导航:首页 > 方法技巧 > 谈谈课堂上如何渗透数学思想方法

谈谈课堂上如何渗透数学思想方法

发布时间:2022-09-14 19:12:12

A. 教学中如何渗透数学思想

初中数学教材中所蕴含的数学思想方法很多。在平时的教学中如何体现数学思想方法的重要性,如何渗透数学思想方法,这是新课程基础教育所赋予我们的一个很现实的课题。
新课程标准指出:“人人学有价值的数学”“人人都能获得必需的数学”“不同的人在数学上得到不同的发展”。这就要求我们在教学中应摒弃传统中的“纯数学”教学,注重灌输和渗透使学生终身受益的数学思想方法。那么,我们在初中数学课堂教学中,如何向学生渗透数学思想方法,进而培养他们的思维能力呢?
一、在确定目标、备课中有意识地体现数学思想方法
教师要加强数学思想方法的教学,首先要有意识地从教学目标确定、教学过程的实施教学效果的落实等各个方面来体现,使每节课的教学目标和教育目的获得和谐的统一。在备课时,必须对教材进行全面的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,建立各类概念、定理、知识点或知识单元之间的界面关系,归纳和揭示知识的本质和内在的规律,把数学思想方法和教学从钻研教材内涵中加以挖掘。例如在备《二元一次议程组》这一章时,就要挖掘方程思想、建模思想,化“未知”为“已知”,化“二元”为“一元”的化归思想方法。在备《绝对值》这一节时就要挖掘符号化变元思想,分类研讨思想、数形结合思想、归纳思想方法及特殊与一般思想等。
二、在问题的情境创设中渗透数学思想方法
情境中的实际问题是反映数学思想方法的基础,通过创设情境,在知识的引入和发生过程中贯彻数学思想方法,形成数学知识和思想方法的一体化。
例如在讲解同类项这个概念时,可创设如下情境:把下面实物塑料模型进行分类:蛋筒、菠萝、棒冰、萝卜、菜椒、香蕉。先由学生小组讨论后进行演示,尝试按种类、颜色等多种方法进行分类,从而启发引导出同类项的概念。这样不仅为学生提供了主动参与的机会,又可培养学生思维的灵活性,同时渗透了分类研讨的思想方法。教师在教学中创设分类的问题情境时,要引导学生对情境问题中的所讨论的对象进行合理分类,分类时要做到不重复、不遗漏、标准统一、分类不越级并归纳总结,要帮助学生掌握好分类的方法原则。
三、在数学要概念、法则、公式和定理的形成过程中渗透数学思想方法
数学概念、法则、公式、定理是“双基”教学的核心内容;是基础知识的起点;是逻辑推理的依据;是正确、合理、迅速运算的保证。教学时要力求引导学生经过分析、比较综合、抽象概括等思维活动中领悟隐含于概念、定理、法则、公式形成过程中的数学思想方法。
例如,根据学生直觉思维的特点,在完全平方公式的教学中可以有层次性地设计如下的问题引导学生思考:
(1)计算22+33,(2+3)2它们在题目和结论上有什么区别?
(2)计算22-33,(2-3)2,它们在题目和结论上有什么区别?
(3)判断(a+b)2=a2+b2、(a-b)2=a2-b2正确吗?如果不正确,那么正确的结果是什么?
(4)你能得出(a+b)2和(a-b)2的公式吗?它们两个有什么联系和区别?
通过以上引导展示了探索问题的思维过程中所渗透的数形结合的思想、转化思想、分类研讨思想、归纳抽象概括思想、特殊与一般思想等,因而使学生在很好地掌握知识的同时,也领悟了其中的数学思想方法。
四、在掌握重点、突破难点中有意识地渗透数学思想方法
数学教学中的重点,往往需要有意识地运用或揭示数淡思想方法之处。数学教学中的难点,往往与数学思想方法的更新交替、综合运用、跳跃性较大有关。因此,在掌握重点、突破难点的教学过程中,更要有意识地运用数学思想方法,给学生提供抓住重点、分散难点、化难为易、加深理解、掌握本质的途径。比如,在二次根式的化简与求值是教材中的难点,为了突破难点,采用类比“分式的化简,求值”构造具体形象的数学模型,从而运用类比思想、整体思想、化归与转化思想,采用形象化和具体化的手段,寻找解决问题的途径,实现从未知到已知的转化。
五、在数学知识的回顾与复习、归纳与反思过程中提炼数学思想方法
数学教材中的思想方法融于数系知识体系中,因此适时在教学中有意渗透数学思想方法,对数学思想作出归纳、概括是十分必要的,同时通过课堂小结、单元总结和总复习的同时,将统摄知识的数学思想方法进行升华和概括。
例如初中九年级课本中证明“一条弧所对的圆周角等于它所对的圆心角的一半”这条定理中,既表现了组合思想方法,又表现了化归与转化思想,特殊与一般思想。由于同一数学知识可表现不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的知识点里,所以通过课堂小结、单元总结或总复习,及所学知识的归纳与反思时都可以在纵横两个方面整理、归纳、概括出数学思想方法。
总之,数学思想方法与数学知的辩证统一,决定了它们在教学中的和谐统一和协同发展,数学思想方法的学习和掌握绝非一朝一夕的事,它是一个经历渗透、复反、逐级递进、螺旋上升的不断深化的过程,需要有目的、有意识的培养。只要我们在教学时对常用的数学思想方法引起重视,大胆实践,持之以恒,寓数学思想方法于平时的教学中,并有意识地运用一些数学思想方法去解决问题,学生对数学思想方法的认识一定会日趋成熟,一定可以使学生的数学学习提高到一个新的层次、新的高度。

