导航:首页 > 方法技巧 > 大数速算方法与技巧

大数速算方法与技巧

发布时间:2022-09-21 04:21:07

1. 求速算技巧

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。

1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。

(1)大数速算方法与技巧扩展阅读:

注意事项

1、两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。

2、在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。

2. 速算技巧口诀是什么

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。


1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;


2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。



(2)大数速算方法与技巧扩展阅读:

加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀,本位相加(针对进位数)减加补,前位相加多加一,就可以彻底解决任意位数从高位数到低位数的加法速算问题。

例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

算嬗数(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算

3. 求 数学速算方法与技巧!

一、一种做多位乘法不用竖式的方法。我们都可以口算1X1
10X1,但是,11X12
12X13
12X14呢?
这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:积个位上的
数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十
位数字的积。例如:
12X14=168
1=1X1
6=2+4
8=2X4
如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。
~例如:
14X16=224
4=4X6的个位
2=2+4+6
2=1+1X1
试着做做看下面的题:
12X15=
11X13=
15X18=
17X19=
二、几十一乘以几十一的速算方法
例如:
21×61=
41×91=
41×91=
51×61=
81×91=
41×51=
41×81=
71×81=
这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位
和(和满10
进1),后写个位积。“先写十位积,再写十位和(和满10
进1),后写个位积”就是一见到
几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的
和,最后写上1
就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1
的和,再接着写十
位数的和的个位数,最后写一个1
就一定正确。
我们来看两个算式:
21×61=
41×91=
用“先写十位积,再写十位和(和满10
进1),后写个位积”这种速算方法直接写得数时的思维过程。
第一个算式,21×61=?思维过程是:2×6=12,2+6=8,
21×61
就等于1281。
第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37,
41×91
就等于3731。

4. 请问学霸们速算的诀窍是什么 有些人可以在很短时间内算出大数

你好!我觉得学习什么东西都没有捷径,速算在我们的学习中,可以帮到很大的忙,不仅提高解题速度,而且解题正确率高。我是一名数学老师。我的一点看法是:熟记1-25的平方,二是掌握尾数是5的平方,比如35的平方,你可以这样这样掌握3+1=4,然后3乘以4(刚才求得的)=12,后面是5的平方25,那么35的平方就是1225,你可以试求45的平方,二是熟记10以内自然数立方,三是凑十法,把接近十的数凑成十去算,比如79X23=80x23-23,这样你在脑子里可以直接计算,还不错呦,.四是像一些特殊数一定要熟记,2的级次幂,最好到10.3、4、5、8的几次幂尽量都要记一些,平时的积累会为你的学习减轻不少负担,还有很多,你自己去网上搜搜,希望能帮到你。
加油!

5. 速算技巧

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。

1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。

(5)大数速算方法与技巧扩展阅读:

加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀,本位相加(针对进位数)减加补,前位相加多加一,就可以彻底解决任意位数从高位数到低位数的加法速算问题。

例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀,本位相减(针对借位数)加减补,前位相减多减一,就可以彻底解决任意位数从高位数到低位数的减法速算问题。

例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

6. 速算方法与技巧

头相同,尾互补的两位数相乘。头互补,尾相同的两位数相乘,任何两位实数相乘。

十位数相同,个位数相加等于10的两位数相乘。表达式为ab*a(10-b),这里ab分别代表了十位数字和个位数字。结果为千位百位是数字a*(a+1),十位个位数字是b*(10-b),列如37*33=1221。

个位数为5的平方的算法,表达式为a5*a5,a代表5之前的数字,结果为十位个位为25,前面数字为a*(a+1)的积,比如说55*55=3025。

(6)大数速算方法与技巧扩展阅读:

用户速算注意事项:

要多做题目训练,俗话说熟能生巧,题目做的多了,做题时遇到类似可以用速算计算的大脑就会快速搜索到对应的口诀。

记口诀也是有技巧的,要分类记忆,找共同点。不能像我们记乘法口诀那样,只需死死地记住就行,不需要理解,但像各种图形的面积、体积、周长公式就不是死记能解决的,要理解记忆,这样记的才能牢固。

7. 数学十大速算技巧

学习数学离不开计算,学生的计算能力是最基本的数学能力。那么你知道学好数学速算的 方法 有哪些吗?下面我给你分享数学十大速算技巧,欢迎阅读。

数学十大速算技巧
一、充分利用五大定律

教师要扎实开展好现行教材 四年级数学 下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。

二、巧妙运用“首同末合十”

利用“首同末合十”的方法来训练。“首同末合十”法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用“首同末合十”的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54×56=3024,81×89=7209。

三、留心“左右两数合并法”

任意的两位数乘上99或任意的三位数乘上999的速算法叫做“左右两数合并法”。

1.任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62×99=6138,48×99=4752。

2.任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781×999=780219,396×999=395604。

