A. 五年级下册数学北师大版的主要内容,并且详细解答,我数学希望提高。
师大版五年级数学下册教学内容:
第一单元:分数乘法;
第二单元:长方体(一)
第三单元:分数除法;整理与复习一 数学与生活
第四单元:长方体(二) ;
第五单元:分数混合运算
第六单元:百分数 整理与复习二 数学与购物
第七单元:统计
总复习
这些都是基础内容,中学的理科都要常用的,要正确、熟练的运用,多做练习吧!
B. 北师大版五年级下册数学分数乘法怎样导入才比较新颖
导入方法一:设疑激趣,提出问题
1.把9+9+9+9+9改成乘法算式。
2.把O.2+0.2+O.2+O.2改成乘法算式。
3.(1)口答整数乘法的意义。
(2)求几个相同加数和的简便运算。
今天,我们就一起来学习分数乘法。
板书课题:分数乘法(一)
导入方法二: 复习导入
课件出示:
1.说出下面算式表示的意义:
9×5 4×12 6+6+6=( )×( )
思考:整数乘法表示的意义 ?
整数乘法表示的意义:求几个相同加数的和的简便运算。
2.计算:2/9+2/9+2/9+2/9=
这道题每个加数有什么特点?你是怎样计算的?
同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?
导入方法三: 复习铺垫引入课题
1、出示:3+3=( )×( ),引导说出:求2个3相加的和是多少。
2、出示:0.3+0.3=( )×( ),引导说出:求2个0.3相加的和是多少。
3、小结“整数乘整数,小数乘整数”的意义。引出“分数乘整数”的课题,并板书。
C. 北师大版五年级下册数学如何复习整理
基础知识:
①理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分。
②掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数。
③理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。
④知道体积和容积的意义以及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。
⑤结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。
⑥能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。
⑦通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。
⑧认识复式折线统计图,能根据需要选择合适的统计图表示数据。
基本概念
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。
像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移。
摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
旋转就是物体绕着某一个点或轴运动。
2×6=12,所以2和6是12的因数,12是2和6的倍数。一个数的因数还不止一个,最小的是1,最大的是它本身。从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数
个位上是 0,2,4,6,8的数,都是2的倍数。
是2的倍数的数叫偶数(0也是偶数)最小的偶数是0,不是2的倍数的数叫奇数,最小的奇数是1。
个位上是0或者5的数,都是5的倍数。
一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
一个数的因数只有1和它本身,这样的数叫质数,最小的质数是2.
一个数的因数只有1和它本身,这样的数叫质数,最小的质数是2.
一个数除了1和它本身以外还有别的因数,这样的数叫合数,最小的合数是4.
长方体有6个面,每个面都是长方形(也可能有两个相对的面是正方形),相对的面完全相同。12条棱,相对的4条棱长度相等。8个顶点。相交于一个顶点的三条棱的长度分别叫长,宽,高。
正方体有6个面,每个面都是正方形,相对的面完全相同。12条棱长度相等。8个顶点。正方体是特殊的长方体
长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积 =( 长×宽 + 长×高 + 宽×高 ) × 2
正方体的表面积 =棱长×棱长×6=底面积×6
计算长正方体的表面积一般需要计算六个面的总面积,但像这样有时要跟据实际需要计算它的表面积。(注意审题和方法的多样性)
物体所占空间的大小叫做物体的体积。测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。常用的体积单位有:立方米、立方分米、立方厘米。棱长是1厘米的正方体,体积是1立方厘米。棱长是1分米的正方体,体积是1立方分米。棱长是1米的正方体,体积是1立方米。
长方体体积=长×宽×高,V=abh
正方体体积=棱长×棱长×棱长,V=a3读作a的立方
长正方体的体积=底面积×高, V =sh
1立方分米=1000立方厘米,1立方米=1000立方分米,相邻的体积单位之间的进率是1000。
箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。1升(L)=1000毫升(mL),1升(L)=1立方分米(dm3 ) ,1毫升(mL)=1立方厘米( cm3 )
