说 明该部位点就是泄漏点,作好标记,继续对其他可疑处进行检漏,待到检漏工作结束后,再对被检的泄漏点进行修复。

‘伍’ 请教一下各位,臭氧发生器中臭氧浓度怎么检测

臭氧的测定方法主要有靛蓝二磺酸钠分光光度法、紫外光度法和化学发光法。
G.1靛蓝二磺酸的分光光度法
G.1.1 相关标准和依据
本方法主要依据GB/T15437 《环境质量 臭氧的测定 靛蓝二磺酸的分光光度法》。
G.1.2 原理
空气中的臭氧,在磷酸盐缓冲溶液存在下,与吸收液中蓝色的靛蓝二磺酸钠等摩尔反应,褪色生成靛红二磺酸钠。在610nm处测定吸光度,根据蓝色减褪的程度定量空气中臭氧的浓度。
G.1.3 测定范围
当采样体积为30L时,最低检出浓度为0.01mg/m3。当采样体积为(5~30)L,时,本法测定空气中臭氧的浓度范围为 0.030~1.200 mg/m3。
G.1.4 仪器
G.1.4.1 采样导管:用玻璃管或聚四氟乙烯管,内径约为3mm,尽量短些,最长不超过2m,配有朝下的空气入口。
G.1.4.2 多孔玻板吸收管: 10mL。
G.1.4.3 空气采样器。
G.1.4.4 分光光度计。
G.1.4.5 恒温水浴或保温瓶。
G.1.4.6 水银温度计:精度为±5℃。
G.1.4.7 双球玻璃管:长10cm,两端内径为6mm,双球直径为15mm。
G.1.5 试剂
除非另有说明,分析时均使用符合国家标准的分析纯试剂和重蒸馏水或同等纯度的水。
G.1.5.1 溴酸钾标准贮备溶液C(1/6KBrO3)=0.1000mol/L:称取1.3918g溴酸钾(优级纯,180℃烘2h )溶解于水,移入500mL容量瓶中,用水稀释至标线。
G.1.5.2 溴酸钾—溴化钾标准溶液C(1/6KBrO3)=0.0100mol/L:吸取10.00mL溴酸钾标准贮备溶液于100mL 容量瓶中,加入1.0g溴化钾(KBr),用水稀释至标线。
G.1.5.3 硫代硫酸钠标准贮备溶液C(Na2S2O3)=0.1000mol/L。
G.1.5.4 硫代硫酸钠标准工作溶液C(Na2S2O3)=0.0050mol/L:临用前,准确量取硫代硫酸钠标准贮备溶液用水稀释20倍。
G.1.5.5 硫酸溶液:(1 6)(V/V)。
G.1.5.6 淀粉指示剂溶液,2.0g/L :称取0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL沸水中,煮沸至溶液澄清。
G.1.5.7 磷酸盐缓冲溶液C(KH2PO4—Na2HPO4)=0.050mol/L:称取6.8g磷酸二氢钾(KH2PO4)和7.1g无水磷酸氢二钠(Na2HPO4),溶解于水,稀释至1000mL。
G.1.5.8 靛蓝二磺酸钠(C6H18O8S2Na2 简称IDS),分析纯。
G.1.5.9 IDS标准贮备溶液:称取0.25g靛蓝二磺酸钠(IDS),溶解于水,移入500mL棕色容量瓶中,用水稀释至标线,摇匀,24h后标定。此溶液于20℃以下暗处存放可稳定两周。
标定方法:吸取20.00mL IDS标准贮备溶液于250mL碘量瓶中,加入20.00mL溴酸钾—溴化钾标准溶液,再加入50mL水,盖好瓶塞,放入16℃±1℃水浴或保温瓶中,至溶液温度与水温平衡时,加入5.0mL(1 6)硫酸溶液,立即盖好瓶塞,混匀并开始计时,在16℃±1℃水浴中,于暗处放置35min±1min。加入1.0g碘化钾(KI)立即盖好瓶塞摇匀至完全溶解,在暗处放置5min后,用硫代硫酸钠标准工作溶液滴定至红棕色刚好褪去呈现淡黄色,加入5mL淀粉指示剂,继续滴定至蓝色消褪呈现亮黄色。两次平行滴定所用硫代硫酸钠标准工作溶液的体积之差不得大于0.10mL。IDS溶液相当于臭氧的质量浓度C(O3,μg/mL)按下式计算:

式中:
C1——溴酸钾—溴化钾标准溶液的浓度,mol/L;
V1——溴酸钾—溴化钾标准溶液的体积,mL;
C2——滴定用硫代硫酸钠标准工作溶液的浓度,mol/L;
V2——滴定用硫代硫酸钠标准工作溶液的体积,mL;
V——IDS标准贮备溶液的体积,mL;
12.00——臭氧的摩尔质量(1/4O3),g/mol。
G.1.5.10 IDS标准工作溶液:将标定后的IDS标准贮备溶液用磷酸盐缓冲溶液,稀释成每毫升相当于1.0μg臭氧的IDS标准工作溶液。此溶液于20℃以下暗处存放,可稳定一周。
G.1.5.11 IDS吸收液:将IDS标准贮备溶液用磷酸盐缓冲溶液稀释成每毫升相当于2.5μg或5.0μg臭氧的IDS吸收液。此溶液于20℃以下暗处存放,可使用一月。
G.1.5.12 活性炭吸附管, 60~80 目:临用前在氮气保护下400℃烘2h,冷却至室温,装入双球玻璃管中,两端用玻璃棉塞好,密封保存。
G.1.6 采样
G.1.6.1 样品的采集:用内装10.00mL IDS吸收液的多孔玻板吸收管,罩上黑布套,以0.5L/min的流量采气 5~30 L。
G.1.6.2 零空气样品的采集:采样的同时,用与采样所用吸收液同一批配制的IDS吸收液,在吸收管入口端串接一支活性炭吸附管,按样品采集方法采集零空气样品。
G.1.6.3 注意事项:当吸收管中的吸收液褪色约50%时,应立即停止采样。当确信空气中臭氧浓度较低,不会穿透时,可用棕色吸收管采样。
每批样品至少采集两个零空气样品。
在样品的采集、运输及存放过程中应严格避光。样品于室温暗处存放至少可稳定3d。
G.1.7 步骤
G.1.7.1 标准曲线的绘制
取六支10mL具塞比色管,按表G.1.1制备标准系列。
表G.1.1 臭氧标准系列
管 号 0 1 2 3 4 5
IDS标准工作溶液(mL) 10.00 8.00 6.00 4.00 2.00 0
磷酸盐缓冲溶液(mL) 0 2.00 4.00 6.00 8.00 10.00
臭氧含量(μg/mL) 0 0.20 0.40 0.60 0.80 1.00
各管摇匀,用10mm比色皿,在610nm处,以水为参比测量吸光度。以臭氧含量为横坐标,以零管样品的吸光度(A0)与各标准样品管的吸光度(A)之差(A0-A)为纵坐标,用最小二乘法计算标准曲线的回归方程:
y=bx a
式中:
y——A0-A;
x——臭氧含量,μg/mL;
b——回归方程的斜率,吸光度:mL/μg/10mm;
a——回归方程的截距。
G.1.7.2 样品测定
在吸收管的入口端串接一个玻璃尖嘴,用吸耳球将吸收管中的溶液挤入到一个25mL或50mL棕色容量瓶中。第一次尽量挤净,然后每次用少量磷酸盐缓冲溶液,反复多次洗涤吸收管,洗涤液一并挤入容量瓶中,再滴加少量水至标线。按绘制标准曲线步骤测量样品的吸光度。
G.1.7.3 零空气样品的测定
用与样品溶液同一批配制的IDS吸收液,按样品的测定步骤测定零空气样品的吸光度。
G.1.8 计算
c
式中:
c——臭氧浓度;
A0——零空气样品的吸光度;
A——样品的吸光度;
a——标准曲线的截距;
V——样品溶液的总体积,mL;
b——标准曲线的斜率,吸光度·mL/μg/10mm;
V0——换算为标准状态的采样体积,L。
所得结果表示至小数点后3位。
G.1.9 说明
G.1.9.1 六个实验室绘制IDS标准曲线的斜率在 0.431~0.467 吸光度·mL/μg/10mm之间,平均吸光度为0.449。
G.1.9.2 六个实验室测定浓度范围在 0.088~0.946 mg/m3之间的臭氧标准气体,重复性变异系数小于10%,相对误差小于5%。
G.1.9.3 六个实验室测定三个浓度水平的IDS标准溶液(平行测定6次),精密度见表G.1.2。
G.1.2 测定IDS溶液的精密度
浓度(mg/L) 重复性 再现性
Sr r SR R
0.085 0.0011 0.003 0.0038 0.011
0.537 0.016 0.004 0.0064 0.018
0.918 0.0014 0.004 0.0107 0.030
G.1.10 干扰
二氧化氮使臭氧的测定结果偏高,约为二氧化氮质量浓度的6%。
空气中二氧化硫、硫化氢、过氧乙酰硝酸酯(PAN)和氟化氢的浓度分别高于750、110、1800和2.5μg/m3时,干扰臭氧的测定。
空气中氯气、二氧化氯的存在使臭氧的测定结果偏高。但在一般情况下,这些气体的浓度很低,不会造成显着误差。
G.2 紫外光度法
G.2.1 相关标准和依据
本方法主要依据GB/T15438 《环境质量 臭氧的测定 紫外光度法》。
G.2.2 术语
G.2.2.1 零空气:不含能使臭氧分析仪产生可检测响应的空气,也不含与臭氧发生反应的一氧化碳、乙烯等物质。
G.2.2.2 传递标准:一个仪器及相关的操作程序或一个方法,能准确测量并重现与一级标准有定量相关性的臭氧浓度标准。
G.2.3 原理
