1. 幂的运算法
幂的运算法则:
一、同底数幂相乘,底数不变,指数相加,
二、同底数幂相除,底数不变,指数相减,
三、幂的乘方,底数不变,指数相乘,
四、积的乘方,等于乘方的积。
2. 如何简便运算幂
同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方
3. 数学n次方简便计算公式
1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
以此类推可见n次方的各项系数就是n-1次方的上对应两个项的系数和,这是简易算法。
比如:
(a+b)的5次方
=x1a^5+x2a^4b+x3a^3b^2+x4a^2b^3+x5ab^4+x6b^5
x1
=1 x2
=5 x3
=10 x4
=10 x5
=5 x6=1
至于(11+12)的五次方。
(3)幂的简便方法如何算扩展阅读
方阵n次方简便计算方法的过程方法与思想:
1、易看出矩阵的幂的规律,可用数学归纳法。
2、 矩阵可化成两个矩阵的和,且其中有一个单位阵,可用二项式定理展开。
3、 应用相似对角化,P^(-1)AP=D,D为对角阵,则A^n=P(D^n)P^(-1)。具体步骤是求特征值和特征向量。
4. 幂的运算是什么呢
是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加。同底数幂相除,底数不变,指数相减。幂的乘方,底数不变,指数相乘。
幂运算是一种关于幂的数学运算。掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算,需要注意的是。思考对于数学的学习是最核心的,对做题更是如此。
数学是考你对知识点的运用,能够理解这些知识点,然后解题,通过解题巩固所学知识。一开始不会解题,要忍住不去翻看答案,自己先思考。
在学习法则的过程中,不是简单地套用公式,而是除了理解法则的形成过程外,还需要知道每一个法则的具体适用情况,并会变式和引申。在运用幂的运算法则进行计算时,一定要审清题,特别注意系数、符号和指数,其次要正确运用公式,看清底数和指数的变化,学会用转化的方法和整体的思想去解决问题。
法则口诀:
同底数幂的乘法:底数不变,指数相加幂的乘方。
同底数幂的除法:底数不变,指数相减幂的乘方。
幂的指数乘方:等于各因数分别乘方的积商的乘方。
分式乘方:分子分母分别乘方,指数不变。
5. 幂次方计算公式是什么呢
幂次方的计算公式有(a^m)^n=a^(mn),(ab)^n=a^nb^n,同底数幂的乘法法则是底数不变,指数相加幂的乘方,同底数幂的除法法则是底数不变,指数相减幂的乘方。
幂(power)是指乘方运算的结果,n^m指该式意义为m个n相乘。幂函数是基本初等函数之一,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数,可以表示为y=xα。
幂的大小比较法
1、计算比较法
先通过幂的计算,然后根据结果的大小,来进行比较的。
2、底数比较法
在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
6. 算幂有什么简便方法
一般情况下无
特殊的类似101^n=(100+1)^n类似的 用二项式定理的推论来算也许简便一点
一般还是不怎么简便的
7. 一个数的几次方怎么算有简便的方法吗
一个数的几次方计算就是用几个相同的这个数相乘。有简便方法,把这个次方分解。
分析过程如下:
如求:2的4次方。
2的4次方就是:2×2×2×2,通过整数的乘法计算可得:2^4=16。
简便方法举例,如求2^8。
2^8=2^4×2^4=16×16=256。
(7)幂的简便方法如何算扩展阅读:
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
常用平方数:
1² = 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100。
11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400。