B. 请你结合初中数学实例谈谈在初中数学教学中如何渗透数学思想方法

1.在教学中应用多媒体进行渗透。
在现阶段的教育领域当中,多媒体教学手段逐渐渗透了进来,它的有效利用为创新型课堂教学提供了良好的载体。所以说,在日常的初中数学教学中,教师可以利用先进的多媒体技术来增加课堂的趣味性,使课堂变得生动形象,从而促进数学思想方法的科学渗透。比如在讲解“轴对称”这一部分内容的时候,教师可以课前准备好相关的轴对称物体的资料,然后在课上通过多媒体以视频和图片的方式展现出来。比如现实生活中的对称建筑物,还有剪纸、叶子等等。另外,教师还可以鼓励学生借助多媒体进行实例的查找,这样不仅可以加深学生对于知识的理解,还能够提升学生的兴趣和思维能力。
2.在探究活动中,进行数学思想方法的渗透。
初中生正处在一个学习的转型期,他们的知识水平和学习能力还有待于进一步培养和提高。因此可能一时无法适应初中的快节奏的上课和学习模式。这可能会使得学生无法立刻领会教师所讲的内容,甚至引起课堂教学效果的不明显。而探究式的教学活动,是在教师的带领下,运用数学的思想方法,让学生主动去探索知识的重难点。它不仅能够开发学生的潜能,还能培养学生的智力,能够让学生快速掌握课堂所学的知识。比如在教授“旋转”这一章的时候,为了加深学生的印象,教师可以恰当的举出一些生活当中的例子,比如汽车轮子,钟表的指针,然后向学生提出问题,让学生自己找出这些物体的运动规律,从而理解知识。
3.在合作学习理念中渗透数学思想方法。
教学方法涵盖教和学两方面内容,教育的最终目的是实现学生的全面发展。因此,教师在教学过程中必须考虑到学生性格特点、学习规律,设计自己的教学思路。如在讲授“平面几何”时,要学会利用学生比较熟悉的生活现象去解释一个概念,并将学过的知识和概念进行总结。如何利用学生身边的现象引出几何构造图形,这些都必须和学生的生活中的实际相结合,才能达到最佳效果。学生通过合作性的讨论,从而使得对几何图形的认识变得更加具体化,有利于学习成绩的提高。
结语
综上所述,在数学教学中进行数学思想方法的渗透,它不仅仅代表着数学学科教学的进步,也是发展素质教育的重要体现。因此,要求教师在熟练掌握数学思想方法的前提下,坚持合理有序的原则,在课堂教学的过程中进行科学的渗透。以此发挥出学生在教学过程中的主体地位,加强他们的思想认识,帮助学生打下牢固的数学基础,并促进数学学科的未来发展。