当空气样品以恒定的流速进入仪器的气路系统,样品空气交替地或直接进入吸收池或经过臭氧涤去器再进入吸收池,臭氧对254nm波长的紫外光有特征吸收,零空气样品通过吸收池时被光检测器检测的光强度为Io,臭氧样品通过吸收池时被光检测器检测的光强度为I,I/ Io为透光率。每经过一个循环周期,仪器的微处理系统根据朗伯—比耳定律求出臭氧浓度。
G.2.4 测定范围
臭氧的测定范围为2.14μg/m3(0.001mL/m3)至2 mg/m3(1mL/m3)。
G.2.5 试剂和材料
G.2.5.1 采样管线:采用玻璃、聚四氟乙烯等不与臭氧起化学反应的惰性材料。
G.2.5.2 颗粒物滤膜:滤膜及其它支撑物应由聚四氟乙烯等不与臭氧起化学反应的惰性材料制成。应能脱除可改变分析器性能、影响臭氧测定的所有颗粒物。
注:①滤膜孔径为5μm;
②通常:新滤膜需要在工作环境中适应 5~15 min后再使用。
G.2.5.3 零空气:来源不同的零空气可能含有不同的残余物质,因此,在测定Io时,向光度计提供零气的气源与发生臭氧所用的气源相同。
G.2.6 仪器
G.2.6.1 紫外臭氧分析仪
G.2.6.1.1 紫外吸收池:紫外吸收池应用不与臭氧起化学反应的惰性材料制成,并具良好的机械稳定性。吸收池的臭氧损失不能大于5%。光路长度为已知值的99.5%。
G.2.5.1.2 紫外灯:所产生的紫外光被检测器接受的254nm的辐射至少占99.5%。
G.2.6.1.3 光检测器:能满足在254nm波长下测量的灵敏度要求。浓度测量标准偏差不超过0.01mg/m3(0℃,101.325kPa)或浓度的3%。
G.2.6.1.4 臭氧涤去器:空气样品经过臭氧涤去器以后进入吸收池由光检测器测出Io,臭氧涤去器的平均寿命由生产厂家给出。然而实际寿命由采样环境而定。当臭氧涤去器对环境中的臭氧反应明显降低、线性检验精度>1%时则应更换臭氧涤去器。
G.2.6.1.5 采样泵:采样泵安装在气路的末端,抽吸空气流过臭氧分析仪,并能在仪器所需的流量和压力条件下运转。
G.2.6.1.6 流量控制器:控制流过臭氧分析仪的空气流量恒定在选定流量值的±2%以内。
G.2.6.1.7 流量计:流量值在要求值的±2%范围以内。
G.2.6.1.8 温度指示器:能测量紫外吸收池的温度,准确度为±0.1℃。
G.2.6.1.9 压力指示器:能测量紫外吸收池的压力,准确度为±0.1kPa。
G.2.6.2 校准用主要设备
G.2.6.2.1 一级紫外臭氧校准仪:一级紫外臭氧校准仪仅用于一级校准用。只能通入清洁、干燥、过滤过的气体,而不可以直接采集空气。只能放在干净的专用的试验室内,必须固定避免震动。可将紫外臭氧校准仪通过传递标准作为现场校准的共同标准。一级紫外臭氧校准仪其吸收池要能通过254nm波长的紫外光,通过吸收池的254nm波长的紫外光至少要有99.5%被检测器所检测。吸收池的长度,不应大于已知长度的±0.5%。臭氧在气路中的损失不能大于5%。
G.2.6.2.2 臭氧发生器:能发生稳定浓度的臭氧,并在整个校准周期内臭氧的流量要保持均匀。
G.2.6.2.3 输出多支管:输出多支管应用不与臭氧起化学反应的惰性材料,如玻璃、聚四氟乙烯塑料等。直径要保证与仪器连接处及其他输出口压力降可忽略不计。系统必须有排出口,以保证多支管内压力为大气压,防止空气倒流。
G.2.7 步骤
G.2.7.1 紫外臭氧分析仪的校准
G.2.7.1.1 一级标准校准
G.2.7.1.1.1 原理
用臭氧发生器制备不同浓度的臭氧,将一级紫外臭氧校准仪和臭氧分析仪连接在输出多支管上同时进行测定。将臭氧分析仪测定的臭氧浓度值对一级紫外臭氧校准仪的测定值做图,即得出臭氧分析仪的校准曲线。
G.2.7.1.1.2 臭氧分析仪的校准步骤
a.通电使整个校准系统预热和稳定48h。
b.零点校准。调节零空气的流量,使零空气流量必须超过接在输出多支管上的校准仪与分析仪的总需要量,以保证无环境空气抽入多支管的排出口。让分析仪和校准仪同时采集零空气直至获得稳定的响应值(零空气需稳定输出15min)。然后调节校准仪的零点电位器至零。同时调节分析仪的零点电位器。分别记录臭氧校准仪和臭氧分析仪对零空气的稳定响应值。
c.调节臭氧发生器,发生臭氧分析仪满量程80%的臭氧浓度。
d.跨度调节。让分析仪和校准仪同时采集臭氧,直至获得稳定的响应值(臭氧需稳定输出15min)。调节分析仪的跨度电位器,使之与校准仪的浓度指示值一致。分别记录臭氧校准仪与臭氧分析仪臭氧标气的稳定响应值。
如果满量程跨度调节作了大幅度的调节,则应重复步骤c~d再检验零点和跨度。
e.多点校准。调节臭氧发生器,在臭氧分析仪满量程标度范围内,至少发生5个臭氧浓度,对每个发生的臭氧浓度分别测定其稳定的输出值,并分别记录臭氧校准仪与臭氧标准仪对每个浓度的稳定响应值。
f.绘制标准曲线。以臭氧分析仪的响应值(mg/m3)为Y轴。以臭氧浓度(臭氧校准仪的响应值)为X轴作校准曲线。所得的校准曲线应符合下式的线性方程。

