导航:首页 > 方法技巧 > 如何化为配方法

如何化为配方法

发布时间:2022-10-21 00:23:57

① 配方法是怎样的

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。同时也是数学一元二次方程中的一种解法(其他两种为公式法和分解因式法)。
配方过程:
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.求解: 用直接开平方法求解
6.整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例如:解方程2x^2+4=6x
2x^2-6x+4=0
x^2-3x+2=0
x^2-3x=-2
x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
(x-1.5)^2=0.25 (a^2+2a+1=0 即(a+1)^2=0)
x-1.5=±0.5
x1=2,x2=1(一元二次方程通常有两个解X1与X2)

如何用配方法解一元二次方程

ax^2+bx+c = 0, a ≠ 0
x^2 + (b/a)x + c/a = 0
[x + b/(2a)]^2 = b^2/(4a^2) - c/a
= (b^2-4ac)/(4a^2), 当 b^2-4ac ≥ 0 时,
x + b/(2a) = ±√(b^2-4ac)/(2a)
x = [-b±√(b^2-4ac)]/(2a)

③ 数学配方法是什么配方法的步骤有哪些

通过配成完全平方式的方法,得到一元二次方程的根的方法.这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式.同时也是数学一元二次方程中的一种解法。
配方法的步骤
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项:常数项移到等式右边
3.系数化1:二次项系数化为1
4.配方:等号左右两边同时加上一次项系数一半的平方
5.用直接开平方法求解 整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)

④ 如何用配方法解ax∧2+bx+c=0的方程(详细)

解题过程:


一、方程左右两边同时除以a 得:x²/a+b/ax+c/a=0


二、配平方: x²+b/ax+(b/4a)²-(b/4a)²+c=0


即(x+b/2a)²=(b/4a)²-c


三、整理右边(通分): (x+b/2a)²=(b²-4ac)/4a


四、左右开平方: (x+b/2a)=√(b²-4ac)/4a


五、移项: x=(-b±√△)/2a


注:用△代表b²-4ac


六、可得出求根公式: x=(-b±√△)/2a


(4)如何化为配方法扩展阅读:


一、配方法:


是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。


二、在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。


配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。

由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2,可得:x=(-b±√△)/2a

这个表达式称为二次方程的求根公式。


三、用途:


①解方程


②求最值


③证明非负性


④求抛物线的顶点坐标

⑤ 如何详解配方法

一、配方法
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。

二、配方法的理论依据

(5)如何化为配方法扩展阅读:

配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2

⑥ 化学配方法怎么

(一)最小公倍数法
这种方法适合常见的难度不大的化学方程式.例如,
KClO3 →KCl+O2 ↑
在这个反应式中右边氧原子个数为2 ,左边是3,则最小公倍数为 6 ,因此 KClO3 前系数应配2 ,O2 前配3 ,式子变为:
2KClO3 →KCl+3O2 ↑
由于左边钾原子和氯原子数变为2个,则KCl前应配系数2,短线改为等号,标明条件即可.
(二)奇偶配平法
这种方法适用于化学方程式两边某一元素多次出现,并且两边的该元素原子总数有一奇一偶,例如:
C2H2 +O2—CO2 +H2O
此方程式配平从先出现次数最多的氧原子配起.O2 内有2个氧原子,无论化学式前系数为几,氧原子总数应为偶数.故右边H2O的系数应配2(若推出其它的分子系数出现分数则可配4),由此推知C2H2前2,式子变为:
C2H2+O2==CO2+2H2O
由此可知 CO2前系数应为4,最后配单质O2为5 ,写明条件即可.
(三)观察法配平
有时方程式中会出现一种化学式比较复杂的物质,我们可通过这个复杂的分子去推其他化学式的系数,例如:
Fe+H2O—Fe3O4+H2
Fe3O4化学式较复杂,显然,Fe3O4中Fe来源于单质 Fe,O来自于H2O,则 Fe 前配3,H2O前配4 ,则式子为:
3Fe+4H2O = Fe3O4 +H2 ↑
由此推出H2系数为4,写明条件,短线改为等号即可.
4、 电子得失法:配平方法:寻找反应式左右两边有一元素反应前后化合价降低或升高,即有一元素原子得到或失去电子,必有另一元素原子或电子,但化合价升降或降升总数相等,即电子得失总数相等,然后根据原子得失电子总数相等来确定其配平系数.
Fe2O3+C----Fe+CO2 反应中:
Fe2O3→Fe,Fe 的化合价由+3-----0价得3e×4
C →CO2,C的化合价由0价----+4价,失4e×3
3与4的最小公倍数为12,故得3 ×4与 4×3,方程的系数为2、3、4、3,即
失4e×3
+3 0 0 +4
2Fe2O3+3C 高温 4Fe+3CO2
得3e×2×2 。