C. 如何在数学课堂上渗透数学思想

《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》中国科学院院士、着名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。
一、为什么要在教学中渗透数学思想方法1、基本数学思想方法对学生的发展具有重要意义一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。2.渗透基本数学思想方法是落实新课标精神的需求数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。
二、课教材渗透了哪些数学思想小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有10?20×2?30?40?50?形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。符号化思想、——数学发展到今天,已成为一个符号的世界。英国着名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,例如:阿拉伯数字:1、2、3、5、6、……+、–、、等运算符号;>、<、=、等表示关系的符号;()、[]等括号;表示数的字母:x、y、z等。字母表示公式:长方形、正方形的面积S=abS=a²字母表示计量单位符号:m\cm\dm\mm\g\km等。集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。
在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。
分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。三、让课堂彰显思想的魅力首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。
因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。2上课:创设情境、建立模型、解释应用,渗透数学思想方法数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。
以下面三种课型为例。①新授课:探索知识的发生与形成,渗透数学思想方法如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。②练习课:经历知识的巩固与应用,渗透数学思想方法数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5④1100÷25=11×(100÷25)⑤1100÷25=1100÷100×4⑥1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。
新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。③复习课:学会知识的整理与复习,强化数学思想方法复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法?结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

D. 数学思想方法如何渗透到教学中去

课堂教学应着眼于学生潜能的发挥,促进学生有特色的发展。使学生富有探究新知、不断进取的精神。下面是我为大家整理的关于数学思想 方法 如何渗透到教学中去,希望对您有所帮助。欢迎大家阅读参考学习!

1数学思想方法如何渗透到教学中去

(一)渗透如数学思想的概念显得较为模糊

因为在小学教学阶段,教师教授的数学知识都是比较简单的,因此数学思想自然也就会显得比较模糊,在小学数学课堂教学相关工作进行的过程中,从事数学教学相关工作的教师,想要将数学思想渗透到较为模糊的概念中是比较困难的,在日常教学相关工作进行的过程中,一般情况之下都是不会予以数学思想教学工作充分的总是的,单单是将数学教学当成是基础性数学知识教学工作,仅仅在教学相关工作进行的过程中传授给学生一些解答问题的方式方法,基本上是不会在数学思想的层面上对学生进行引导的,从而在此基础之上想要使得数学思想和小学数学教学有机的相互融合在一起就变得比较困难。

(二)学生在学习数学的过程中基本上不会做出 反思

小学生正处于的是形象思维为主的这样一个阶段,在学习数学知识的过程中并没有形成较为明确的认识和观点,从而在此基础之上想要对某些抽象的数学概念形成明确的了解就会变得比较困难,因此在学习数学的过程中一般情况之下都是停留在最为基础的模仿式学习阶段中的,依据教学教学流程展开模仿式数学学习,在此基础之上学生形成的认识观点自然也是较为模糊的,进而在模仿式学习的基础上,想要在学习工作完成之后对数学学习做出反思也就是一件比较困难的事情。

(三)对知识进行 总结 和整理的意识是较为薄弱的

小学数学教学阶段中包含的知识点是十分琐碎的,当教师开展教学相关工作的过程中想要将各个知识点串联起来也就是一件比较困难的事情,当教师开展课堂教学相关工作的过程中,一般情况之下仅仅会在复习的时候开展知识点梳理工作,在日常课堂教学相关工作进行的过程中,一般情况之下都是不会向学生阐述各个知识点之间呈现出来的相互关系的,学生在日常学习的过程中自然也就难以积累下来丰富的 经验 及解决模式,因此教师想要使得课堂教学相关工作的效率得到一定程度的提升自然也就比较困难。