O3(mg/m3)=b×[臭氧分析仪的响应值] a
g.用最小二乘法公式计算校准曲线的b、a和γ值。a值应小于满量程浓度值的1%,b值应在0.99~1.01之间,γ值应大于0.9999。
G.2.7.1.2 传递标准校准
在不具备一级校准仪和不方便使用一级标准的情况下,可以用传递标准校准。传递校准可采用紫外臭氧校准仪和靛蓝二磺酸钠分光光度法。用于传递校准的紫外臭氧校准仪只能用于校准。
G.2.7.2 臭氧分析仪的操作
接通电源,打开仪器主电源开关,仪器至少预热一小时。待仪器稳定后连接气体采样管线进行现场测定。记录臭氧的浓度。
G.2.8 结果的表示
G.2.8.1 臭氧浓度的计算
报告结果时使用mg/m3。仪器参数以mL/m3计时换算成mg/m3。臭氧mL/m3与mg/m3的换算关系为:1mL/m3=2.141 mg/m3。
G.2.8.2 精密度
五个实验室重复测定浓度在 0.014~1.198 mg/m3的臭氧,浓度在 0.014~0.020 mg/m3之间时重复性变异系数小于9.0%;浓度在 0.020~1.198 mg/m3之间其变异系数小于5.0%。相对标准偏差小于1.0%。
G.2.9 干扰
本方法不受常见气体的干扰,但少数有机物如苯及苯胺等(见表G.2.1),在254nm处吸收紫外光,对臭氧的测定产生正干扰。除此之外,当被测室内空气中颗粒物浓度超过100μg/m3时,也对臭氧的测定产生影响。
表 G.2.1 对紫外臭氧测定仪产生干扰的某些化学物质
干扰物质(1mL/m3计) 响应(以%浓度计)
苯乙烯 20
反式—甲基苯乙烯 >100
苯甲醛 5
o-甲氧甲酚 12
硝基甲酚 100

