㈠ 配方法的公式是什么
配方法是根据完全平方公式:(a+/-b)²=a²+/-2ab+b²得出的。
配方只适用于等式方程,就是把等式通过左右两边同时加或减去一个数,使这个等式的左边的式子变成完全平方式的展开式,再因式分解就可以解方程了。
举例:
2a²-4a+2=0
a²-2a+1=0(二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)
(a-1)²=0(上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)
a-1=0(最后等式两边同时开平方)
a=1(得到结果)
(1)数学配方法如何解的扩展阅读
配方法的应用
1、用于比较大小:
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。
2、用于求待定字母的值:
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。
3、用于求最值:
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。
4、用于证明:
“配方法”在代数证明中有着广泛的应用,学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用。
㈡ 数学的配方法怎么配公式是什么
若x²+kx+n,则配中间项系数一半的平方。就酱。至于后边的数字,需要几就加或减几
㈢ 数学配方法的基本步骤是什么
在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。
等式两边加上y2 = (b/2a)2,可得:这个表达式称为二次方程的求根公式。
解方程:在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
【例】解方程:2x²+6x+6=4
分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。
解:2x²+6x+6=4
<=>(x+1.5)²=1.25
x+1.5=1.25的平方根
求最值
【例】已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。
分析:将y用含x的式子来表示,再代入(x+y)求值。
解:x²+3x+y-3=0<=>y=3-3x-x²,
代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。
由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。
㈣ 配方法是怎样的
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。同时也是数学一元二次方程中的一种解法(其他两种为公式法和分解因式法)。
配方过程:
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.求解: 用直接开平方法求解
6.整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例如:解方程2x^2+4=6x
2x^2-6x+4=0
x^2-3x+2=0
x^2-3x=-2
x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
(x-1.5)^2=0.25 (a^2+2a+1=0 即(a+1)^2=0)
x-1.5=±0.5
x1=2,x2=1(一元二次方程通常有两个解X1与X2)
㈤ 数学配方法是什么配方法的步骤有哪些
通过配成完全平方式的方法,得到一元二次方程的根的方法.这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式.同时也是数学一元二次方程中的一种解法。
配方法的步骤
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项:常数项移到等式右边
3.系数化1:二次项系数化为1
4.配方:等号左右两边同时加上一次项系数一半的平方
5.用直接开平方法求解 整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
㈥ 如何解决配方问题
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b) =a +2ab+b ,将这个公式灵活运用,可得到各种基本配方形式,如:
a +b =(a+b) -2ab=(a-b) +2ab;
a +ab+b =(a+b) -ab=(a-b) +3ab=(a+ ) +( b) ;
a +b +c +ab+bc+ca= [(a+b) +(b+c) +(c+a) ]
a +b +c =(a+b+c) -2(ab+bc+ca)=(a+b-c) -2(ab-bc-ca)=…
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα) ;
x + =(x+ ) -2=(x- ) +2 ;…… 等等。
Ⅰ、再现性题组:
1. 在正项等比数列{a }中,a sa +2a sa +a ?a =25,则 a +a =_______。
2. 方程x +y -4kx-2y+5k=0表示圆的充要条件是_____。
A. <k<1 B. k< 或k>1 C. k∈R D. k= 或k=1
3. 已知sin α+cos α=1,则sinα+cosα的值为______。
A. 1 B. -1 C. 1或-1 D. 0
4. 函数y=log (-2x +5x+3)的单调递增区间是_____。
A. (-∞, ] B. [ ,+∞) C. (- , ] D. [ ,3)
5. 已知方程x +(a-2)x+a-1=0的两根x 、x ,则点P(x ,x )在圆x +y =4上,则实数a=_____。
【简解】 1小题:利用等比数列性质a a =a ,将已知等式左边后配方(a +a ) 易求。答案是:5。
2小题:配方成圆的标准方程形式(x-a) +(y-b) =r ,解r >0即可,选B。
3小题:已知等式经配方成(sin α+cos α) -2sin αcos α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。
4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。
5小题:答案3- 。
㈦ 初中数学配方法
配方法是解一元二次方程的一种解法,也即是把一个一元二次方程配成完全平方的形式,再开方即可。对于一个二次项是1的方程,配方的时候先把常数项移到方程右边,然后方程两边加上一次项系数一半的平方,最后把左边写成完全平方,正确解出方程就可以了,如果二次项系数不是1,先把二次项系数化成1,然后和二次项是1的配方是一样的,认真做题就可以了。
㈧ 数学配方的具体方法
配方法在解一元二次方程时非常有用,其步骤如下:
例如:ax^2+bx+c=0.
第一步:把二次项的系数提出来:a[x^2+(b/a)x]+c=0. 【不管常数项】;
第二步:把一次项的系数除以“2”;a[x^2+(b/2a)x]+c=0
第三步:把含未知项变成完全平方形式:a(x+b/2a)^2-a*(b^2/4a^2)+c=0;
即,a(x+b/2a)^2-b^2/4a+c=0. 【-b^2/4a ---是配:方后增项的项,必须减去;如果配方后二次项前是“-”号,则要加上被减去的这一项!!
第四步:合并常数项:a(x+b/2a)^2-(b^2-4ac)/4a=0.
第五步:将常数项移至等号右边,并两边同除以二次项的系数a(a≠0):
(x+b/2a)^2=(b^2-4ac)/4a^2;
第六步:两边开平方;x+b/2a=±√(b^2-4ac)/2a;
第七步:整理得到x:x=-b/2a±√(b^2-4ac)/2a.
x=[-b±√(b^2-4ac)]/2a.
x1取“+” , x2取“-”号,反之,亦然。
一般应有两个根,但对于具体情况要具体分析,如x是表示具体物体的长度、面积等就要去掉负值,只取正值。
配方法写起来很长,但熟练了,是很清晰很方便的。祝你学习进步!
㈨ 初中数学配方法的解题方法
配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
对于常用的公式
如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的'三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
学会画图
画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
审题
认真、仔细地审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”
所以,在实际解题时,应特别注意,审题要认真、仔细。
人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。
增加习题的难度
应先易后难,逐步增加习题的难度。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。
因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
要学会归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
㈩ 初三数学的配方法怎么算
用配方法解一元二次方程的步骤:
①把原方程化为ax²+bx+c=0(a≠0)的形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
2x²−4x=1(配方法)
解:2x²−4x=1