2渗透到教学中的方法

1.在研究探索知识的过程中,着重于将数学思想方法渗透到学习中

教师应该加强在学生学习过程中教学的力度,一定要凸显出数学知识中一些定理、公式、性质等得来的探究过程,进而使同学们把过程转换成解决问题的思想和方法。知识形成并发展的过程中应穿针引线地将数学思想方法渗入其中,让学生能够掌握简单的基础知识,也能体会深层数学原理、性质的探索过程,形成良好的解题思路,使学生在数学方面的造诣达到一个新的高度。教师在授课过程中,要引导学生自觉地对数学知识、方法进行探究、学习,主动追溯知识的探索过程,感悟数学知识,将数学思想方法与数学知识的学习融会贯通,使其在数学方面达到质的飞跃。

2.在解题和讲解例题的过程中渗透数学思想方法

在授课中,教师讲解例题并且举一反三,每解决一个问题和例题就为学生归纳总结出一种方法,久而久之,学生就会形成新的解题思路、学会新的解题方法。对于初中这个阶段来讲,许多典型例题被设计出来,许多出色的题目也出现在每年中考题中,老师有效地挑选具有启示性和创造性的题目进行训练,再将数学思想和 教学方法 展示在对这些问题的讲解和探究中,可以培养学生的解题能力。

3.按时总结,渐进地消化数学思想方法

在初中的数学知识体系中蕴含着数学思想,不同的数学思想通常蕴藏于一个内容中,而同一个数学思想方法又常常被运用于许多不同的基础知识中,教师在对一道题目进行分析后,要清晰地向学生展示出教师在解决这道题时的思路以及解决这道题需要哪些我们原先学习的知识以及解题方法。与此同时,要引导学生对新方法、新思路的思考,锻炼其发散性思维。老师通过“一题多解”及举一反三等方式及时巩固,使学生慢慢内化这些数学思想、解题思路等。

3解题渗透数学思想方法

(1)注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想方法的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题干之间的差异的过程。解题思想的寻求就自然是运用数学思想方法分析、解决问题的过程。

(2)注意数学思想方法在解决典型问题中的运用。如解题中求二面角大小最常用的方法之一就是:根据已知条件,在二面角内寻找或作出过一个面内一点到另一个面上的垂线,过这点再作二面角的棱的垂线,然后连结两个垂足。这样平面角即为所得的直角三角形的一锐角。这个通法就是在立体问题化平面的转化思想的指导下求得的,其中三垂线定理在构图中的运用,也是分析、联想等数学思维方法运用之所得。

(3)用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性、灵活性、敏捷性;对习题灵活变通、引伸推广,培养思维的深刻性、抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。对同一数学问题的多角度的审视引发的不同联想,是一题多解的思维本源。丰富合理的联想,是对知识的深刻理解,及类比、转化、数形结合、函数与方程等数学思想运用的必然。数学方法、数学思想的自觉运用往往使我们运算简捷、逻辑严密,是提高数学能力的必由之路。

4提高课堂教学效率

重视备课,明确教学目标

如果说数学是一门艺术,那么备好课是搞好艺术的基本条件。不经武装的战士上战场,只能束手就擒;没有充分准备的教师上讲台,充其量是"信口开河",决谈不上驾驭课堂的能力,作为教师,传授知识是我们的责任,出色的备课也是我们实行责任的前提。那怎么去用心备课呢?在此我只谈谈自己的感悟:首先,选好合适的起点,起点就是新知识在原有知识基础上的生长点。起点要合适,采有利于促进知识迁移,学生才能学,才肯学。起点过低,学生没兴趣,不愿学;起点过高,学生又听不懂,不能学。