下列物质在浓度低于1mL/m3时不产生反应:甲苯、过氧硝酸乙酰酯、丁二酮- 2,3、过氧硝酸苯酰酯、硝酸甲酯、硝酸正丙酯、硝酸正丁酯。
G.3 化学发光法
G.3.1 相关标准和依据
本方法主要依据ISO 10313 《Ambient air - Determination of the mass concentration of ozone – Chemiluminescence method》。
G.3.2 原理
臭氧分析器是根据臭氧和乙烯气相发光反应的原理制成的。样气被连续抽进仪器的反应室与乙烯反应产生激发态的甲醛(HCHO*)。当HCHO*回到基态时,放出光子(hγ)。反应式如下:

2O3 2C2H4→4 HCHO* O2
HCHO*→HCHO hγ
发射300~600 nm的连续光谱,峰值波长为435nm。所发光的强度与臭氧浓度呈线性关系,从而测得臭氧浓度。
G.3.3 最低检出浓度
本法最低检出浓度为0.005mg/m3。
G.3.4 仪器和设备
G.3.4.1 臭氧分析器
仪器主要技术指标如下:
测量范围: 0~2.0 mg/m3;
响应时间(达到最大值90%):<1min;
线性误差:<±2%满刻度;
重现性:<±2%满刻度;
零点漂移:<±2%满刻度(24h内);
跨度漂移:<±2%满刻度(24h内);
噪音:<±1%满刻度。
G.3.4.2 臭氧标准气体发生装置: 臭氧浓度用紫外光度法标定。
G.3.5 试剂和材料
G.3.5.1 活性炭:粒状;
G.3.5.2 5A分子筛:粒状;
G.3.5.3 乙烯钢瓶气:纯度99.5%以上。
G.3.6 采样
空气样品通过聚四氟乙烯导管,以仪器要求的流量抽入仪器。
G.3.7 分析步骤
按仪器说明书要求进行启动(一般要预热2h)、调零和校准等操作,然后进行现场测定。
G.3.8 计算
G.3.8.1 读取臭氧浓度(mg/m3)。
G.3.8.2 根据测定时的气温和大气压力,将浓度测量值换算成标准状态下浓度。
G.3.9 干扰
臭氧与乙烯气相发光反应,发射 300~600 nm的连续光谱,峰值波长为435nm。由于此光谱范围与通常的光电倍增管的光谱特性相吻合,因此共存组分的干扰极少。

‘陆’ 大气环境监测的监测项目

大气污染物按其存在状态分为粒子状污染物和分子状污染物(亦称气态污染物)两大类。根据污染物的存在状态,大气污染监测项目也分粒状污染物监测和气态污染物监测两大监测项目。其中,粒状污染物监测又分总悬浮微粒监测、飘尘监测、降尘监测和粒状污染物成分监测;气态污染物监测包括二氧化硫、氮氧化物、—氧化碳、光化学氧化剂(O3)、氯化氢、氟化氢、总烃等。总之大气环境监测的监测项目是相当多的,上面只列举了其中的—部分。即使这—部分,也不是任何单位在任何—次监测工作中,都要进行监测。中国在《大气环境质量标准》中,只对总悬浮微粒、飘尘、二氧化硫、氮氧化物、—氧化碳和光化学氧化剂六个项目的限值作了规定,其中飘尘作为参考标准。实际上,在大气环境监测中,总悬浮微粒、二氧化硫、氮氧化物三项是必测项目,其他项目则要根据实际情况和监测目的进行选择。 在监测范围内,污染源较多而且很分散时,用此法布设采样点。将整个监测区域画成方形网格,在网格线的结点或方格的中心布设采样点,点的数目和间距要根据人力、物力和实际情况决定。
同心圆布点法 有多个较集中的污染源,调查污染源周围各个方向和距离的污染情况时,以污染源为中心,在地面上画出若干个同心圆,再从圆心向周围引出若干条辐射线,同心圆的间距越向外越大例如4:10:20:40,在每个圆上分别设几个采样点。 将要监测的区域按工业区、居民区、商业区、交通枢纽、文化区、公园等分成若干个功能区,各功能区布设—定数量的监测点。
在实际大气环境监测中,上述几种布点方法的使用,往往以—种方法为主,再用其他方法作必要的调整,以便采样点的布设更具有代表性。此外,布点时还应注意:(1)在交通频繁地方布点时,点的位置应离开道路边缘l5~30m;(2)所有采样点都应避开林地、高墙等明显的障碍物;(3)在高大建筑物下风侧布点时,点与建筑物的距离为建筑物高度的10倍,无条件时至少要保持2倍以上。 当待测物在大气中的浓度较低或分析方法的灵敏度不够高时,要使用浓缩采样法采集气样。使用最广的浓缩采样法有过滤法或溶液吸收法。
(1)过滤法。此法用于粒子状污染物的采集。采样时,将滤纸或有机滤膜夹持在专用的采样头上,将采样头与流量计、抽气泵连接。启动抽气泵后,气体分子透过滤纸(或滤膜)经流量计计量,再经抽气泵外排,粒状物则被阻留在滤纸或滤膜上,抽气时间越长,滤纸上阻留的粒状物也越多。
(2)溶液吸收法。多用于分子状或蒸气污染物采集,捕集待测物质的仪器为吸收管,吸收管中盛有能与待测物质发生作用的吸收液,将吸收管与流量计和抽气泵连接。启动抽气泵,当大气以气泡形式通过盛有吸收管的吸收液时,在气—液界面上,发生待测气体的溶解作用或与吸收液的化学反应,使待测物留在吸收液中。与此同时,气泡内的分子因本身的热运动而迅速扩散到气泡表面,继续发生溶解作用或化学反应,如此继续下去,即完成待测物的吸收过程。显然,通气时间越长,吸收液中待测物的浓度就越大,因此,采样过程就是被测物的浓缩过程。浓缩采样法除过滤法和溶液吸收法外,还有固体采样管阻留法、低温冷凝法等