⑦ 如何分辨什么是配方法,公式法,因式分解

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解 法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.、
直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± .
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac≥0时,x+ =± ∴x=(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项 系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根.例3.用公式法解方程 2x2-8x=-5 将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根.这种解一元二次方程的方法叫做因式分解法.

⑧ 二次函数怎么用配方法化成y等于a(x

解答如下:

第一步:提取a

第二步:配上一次项系数一半的平方

第三步:整理,化简。

⑨ 配方法、开方法、公式法算法和公式

1..配方法(可解全部一元二次方程)
2.公式法(可解全部一元二次方程)
3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、除非题目要求,最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是解题步骤太麻烦)。
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。
一元二次方程的一般形式为:ax^2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n
例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)^2=7
∴(3x+1)^2=7
∴3x+1=±√7(注意不要丢解)
∴x= ...
∴原方程的解为x1=...,x2= ...
(2)解: 9x^2-24x+16=11
∴(3x-4)^2=11
∴3x-4=±√11
∴x= ...
∴原方程的解为x1=...,x2= ...
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先将固定数c移到方程右边:ax^2+bx=-c
将二次项系数化为1:x^2+(b/a)x=-c/a
方程两边分别加上一次项系数的一半的平方:x^2+(b/a)x+0.5(b/a)^2=-c/a+0.5(b/a)^2
方程左边成为一个完全平方式:[x+0.5(b/a)]^2=-c/a+0.5(b/a)^2
当b2-4ac≥0时,x+ =± √[-c/a+0.5(b/a)^2 ]-0.5(b/a)
∴x=...(这就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0
解:将常数项移到方程右边 3x^2-4x=2
将二次项系数化为1:x^2-x=
方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2
配方:(x-)^2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。
当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)
当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)
当b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个共轭的虚数根)(初中理解为无实数根)
例3.用公式法解方程 2x^2-8x=-5
解:将方程化为一般形式:2x^2-8x+5=0
∴a=2, b=-8, c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
(3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x^2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x^2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
例5.用适当的方法解下列方程。(选学)
(1)4(x+2)^2-9(x-3)^2=0 (2)x^2+2x-3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差公式分解因式,化成两个一次因式的乘积。
(2)可用十字相乘法将方程左边因式分解。
(3)化成一般形式后利用公式法解。
(4)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。
(1)解:4(x+2)^2-9(x-3)^2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2)解: x^2+2x-3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)解:x^2-2 x=-
x^2-2 x+ =0 (先化成一般形式)
△=(-2 )^2-4 ×=12-8=4>0
∴x=
∴x1=,x2=
(4)解:4x^2-4mx-10x+m^2+5m+6=0
4x^2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)^2+5(x+1)(x-4)+2(x-4)^2=0的二根。 (选学)
分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解。
例7.用配方法解关于x的一元二次方程x^2+px+q=0
解:x^2+px+q=0可变形为
x^2+px=-q (常数项移到方程右边)
x^2+px+( )2=-q+( )2 (方程两边都加上一次项系数一半的平方)
(x+)2= (配方)
当p^2-4q≥0时,≥0(必须对p^2-4q进行分类讨论)
∴x=- ±=
∴x1= ,x2=
当p^2-4q<0时,<0此时原方程无实根。
说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母取值的要求,必要时进行分类讨论。
练习:
(一)用适当的方法解下列方程:
1. 6x^2-x-2=0 2. (x+5)(x-5)=3
3. x^2-x=0 4. x^2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列关于x的方程
1.x^2-ax+-b2=0 2. x^2-( + )ax+ a2=0
练习参考答案:
(一)1.x1=-1/2 ,x2=2/3 2.x1=2,x2=-2
3.x1=0,x2= 4.x1=x2=2 5.x1=x2=
6.解:(把2x+3看作一个整体,将方程左边分解因式)
[(2x+3)+6][(2x+3)-1]=0
即 (2x+9)(2x+2)=0
∴2x+9=0或2x+2=0
∴x1=-,x2=-1是原方程的解。
(二)1.解:x^2-ax+( +b)( -b)=0 2、解:x^2-(+ )ax+ a· a=0
[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0
∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0
∴x1= +b,x2= -b是 ∴x1= a,x2=a是