其次,明确重点,每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在备课时,应该在课本上做标记。重点往往是新知识的起点和主体部分。备课时要突出重点。一节课内,首先要在时间上保证重点内容重点讲,要紧紧围绕重点,以它为中心,辅以知识讲练,引导启发学生加强对重点内容的理解,做到心中有重点,讲中出重点,才能使整个一堂课有个灵魂。最后,注重联系,即新旧知识的联系。数学知识本身系统性很强,章节、例题、习题中都有密切的联系,要真正搞懂新旧知识的交点,才能把知识融会贯通,沟通知识间的纵横联系,形成知识网络,学生才能举一反三,更有利于灵活地运用知识。作为教师,切记备课的重要性,一切的一切都要从备课开始,出色的备课是成功课堂教学的前提。

重视教学方法的作用,加强学法的指导

曾经看过这么一句话,说的是"未来的文盲不再是不识字的人,而是没有学会怎样学习的人"。这充分说明了 学习方法 的重要性,它是获取知识的金钥匙。学生一旦掌握了学习方法,就能自己打开知识宝库的大门。所以我们应该改进课堂教学,运用正确的教学方法去指导学生的学法,传授给学生的不仅仅是知识,更重要的是学习方法。同时每一节课都有每一节课的知识点,都有需要掌握的重点内容。教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。我们可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。俗话说:"教无定法,贵要得法"。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。教会学生的学习方法,是我们作为教师的责任。

综上所述,学好数学对学生将来的发展起到至关重要的作用,作为教师,我们要认真备课,全身心的投入课堂,创造最佳的课堂气氛和环境,充分调动学生的内在积极因素,激发求知欲,千方百计使学生的注意力高度集中,同时还应该不断地努力提高自己的能力,在有限的时间内,将知识最大化的传授给学生,提高课堂教学效率。


数学思想方法如何渗透到教学中去相关 文章 :

★ 高考复习中应重视数学思想方法的渗透

★ 数学教学方法渗透六大核心素养

★ 高中数学思想和数学方法

★ 数学教学如何渗透六大核心素养

★ 初中数学思想方法教学论文

★ 小学学习数学的思想方法

★ 数形结合数学思想方法

★ 核心素养如何落地数学教学

★ 核心素养如何融入数学课堂教学

E. 如何在小学数学教学中渗透数学思想

小学数学中蕴含着丰富的数学思想方法,因此,在小学数学教学中加强数学思想方法的渗透教学不但重要,而且是现实可行的。
一、转变思想,重视挖掘数学思想方法
数学知识明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目标,把数学思想方法教学的要求融入备课环节。
二、把握机会,适时渗透数学思想方法
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究数学思想方法渗透的手段和方式。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。在教学过程中,教师应掌握方法,不失时机地向学生渗透数学思想方法。
三、勤于训练,自觉提炼数学思想方法
数学思想方法的教学是一个长期的过程,它应通过一定的训练,巩固和深化已经掌握的数学知识以及数学思想方法,进而归纳和提炼出新的数学思想方法。在教学中,教师可通过数学思想方法的广泛渗透,让学生从主观上重视数学思想方法的学习,增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题。
四、统筹安排,逐步领悟数学思想方法
对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,而且常常是几种数学思想方法交织在一起出现,这就要求教师有一个总体的设计安排,分析什么时候渗透哪些数学思想方法,如何渗透,渗透到什么程度,并据此提出不同阶段的具体教学要求,确定在某一段时间内重点渗透与明确哪一种数学思想方法。长此以往,逐步使学生领悟数学思想方法的真谛。