‘柒’ 工作场所中氟化氢的最高容许浓度为1mg/m3 ,采样组用10mL浓度为0.1mol/L的NaOH

问题阐述不清。
氟化氢(hydrogen fluoride),化学式HF,是由氟元素与氢元素组成的二元化合物。它是无色有刺激性气味的气体 [1]。氟化氢是一种一元弱酸。氟化氢及其水溶液均有毒性,容易使骨骼、牙齿畸形,氢氟酸可以透过皮肤被黏膜、呼吸道及肠胃道吸收,中毒后应立即应急处理,并送至就医。与五氟化锑混合后生成氟锑酸(HSbF6)。

‘捌’ 使用氢氟酸应该注意什么

密闭操作,注意通风。操作尽可能机械化、自动化。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(全面罩),穿橡胶耐酸碱服,戴橡胶耐酸碱手套。

防止蒸气泄漏到工作场所空气中。避免与碱类、活性金属粉末、玻璃制品接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。

储存于阴凉、通风的库房。远离火种、热源。库温不超过30℃,相对湿度不超过85%。保持容器密封。应与碱类、活性金属粉末、玻璃制品分开存放,切忌混储。储区应备有泄漏应急处理设备和合适的收容材料。

(8)氟化氢采样连接方法扩展阅读:

在人体内部,氢氟酸与钙离子和镁离子反应,正因为如此,它会使依靠以上两种离子发挥机能的器官丧失作用。接触、暴露在氢氟酸中一开始可能并不会疼痛,而症状可能直到几小时后氢氟酸与骨骼中的钙反应时才会出现。如果不进行处理,最终可能导致心、肝、肾和神经系统的严重甚至是致命损伤。

接触氢氟酸后的初始救护措施通常包括在接触部位涂上葡萄糖酸钙凝胶。如果接触范围过广,又或者延误时间太长的话,医护人员可能会在动脉或周围组织中注射钙盐溶液。但无论如何,接触氢氟酸后必须得到及时并且专业的护理。

参考资料来源:网络- 氢氟酸

‘玖’ 氟化氢气体浓度对人体的危害,氟化氢气体报警器报警值设为多少

氟化氢气体浓度对人体的危害见下表,氟化氢气体报警器一般有2级报警,低级设TWA值的50%,高级报警设TWA值,我们工厂用的氟化氢气体报警器就是他们的,这些数据也是他们提供给我的,他们的产品质量很好,服务也好,值得信赖。

HF
氟化氢 TWA 值 2.2ppm
对眼、鼻、咽喉等粘膜开始有刺激作用,作用时间长时也可引起肺水肿 5-10ppm
已感到刺激,能耐受数分钟 30ppm
引起眼和鼻黏膜刺激症状,皮肤刺痛 60ppm
能耐受1分多钟 120ppm
引起急性中毒致死 490-530ppm

