A. 高三物理学习方法总结
1、全面复习
应该了解知识和能力是不可分割的,一般说,高考试题对知识和能力的考查是结合起来进行的。一道试题既考查了知识,同时又考查了能力,而且常常是考查了几种能力。我们不应该把某些知识与某种能力简单地对应起来。显然,一个知识贫乏的人不可能有很强的能力,所以,考生应该全面复习知识,不要遗漏。
全面复习不是机械地、简单地浏览全部知识。由物理现象、物理概念、规律等组成的物理理论好比一棵大树,各部分内容是紧密联系形成的一有机的整体,有主干、支干、树叶等。在逐章逐节复习全部知识时,要注意深入理解和体会各知识点间的内在联系,建立知识结构,使自己具备丰富的、系统的物理知识,逐步体会各知识点的地位、作用、分清主次,理解理论的实质,这是提高能力的基础。
高考试题知识覆盖面广,考生应对全部考试内容认真复习,该记忆的应该记忆,不要猜题、压题,不要认为不是重点内容就不会考,也不要认为有的知识生疏、冷僻就不会考,应该扎扎实实地全面复习。
2、全面、深入、准确地理解物理概念、物理规律
(1)要在更广泛的知识和更普遍的背景材料上把握物理概念、物理规律。
理解和掌握物理概念、物理规律就需要对概念、规律的提出、建立有一定的了解,对概念、规律内容的各种表达形式(文字的和数字的)有清楚的认识,能理解它们的确切含义,理解它们的成立条件和适用范围,理解它们在物理理论大厦中的位置,会应用它们分析解决问题。在复习前考生对此已经有一定的认识、理解,但是应该知道,基本物理概念、物理规律揭露了客观事物的本质,是人类经过长期曲折的历史过程的结晶,具有深刻的、丰富的意义,对它们的实质和意义的理解是分层次的,在高中一、二年级学习时的理解是低层次的,在复习过程中要努力提高一个层次。
例如对力的概念的理解包括对具体的力(重力、弹力、摩擦力、电场力、安培力、洛仑兹力等)的概念的理解,也包括对一般、抽象的力的概念的理解,还包括力作用于物体产生不同的效果的理解等。我们需要从不同的角度来理解力的概念,我们在繁杂的力学问题中,在带电粒子在电场和磁场运动问题中,遇到各种各样的力,通过这些问题不断加深对不同性质的力的理解,也不断加深对抽象的普遍的力的概念的理解。如:物体沿斜面下滑支持力不做功(斜面不动),这是常见的情况,但不能得出支持力总不做功的错误结论。支持力的特点是方向垂直斜面,如斜面可动,支持力可以做正功,也可以做负功;静摩擦力可以使物体加速,也可以使物体减速,可以做正功、做负功、不做功,但一对静摩擦力总不做功(做功代数和为零);滑动摩擦力可以使物体减速,也可以使物体加速,可以做正功、做负功,但一对滑动摩擦力总做负功,系统克服一对滑动磨擦力做的功等于系统内能的增加量;洛仑兹力的方向总跟速度垂直,总不做功,它只改变速度方向不改变速度大小,这是洛仑兹力的最大特点,其它的力都不具有这一特点;力产生加速度,反之如果发现物体有加速度就判定一定是力产生的等等。类似的问题很多,我们应该不断总结、归纳。
例如,电场强度的定义是:E=F/q。应该清楚有两种电场;静止电荷产生的电场和随时间变化的磁场产生的电场。定义:E=kQ/r²。E=F/q,对这两种电场都适用,它是电场强度的普遍定义。这两种电场的性质不同,静止电荷产生的静电场,其电场线起于正电荷终止于负电荷,不可能闭合。变化磁场产生的涡旋电场,其电场线没有起点、终点,是闭合的。电动势的本质是非静电力移动电荷做的功,电感线圈中的自感电动势、变压器副线圈中的感应电动势都是涡旋电场力产生的。