F. 浅谈数学思想方法在小学数学教学中的渗透

为加强小学生的数学思维逻辑,提高数学课堂的教学效率,教师需采用科学有效的教学方法保证数学思想的有效渗透,从而激发学生的学习热情,强化学生的数学意识,带领学生运用数学思维解决实际生活问题。
教师在以往数学课堂内注重学生的数学成绩,未将学生在实际学习过程的数学方法进行充沛的指导,使得学生对数学问题具有一定的思想偏颇,加大教师的教学难度,无法全方位培养学生的综合能力。
因此,教师应结合时代潮流教学方法,根据教材具体内容展开相应的教学手段,充分加强学生的数学素养,进而提高学生对数学抽象性概念的理解,强化学生的数学意识,保证数学教学任务的有效进行。
一、小学生学习特点
由于小学生的年龄较低,对事物具有极强的好奇心,无法在数学课堂上集中注意力,继而导致自身的学习效率有所下降。所以,教师应结合学生在课上的学习状态,设计丰富的教学内容,调动学生积极性,激发学生的主观能动性,加强学生对数学基础知识的理解。教师应升华自身的教学素养,充分利用专业知识强化对学生数学思想的教育,联系实际生活内容,活跃课堂氛围,进而保证数学课堂的实效性[1]。
二、小学数学思想方法介绍
(一)数形结合法
教师要改变传统教模式中填鸭式教学方法,发挥学生的主观能动性,加强学生对事物的空间想象能力,培养学生的创新能力,使学生全面了解教师所讲的数学知识,从而激发学生的学习热情。基于此,教师可采取数形结合的教学模式帮助学生更好掌握基础知识要义,培养学生的良好学习习惯。在讲解具体内容时,教师要将抽象化概念转换为具体形象,加强学生实际的运算能力,提高数学思想在课堂上的渗透。
(二)总结法
总结法是教师常用的教学手段,通过课上最后的时间带领学生复习巩固相应的知识内容,增强学生的数学素养。因此,数学教师可将此方法融入课堂教学,加强学生对数学知识的运用能力,帮助学生建立相应的数学体系,使其能够正确解答有关数学问题,逐步培养学生的自主学习能力。由于小学阶段是学生学习的黄金时期,教师要从多方面加强对学生综合能力的培养,实现数学课堂的有效教学,保证教学进度。
(三)转化法
学生作为独立个体听取教师讲解的数学内容会产生不同的学习效果。教师要改变传统教学氛围,创设科学有效的教学环境,保持学生整节课的充沛精力,激发学生的学习兴趣。利用转化的教学方法增强学生对抽象概念的理解能力,时刻与学生沟通交流,根据学生的具体学习情况设计丰富的教学内容,继而增强学生对数学知识后的实际运用。
三、在小学数学教学中渗透数学思想方法的途径
(一)在课后总结中提炼数学思想
小学数学教材将学生所学的重点知识内容进行充分的整理,使得学生在每章完结之后都能有效复习相应概念,因此,教师应注重小学教材的布置内容,灵活运用课后知识增强学生的数学意识,完善学生的学习方法,逐步加强对学生数学问题的灵活运用。