‘拾’ �工业废物焚烧wh-12是什么意思

国家环保总局特制定危险废物焚烧污染控制标准。全文如下:
1范围
本标准从危险废物处理过程中环境污染防治的需要出发,规定了危险废物焚烧设施场所的选址原则、焚烧基本技术性能指标、焚烧排放大气污染物的最高允许排放限值、焚烧残余物的处置原则和相应的环境监测等。
本标准适用于除易爆和具有放射性以外的危险废物焚烧设施的设计、环境影响评价、竣工验收以及运行过程中的污染控制管理。
2引用标准
以下标准所含条文,在本标准中被引用即构成本标准的条文,与本标准同效。
GHZB1-1999地表水环境质量标准
GB3095-1996环境空气质量标准
GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法
GB15562.2-1995环境保护图形标志固体废物贮存(处置)场
GB8978-1996污水综合排放标准
GB12349-90工业企业厂界噪声标准
HJ/T20-1998工业固体废物采样制样技术规范
当上述标准被修订时,应使用其最新版本。
3术语
3.1危险废物
是指列入国家危险废物名录或者根据国家规定的危险废物鉴别标准和鉴别方法判定的具有危险特性的废物。
3.2焚烧
指焚化燃烧危险废物使之分解并无害化的过程。
3.3焚烧炉
指焚烧危险废物的主体装置。
3.4焚烧量
焚烧炉每小时焚烧危险废物的重量。
3.5焚烧残余物
指焚烧危险废物后排出的燃烧残渣、飞灰和经尾气净化装置产生的固态物质。
3.6热灼减率
指焚烧残渣经灼热减少的质量占原焚烧残渣质量的百分数。其计算方法如下:
P=(A-B)/A×100%
式中:P-热灼减率,%;
A-干燥后原始焚烧残渣在室温下的质量,g;
B-焚烧残渣经600℃(土25℃)3h灼热后冷却至室温的质量,g。
3.7烟气停留时间
指燃烧所产生的烟气从最后的空气喷射口或燃烧器出口到换热面(如余热锅炉换热器)或烟道冷风引射口之间的停留时间。
3.8焚烧炉温度
指焚烧炉燃烧室出口中心的温度。
3.9燃烧效率(CE)
指烟道排出气体中二氧化碳浓度与二氧化碳和一氧化碳浓度之和的百分比。
用以下公式表示:
CE=CO2/(CO2+CO)×100%
式中:[CO2]和[CO]-分别为燃烧后排气中CO2和CO的浓度。
3.10焚毁去除率(DRE)
指某有机物质经焚烧后所减少的百分比。用以下公式表示:
DRE=(Wi-WO)/Wi×100%
式中:Wi-被焚烧物中某有机物质的重量;
Wo-烟道排放气和焚烧残余物中与Wi相应的有机物质的重量之和。
3.11二恶英类
多氯代二苯并-对-二恶英和多氯代二苯并呋喃的总称。
3.12二恶英毒性当量(TEQ)
二恶英毒性当量因子(TEF)是二恶英毒性同类物与2,3,7,8-四
氯代二苯并-对-二恶英对的亲和性能之比。二恶英毒性当量可以通过下式计
算:
TEQ=∑(二恶英毒性同类物浓度×TEF)
3.13标准状态
指温度在273.16K,压力在101.325KPa时的气体状态。
本标准规定的各项污染物的排放限值,均指在标准状态下以11%O2(干空气)作为换算基准换算后的浓度。
4技术要求
4.1焚烧厂选址原则
4.1.1各类焚烧厂不允许建设在GHZB1中规定的地表水环境质量一类、二类功能区和GB3095中规定的环境空气质量一类功能区,即自然保护区、风景名胜区和其它需要特殊保护地区。集中式危险废物焚烧厂不允许建设在人口密集的居住区、商业区和文化区。
4.1.2各类焚烧厂不允许建设在居民区主导风向的上风向地区。
4.2焚烧物的要求
除易爆和具有放射性以外的危险废物均可进行焚烧。
4.3焚烧炉排气筒高度
4.3.1焚烧炉排气筒高度见表1。