四、利用分数与除法的关系来巧算

在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,

24÷18×36÷12=(24÷18)×(36÷12)=24/18×36/12=4。

五、利用扩大缩小的规律进行简算

有些除法计算题直接计算比较繁琐,而且容易算错,利用“扩缩规律”进行合理的变形可以找到简便的解决方法。比如,

7÷25=(7×4)÷(25×4)=28÷100=0.28,

24÷125=(24×8)÷(125×8)=192÷1000=0.192。

六、数字颠倒的两、三位数减法巧算

形如73与37、185与581等的数称为“数字颠倒”的两、三位数,巧算方法为:

1.数字颠倒的两位数减法,可用两位数字中的大数减去小数,再乘以9,积就是它们的差。如73-37=(7-3)×9=36,82-28=(8-2)×9=54。

2.数字颠倒的三位数减法,可用三位数中最大数减去最小数,再乘以9,乘积分两边,中间填上9,就是它们的差。比如,581-158=(8-1)×9=63,所以851-158=693。

七、用“添零加半”的方法巧算

一个数乘上15的速算方法叫做“添零加半”。比如,26×15将26后面添0得260,再加上260的一半130,即260+130=390,所以26×15=360。

八、利用拆和法进行巧算

有些计算题,乍看起来都与运算定律没有关系,但经过变形后,直接地应用运算定律来进行计算。

九、用“两边拉中间加”的方法速算

任何数同11相乘,只要把原数的个位移到积的个位的位置,最高位移到积的最高位的位置,中间的数分别是个位上的数加十位上的数的和就是十位,十位上的数加百位上的和就是百位……如果相加的数的和满十要向前一位数进1。比如,124×11=1364,568×11=6248。

十、用“十加个减法”速算

“十加个减法”就是任何两位数加上9的和,可以把这个两位数变成十位加1个位减1的数,即36+9=45,17+9=26。这种计算技巧适合低年级的小学生。

很多学生计算结果不正确是由于马虎、粗心等不良习惯造成的。培养学生良好计算习惯时,教师要讲究训练形式,激发学生计算兴趣,寓教于乐,采用多样化形式训练。如用游戏、竞赛、卡片、小黑板视算、听算、限时口算、自编计算题、小 故事 等多种形式训练,教师要有耐心,有恒心,要统一办法与要求,要坚持不懈,抓到底。教师要引导学生养成良好的审题习惯、书写习惯和检验习惯。
魏德武速算
加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。

例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。

例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

乘法速算:乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。

速算嬗数|=(a-c)×d+(b+d-10)×c,,

速算嬗数‖=(a+b-10)×c+(d-c)×a,

速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无与伦比。

(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。

比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。

(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,

比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。

猜你喜欢:
1. 国考行测之十大速算技巧

3. 行测资料分析速解技巧

4. 高中数学速算技巧

5. 数学速算的方法

8. 20个速算技巧

速算技巧有哪些
1.凑整法:根据运算定律和运算性质,把算式中能凑成整数(特别是整十数、整百数等)的部分合并或拆开,然后求得结果。

例如:8+4.1+1+5.9

=(8+1)+(4.1+5.9)

=10+10

=20

例如:1.25×18

=1.25×(10+8)

=1.25×10+1.25×8

=12.5+10

=22.5

例如:78×98

=78×(100-2)

=78×100-78×2

=7800-156

=7644

2.变化法:适当转变运算方法,即以加代减,以减代加,以乘代除,以除代乘;或改变运算顺序,或利用约分、加减进行化简等。

例如:4.7×0.25+7.3÷4

=(4.7+7.3)×0.25

=3

例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7

=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)

=0

例如:3.25×0.8×0.125÷(0.1253)



=1

3.特性法:利用“0”与“1”在运算中的特性,进行简便运算。

例如:(1.9-1.9×0.9)÷(3.8-2.8)

=(1.9×(1-0.9)÷1

=0.19

4.常用数据法:利用一些常用数据,通过数的等值变形而使计算简便。

常用数据如:25×4=100;125×8=1000;=0.25=25%;=0.75=75%;=0.8=80%;=0.04=4%等等。同学们可自己再列出一些,把它们熟记在心。

我们前面所举的例子已对此有所运用,同学们可对照着看一下。

阅读全文

与大数速算方法与技巧相关的资料

热点内容
儿童痣治疗方法 浏览:485
研究方法调查问卷教学 浏览:397
fema安全分析方法 浏览:304
孩子快速入睡的方法 浏览:796
搜派风水机使用方法 浏览:693
猪肉价格下跌的解决方法 浏览:934
泉州学唱歌技巧和发声方法 浏览:962
神经源性膀胱工伤治疗方法 浏览:965
如何选择设计特殊杂质检查方法 浏览:15
电缆线接线方法视频 浏览:777
湖南烟熏肉食用方法 浏览:313
钓具的连接方法 浏览:135
细胞增生的治疗方法 浏览:834
下列处理方法不正确的是 浏览:168
舒适进入安装方法 浏览:226
用什么方法粘胶最快 浏览:609
无线加湿器的安装步骤及使用方法 浏览:803
欧莱雅洗面乳使用方法 浏览:819
win8怎么设置锁屏图片在哪里设置方法 浏览:941
烂地面地坪施工方法简单 浏览:697