比如在学习《图形的运动(二)》内容时,教师就要逐步引导学生对数学公式的理解能力,通过课后复习强化学生对数学问题的计算。首先教师要通过激趣导入吸引学生注意力,带领学生观察多媒体课件,明确抽对称的定义及性质,带领学生回顾相应的数学问题后,教师要让学生进行动手实践,将教材附页上的图形剪下,先折一折,再画出图形的对称轴,并让学生观察每个图形可以画多少对称轴,在学生实践过程中增强学生的数学思想。通过课后总结带领学生明确长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形等图形的对称轴具有多少条,加强学生的学习效果,逐步培养学生的理性思维模式。
(二)在课堂教学中挖掘可利用的数学思想
为加强学生对数学思想的理解能力,教师应紧跟时代潮流发展,改变教学理念,摒弃传统教学思想,根据教材的具体内容与学生上课的实际情况,逐步挖掘可利用的数学思想,强化学生的逻辑思维,使得学生的学习效率不断增强[2]。
比如在学习《可能性》内容时,教师就要摒弃传统教学手法,采用科学有效的教学手段加强对学生的数学思想教育。首先通过问题引导引发学生的思考能力“抛硬币决定谁先开球公平吗?”带领学生初步体验事件发生的确定性与不确定性,并让学生列出简单的随机现象中所有可能发生的结果。其次教师要创设相应的问题情景,带领学生发现实际生活问题,如:哥哥弟弟都很想去电影院看电影,但是爸爸只有一张儿童票,只能给其中一个人,这时就要让学生充分思考课题采取什么样的方法保证公平,从而加深学生的可能性知识概念的运用能力,保证数学课堂的教学质量,加强学生对实际问题的数学思想。
(三)活跃数学思想氛围,调动学生积极性。
教师应明确数学思想存在于教材与学生的方方面面,需带领学生不断进行数学实践活动,侧面提高学生的数学思维逻辑,强化学生的学习方法,从多角度激发学生的学习积极性。教师要结合教材具体内容,发挥学生的主观意识,营造良好的数学思想学习氛围,采用循序渐进的教学方法,根据教材重难点知识内容,合理设计教学过程,加强学生的数学教育,发散学生的创新思维,全方位培养学生综合能力[3]。
比如在学习《百分数(一)》内容时,教师不应根据教材体现的内容进行教学,应以学生的数学思想为中心,发挥学生的创新能力。首先借用多媒体技术让学生观察每个人的不同情况,并思考如何派遣队员进行足球运动,加强学生的思考逻辑。其次,教师应让学生针对具体问题进行小组间的合作交流,强化学生的语言表达能力,活跃课堂氛围,营造良好的学习环境,激发学生对数学的学习兴趣。教师应及时了解学生所提的数学问题时刻与学生沟通交流。优化师生之间的关系,加强对学生逻辑思维的培养,实现数学思想的深度教学作用,从而提高小学数学课堂的教学质量,全面落实数学思想教育,利用丰富的教学资源提高学生自主学习意识。
结束语:
综上所述,为强化学生的数学意识,教师应全方位认识数学教材内容,利用抽象性知识体系提高学生的自主学习能力,从而实现小学课堂的有效教学。通过在课后、课时挖掘数学思想,不断加强学生对数学的认知能力,培养学生良好的学习习惯。教师应以学生为主体地位,升华自身的教学素质,使用专业的知识水平保证小学数学课堂的教学进度。