焚烧量(kg/h)
废物类型
排气筒最低允许高度(m)
≤300
医院临床废物
20
除医院临床废物以外的第4. 2条规定的危险废物
25
300-2000
第4.2条规定的危险废物
35
2000-2500
第4.2规定的危险废物
45
≥2500
第4.2条规定的危险废物
50
4.3.2新建集中式危险废物焚烧厂焚烧炉排气筒周围半径200米内有建筑物时,排气筒高度必须高出最高建筑物5米以上。
4.3.3对有几个排气源的焚烧厂应集中到一个排气筒排放或采用多筒集合式排放。
4.3.4焚烧炉排气筒应按GB/T16157的要求,设置永久采样孔,并安装用于采样和测量的设施。
4.4焚烧炉的技术指标
4.4.1焚烧炉的技术性能要求见表2。
表2焚烧炉的技术性能指标
指标/废物类型
焚烧炉
温度(℃)
烟气停留
时间(s)
燃烧效率
(%)
焚毁去除率
(%)
焚烧残渣热灼减率(%)
危险废物
≥1100
≥2.0
≥99.9
≥99.99
<5
多氯联苯
≥1200
≥2.0
≥99.9
≥99.9999
<5
医院临床废物
≥850
≥1.0
≥99.9
≥99.99
<5
4.4.2焚烧炉出口烟气中的氧气含量应为6%-10%(干气)。
4.4.3焚烧炉运行过程中要保证系统处于负压状态,避免有害气体逸出。
4.4.4焚烧炉必须有尾气净化系统、报警系统和应急处理装置。
4.5危险废物的贮存
4.5.1危险废物的贮存场所必须有符合GB15562.2的专用标志。
4.5.2废物的贮存容器必须有明显标志,具有耐腐蚀、耐压、密封和不与所贮存的废物发生反应等特性。
4.5.3贮存场所内禁止混放不相容危险废物。
4.5.4贮存场所要有集排水和防渗漏设施。
4.5.5贮存场所要远离焚烧设施并符合消防要求。
5污染物(项目)控制限值
5.1焚烧炉大气污染物排放限值
焚烧炉排气中任何一种有害物质浓度不得超过表3中所列的最高允许限值。
5.2危险废物焚烧厂排放废水时,其水中污染物最高允许排放浓度按GB8978执行。
5.3焚烧残余物按危险废物进行安全处置。
5.4危险废物焚烧厂噪声执行GB12349。
表3危险废物焚烧炉大气污染物排放限值1)
序号
污染物
不同焚烧容量时的最高允许排放浓度限值 (mg/m3)
≤300(kg/h)
300-2500(kg/h)
≥2500(kg/h)
1
烟气黑度
林格曼1级
2
烟尘
100
80
65
3
一氧化碳(CO)
100
80
80
4
二氧化硫(SO2)
400
300
200
5
氟化氢(HF
9.0
7.0
5.0
6
氯化氢(HCL)
100
70
60
7
氮氧化物(以NO2计)

500

8
汞及其化合物(以HG计)

0.1

9
镉及其化合物(以CD计)

0.1

10
砷,镍及其化合物(以AS+NI计)2

1.0

11
铅及其化合物(以PB计

1.0

12
铬,锡,锑,铜,镭及其化合物

4.0

13
二恶英类

0.5TEQng/m3

1)在测试计算过程中,以11%O2(干气)作为换算基准。换算公式为
c=10/(21-Os)×Cs
式中:c-标准状态下被测污染物经换算后的浓度(mg/m3);
Os-排气中氧气的浓度(%);
Cs-标准状态下被测污染物的浓度(mg/m3)。
2)指砷和镍的总量。
3)指铬、锡、锑、铜和锰的总量。
6监督监测
6.1废气监测
6.1.1焚烧炉排气筒中烟尘或气态污染物监测的采样点数目及采样点位置的设置,执行GB/T16157。
6.1.2在焚烧设施于正常状态下运行1h后,开始以1次/h的频次采集气样,每次采样时间不得低于45min,连续采样三次,分别测定。以平均值作为判定值。
6.1.3焚烧设施排放气体按污染源监测分析方法执行(见表4)。
表4焚烧设施排放气体的分析方法

序号
污 染 物
分 析 方 法
方 法 来 源
1
烟气黑度
林格曼烟度法
GB/T5468-91
2
烟尘
重量法
GB/T16157-1996
3
一氧化碳(CO)
非分散红外吸收法
HJ/T44-1999
4
二氧化硫(SO2)
甲醛吸收副玫瑰苯胺分光光度法
1)
5
氟化氢(HF)
滤膜氟离子选择电极法
1)
6
氯化氢(HCL)
硫氰汞分光光度法
HJ/T27-1999
硝酸银容量法
1)
7
氮氧化物
盐酸萘二胺分光光度法
HJ/T43-1999
8

冷原子吸收分光光度法
1)
9

原子吸收分光光度法
1)
10

火焰原子吸收分光光度法
1)
11

二乙基二硫代氨基甲酸银分光光度法
1)
12

二苯碳酰二肼分光光度法
1)
13

原子吸收分光光度法
1)
14

5-Br-PADAP分光光度法
1)
15

原子吸收分光光度法
1)
16

原子吸收分光光度法
1)
17

原子吸收分光光度法
1)
18
二恶英类
色谱-质谱联用法
2)
1)《空气和废气监测分析方法》,中国环境科学出版社,北京,1990年。
2)《固体废弃物试验分析评价手册》,中国环境科学出版社,北京,1992年,P332-359。

6.2焚烧残渣热灼减率监测
6.2.1样品的采集和制备方法执行HJ/T20。
6.2.2焚烧残渣热灼减率的分析采用重量法。依据本标准“3.6”所列公式计算,取三次平均值作为判定值。
7标准实施
(1)自2000年3月1日起,二恶英类污染物排放限值在北京市、上海市、广州市执行。2003年1月1日之日起在全国执行。
(2)本标准由县级以上人民政府环境保护行政主管部门负责监督与实施。

阅读全文

与氟化氢采样连接方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276