原方程的解。 原方程的解。
测试(有答案在下面)
选择题
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多项式a2+4a-10的值等于11,则a的值为( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax^2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax^2+bx+c=0有一个根是零的条件为( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x^2-3x=10的两个根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x^2-3x+3=0的解是( )。
A、 B、 C、 D、无实根
7. 方程2x^2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x^2-x-4=0左边配成一个完全平方式后,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不对
9. 已知一元二次方程x^2-2x-m=0,用配方法解该方程配方后的方程是( )。
A、(x-1)^2=m2+1 B、(x-1)^2=m-1 C、(x-1)^2=1-m D、(x-1)^2=m+1
答案与解析
答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D
解析:
1.分析:移项得:(x-5)^2=0,则x1=x2=5,
注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。
2.分析:依题意得:a^2+4a-10=11, 解得 a=3或a=-7.
3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax^2+bx+c=a+b+c,意味着当x=1时,方程成立,则必有根为x=1。
4.分析:一元二次方程 ax^2+bx+c=0若有一个根为零,则ax^2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.另外,还可以将x=0代入,得c=0,更简单!
5.分析:原方程变为 x^2-3x-10=0,
则(x-5)(x+2)=0
x-5=0 或x+2=0
x1=5, x2=-2.
6.分析:Δ=9-4×3=-3<0,则原方程无实根。
7.分析:2x2=0.15
x2=
x=±
注意根式的化简,并注意直接开平方时,不要丢根。
8.分析:两边乘以3得:x^2-3x-12=0,然后按照一次项系数配方,x^2-3x+(-)2=12+(- )^2,
整理为:(x-)2=
方程可以利用等式性质变形,并且 x^2-bx配方时,配方项为一次项系数-b的一半的平方。
9.分析:x^2-2x=m, 则 x^2-2x+1=m+1
则(x-1)^2=m+1.
中考解析
考题评析
1.(甘肃省)方程的根是( )
(A) (B) (C) 或 (D) 或
评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元
二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为C。
另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。
2.(吉林省)一元二次方程的根是__________。
评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。
3.(辽宁省)方程的根为( )
(A)0 (B)–1 (C)0,–1 (D)0,1
评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。
4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。
评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。
5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方根,即可选出答案。
课外拓展
一元二次方程
一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。 一般形式为ax^2+bx+c=0, (a≠0)
在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于 一个已给数,即求出这样的x与,使
x=1, x+ =b,
x^2-bx+1=0,
他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。
埃及的纸草文书中也涉及到最简单的二次方程,例如:ax^2=b。
在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。
希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。
公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x^2+px+q=0的一个求根公式。
在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令 a、b、c为正数,如ax^2=bx、ax^2=c、 ax^2+c=bx、ax^2+bx=c、ax^2=bx+c 等。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。
韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。
我国《九章算术.勾股》章中的第二十题是通过求相当于 x^2+34x-71000=0的正根而解决的。我国数学家还在方程的研究中应用了内插法。
[编辑本段]判别方法
一元二次方程的判断式:
b^2-4ac>0 方程有两个不相等的实数根.
b^2-4ac=0 方程有两个相等的实数根.
b^2-4ac<0 方程有两个共轭的虚数根(初中可理解为无实数根).
上述由左边可推出右边,反过来也可由右边推出左边.
[编辑本段]列一元二次方程解题的步骤
(1)分析题意,找到题中未知数和题给条件的相等关系;
(2)设未知数,并用所设的未知数的代数式表示其余的未知数;
(3)找出相等关系,并用它列出方程;
(4)解方程求出题中未知数的值;
(5)检验所求的答案是否符合题意,并做答.
[编辑本段]经典例题精讲

⑩ 配方法是什么

通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2.系数化1: 将二次项系数化为1
3.移项: 将常数项移到等号右侧
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.变形: 将等号左边的代数式写成完全平方形式
6.开方: 左右同时开平方
7.求解: 整理即可得到原方程的根
写成(a+b)平方的形式或(a-b)平方的形式: 将(a+b)平方的展开得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必须要有a^2,2ab,b^2 则选定你要配的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),就进行添加和去增

阅读全文

与如何化为配方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276