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1,
通常把它叫做单位“1 ”。 把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。把单位“1 ”平均分成若干份,表示这样一份的数就是分数的分数单位。
可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。分数是一种数,除法是一种运算,
分子比分母小的分数叫做真分数。真分数小于1 。
分子比分母大或等于分母的分数叫做假分数。假分数大于1或等于1 。
带分数都是由整数部分和分数部分(真分数)组成的,带分数都比1 大。当分子是分母的倍数时,假分数可以化成整数。
分子不是分母倍数时,化成带分数,用分子除以分母,商是整数部分,余数是分数部分的分子,分母不变。
分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
1 、2 、4 是16 和12公有的因数,叫做它们的公因数。其中,4 是最大的公因数,叫做它们的最大公因数。两个数所有公有质因数的积,就是这两个数的最大公因数。当两个数成倍数关系时,较小的数就是它们的最大公因数。当两个数只有公因数1 时,它们的最大公因数也是1 。
分子和分母只有公因数1,这样的分数叫做最简分数。
把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
约分用分子、分母的最大公因数,分别去除分子和分母,得到最简分数。
两数的最小公倍数的两种特殊情况: ( 1 )当两数成倍数关系时,较大的数就是它们的最小公倍数。 ( 2 )当两数只有公因数1 时,这两个数的积就是它们的最小公倍数。
几个分数的相同分母叫做公分母。
把异分母分数分别化成和原来分数相等的同分母分数叫做通分。
通分时,先求出原来分母的最小公倍数作公分母,再看原来分数的分母变成公分母要乘上几,分子也要乘上相同的数。
小数实际上是分母为10 、100 、1000 …的分数的另一种形式。
小数化成分数时,先把小数写成分数,原来有几位小数,就在1后面写几个0作分母,原来的小数去掉小数点作分子。注意约分的要约分。
分数化成小数把分数的分子和分母同时乘上相同的数,转化为分母是10,100,1000…的分数,再改写成小数。或利用分数与除法的关系,用分子除以分母得出小数。除不尽时,要根据需要按“四舍五人”法保留几位小数。
分数加、减法意义与整数加、减法相同。在计算同分母分数加、减法时,分母不变,只把分子相加,减。注意计算结果能约分的要约成最简分数。分子是0 的分数都等于O 。
异分母分数加、减法的计算方法是:先通分,然后按同分母分数加、减法的计算方法进行计算。注意在通分时,为了计算简便,应选择分母的最小公倍数作公分母。
计算分数加减混合运算时,可以分步通分也可以一次通分进行计算
整数加法的交换律和结合律对分数加法同样适用。
在一组数据中,出现次数最多的数叫众数。众数能够反映一组数据的集中情况。一组数据中,众数可能不止一个,也可能没有众数。
折线统计图不但可以很快比较出各种数量的多少,还能看出数量增减变化的情况。复式折线统计图可以比较容易地比较出两组数据的变化趋势。在制作复式折线统计图时,要注意画出图例。
在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。
利用天平找次品的时候,把待测物品分成3份,并且尽量平均分的方法能保证找出次品而且称的次数一定最少。
D. 北师大版小学五年级数学下册公式大全
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 �0�1
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h "牛吃草"问题的关键:
1.草场上原有的草量A
2.草场每天生长的草量B
3.牛每天吃的草量C
A+B*天数=牛的数量*吃的天数*C 小学奥数公式
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数 盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%) (注:1.2008年10月取消了利息税;2.税率要根据题目而定,不一定是20%,但如果题目没有相关内容,则一般默认是20%)
E. 怎样才能提高数学小学北师大版五年级学习成绩
“数学学习,一步跟不上,则步步跟不上”要学好数学,其实也不难,只要你掌握学习方法和
学习步骤:
一、 预习,也许只用十五分钟,就会事半功倍,而且这节课的基本知识点你掌握的应该差不多了,找出自己不懂的,老师上课时一定要好好听讲,老师所讲到的除了书上的基本知识外,会给你讲到方法,易错和应该着重注意和延伸的地方,千万不要觉得老实讲的跟你预习的一样,所以不听,否则会适得其反的。
二、记住,大家往往会觉得语文和英语是需要记忆的,不全对,数学也需要把相关知识点记住,才能做基础题目,记住解题技巧,才能举一反三,才能百战百胜!
三、大量做题,虽然课改想改变这一现状,但是想要让知识点在脑子里面根深蒂固,大量的做题永远是实用的,还要多做点综合性的知识。
建议资料:北大绿卡,奥林匹克趣味数学