G. 如何在课堂教学中有效渗透数学思想

着名数学家华罗庚说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”这句话形象、简明、扼要地指出了数和形的相互依赖、相互制约的辩证关系。“数形结合”既是一种重要的数学思想,也是一种解决数学问题的有效方法。下面我就结合自己的教学实际谈谈小学数学课堂教学中应如何有效渗透数形结合的数学思想方法。
1 以形促思,在数的认识教学中,渗透数形结合思想方法,帮助学生很好地建立数感数感是一种主动、自觉或自动化的理解数和运用数的态度和意识,是对数学对象、材料直接迅速、正确敏感的感受能力。《数学课程标准》指出:“数感主要表现在理解数的意义;能用多种方法表示数。”例如教学《10 的认识》时,我请小朋友们认真观察图,从图中你知道了什么?让学生利用数数的经验上台现场数数后,学生明白10 个人、10 只鸽子都可以用数字10 表示。接着让学生摆小棒操作,知道一捆就是1 个十,所以10 个1 是十。接着我让学生找一找生活中哪些物体的个数可以用数字10 表示。最后让“10”宝宝参加数字排队队,0~9这几个数字宝宝已经按从小到大的顺序排好队了(出示尺子图),10 应该排在哪儿?请计数器来帮忙。学生动手操作先拔8 颗,再添一颗是几颗(使生能直观感觉到9 比8 多1)?9 颗再添上一颗是几颗?10 颗再去掉一颗是几颗(使生感觉到10 比9 多1)?10 应该排在哪儿?回到尺子图,让生猜猜9 的后面是几?请生分别按从小到大、从大到小的顺序读0~10 这几个数字。在以上教学中,我巧妙渗透数形结合的思想方法,使学生在对具体数量的感知和体验中,进一步强化了数感,加深了对数的意义的认识。
2 借形理解,在概念教学中,加强实验操作,渗透数形结合思想方法,使学生直观地理解概念数学概念是知识教学中的重要组成部分,在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行进行全面分析,突出其本质属性,但它的抽象性、枯燥性使得教学效果不尽如人意,学生学起来比较困难。借助直观的图形、加强实验操作可以将概念教学趣味化、形象化,从而帮助学生在轻松、愉快的学习氛围中理解概念的形成过程。
例如:在《认识体积》的教学中,我通过3 个步骤渗透数形结合的思想方法,让学生借形直观地理解概念:2.1 通过实验,使学生体会到物体是占有空间的。教师出示两个一样的杯子,左边的盛满水,右边的放了一个柑果。请同学们猜猜,如果把左边杯子里的水倒入右边的杯子,结果会怎样?学生猜测,并通过实验来验证猜测是否是对的。学生倒水操作明白:原来两个杯子装的水是一样多的,现在放进去一个柑果,杯中有一部分空间被柑果占去了,能装水的空间就少了。使学生体会到物体占有一定的空间。
2.2 通过实验,使学生体会到物体所占的空间是有大有小的。出示两个完全一样的玻璃杯:一个杯子里放的是柑果,另一个杯子里放的是葡萄,如果往这两个杯子里倒水,倒进哪个杯里的水会多一些?学生猜测并再次实验操作,验证猜想:两个杯子能装的水同样多,柑果占的空间大,因而相应杯中的水就少;葡萄占的空间小,因而相应杯中的水就多。
2.3 揭示体积的含义。出示3 个大小不同的水果,这3 个水果,哪一个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?学生实验操作,明确:物体是占有空间的,一个物体越大,它占有的空间就越大,反之,一个物体越小,它占有的空间就越小。我们把物体所占空间的大小叫做物体的体积。学生举生活实例比较两个物体体积的大小,认识体积,我通过三部教学,加强实验操作,渗透数形结合思想方法,学生不仅借形直观地理解概念,而且能够应用概念。
3 看形想量,结合“量的计量”的教学渗透数形结合思想方法,帮助学生建立质量观念数学的主要研究对象是数与形。但在现实生活中,数与形和量与计量总是密切联系着的,学习数学必然要涉及量与计量。如何在量与计量中渗透数形结合呢?
例如《千克的认识》教学:①认识秤和秤面。观察秤面从秤面上看到了什么?②建立1 千克的质量观念。a.掂一掂,初步体验一千克的重量。分小组称一称2 袋盐,通过观察发规2 袋盐重1 千克。b.猜一猜,再次体验1 千克的重量。先猜一猜几个这样的苹果、桔子、桃子重1 千克,最后称一称,数一数1 千克这样的果到底有几个?c.比一比,加深对一千克的认识。师出示一个重2 千克大米,让几名学生拎一拎,说说感觉,猜猜重多少千克,通过比较进一步加深对1 千克的体验。
建立“千克”这个计量单位的观念,对学生来说比较抽象,渗透数形结合的思想方法,学生就很容易建立“千克”的表象,并能运用。
4 看数画形,在解决问题教学中,渗透数形结合思想方法,使解题过程具体化、明朗化数学家华罗庚曾说:“人们对数学早就产生了干燥无味、神秘难懂的印象,

H. 如何在课堂教学中渗透数学思想和数学方法

数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材。钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素。对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。

阅读全文

与谈谈课堂上如何渗透数学思想方法相关的资料

热点内容
获得金属单质常用的方法 浏览:316
用什么方法止痒好 浏览:631
瘦肚子后背运动方法视频 浏览:186
冬天怎么除甲醛最快最有效的方法 浏览:477
胸部热敷的正确方法 浏览:447
三七食用方法降血压 浏览:690
裁员的方法和技巧 浏览:724
uv胶水的使用方法 浏览:178
淋浴架子安装方法 浏览:492
贴片电容万用表测量方法 浏览:62
婴儿病毒性感冒鼻塞用什么方法 浏览:896
植物进化的研究方法 浏览:486
使用简写方法实现背景图片不平铺 浏览:139
如何自制消灭蟑螂最快最有效的方法 浏览:684
测距仪使用方法视频 浏览:985
在家锻炼屁股肌肉的好方法 浏览:100
西式糕点制作方法图片 浏览:521
正确的刹车排空气方法 浏览:992
火龙果冰粉的制作方法和步骤 浏览:82
宽带拨号错误解决方法 浏览:238