应该注意,对基本物理概念、物理规律的深刻理解不可能一次完成,它需要一个反复加深认识的过程。遇到新的现象、新的问题、新的领域,我们都需要重新认识、体会有关概念、规律的准确含义。这样我们就不断在越来越广泛的知识和背景上来把握概念、规律,从而对它们的理解就更全面、深入和准确。
(2)概念与规律紧密联系。
应该知道,物理概念、物理规律揭露物理现象的本质,物理规律建立了有关物理量间的联系,它们之间是紧密联系的。如果把它们隔离开来,脱离物理规律、死背概念定义或脱离概念、形式上对待规律内容,是不可能很好理解和掌握物理概念、规律的。我们应该主要通过规律来理解概念,通过概念来掌握规律。例如:功的概念除抓住功的定义式外,应该着重从动能定理、功能关系、热力学第一定律、普遍的能量守恒与转化定律等角度来理解,即从能量变化、转化的角度来理解。在电学中、光学中,我们越来越着重从能量转化来理解功,如光电效应中电子脱离金属的逸出功是从能量转化来理解的;动量概念应联系动量定理、特别是动量守恒定律来理解;电阻概念应联系欧姆定律、焦耳定律等来理解。电阻的定义是:R=U/I,按欧姆定律,我们来体会电阻的阻碍作用。串联电阻、并联电阻的等效电阻也由U与I的比来理解。从焦耳定律来体会电阻是消耗电能转化为内能的元件;法拉第电磁感应定律的掌握不能离开磁通量概念和感应电动势概念等等。
(3)比较易混的物理概念、规律。
比较容易混淆的物理概念、规律的异同、区别和联系有利于准确理解概念、规律的准确含义。例如:动量和动能都是描述物体运动状态的,都与物体的质量、速度有关。但动量是矢量,与动量有关的规律是动量定理和动量守恒定律,动能是标量,与动能有关的规律是动能定理、机械能守恒定律、功能关系等。做功与传热都是改变物体内能的两种方式,在使物体内能变化上功与热量是等效的,功、热量、能量的单位也相同。但传热发生在存在温度差的两物体之间,是物理间内能传递的一种方式。做功与两物体间的温度差无关,是物体间其他形式能与内能转化的一种方式。
(4)灵活应用物理概念、规律。
只有通过实践、通过应用才能检查出我们对物理概念、规律是否真正理解,哪些内容理解了,哪些内容还没有理解。解题是物理概念、规律的一种应用。我们根据概念、规律对题意进行具体分析、确定研究对象,分析对象所处的物理状态和发生的物理过程,弄清楚题目的物理情景、现象产生的原因、条件,然后确定具体的物理量,建立解题方程、关系,求出最后答案,必要时进行讨论。根据物理规律的内容、特点,我们得出应用规律的一些基本步骤,但我们不应该死套基本步骤,而应该理解基本步骤来源于物理规律本身,对具体问题要具体分析并灵活应用。那种把物理题形式分成许多"类型",对某一"类型"的题套用"解题步骤"的做法,不能很好培养自己独立地、灵活地分析解决问题的能力。例如:牛顿定律是对质点的某一时刻说的,根据定律和有关力、质量、加速度的概念应该理解,应用牛顿定律首先要明确研究对象是哪一物体或一组物体,它们要能看成一个质点。研究的质点明确了,质量m才能定下来,加速度a和受力才能够分析明确。质点的受力分析和加速度分析除了根据力是物体间相互作用、重力、弹力、摩擦力、电场力、安培力、洛仑兹力公式和加速度定义、运动学公式外,在许多问题中还需要把力和加速度结合起来分析,应灵活运用;动力学有5个重要规律:牛顿定律;动量定理;动能定理;动量守恒定律;机械能守恒定律。这些规律在研究对象、内容、适用条件、受力分析等方面各有特点。对一个具体的力学问题研究应该选用哪个或哪几个规律求解要根据规律特点和题意的具体分析确定。大致说来,如求某一时刻(位置)物体受力或加速度可考虑用牛顿定律,如果问题只涉及力、时间而与位移无明显关系可考虑用动量定理,如果问题只涉及力、位移而与时间无明显关系可考虑用动能定理,如果能判定系统符合动量守恒或机械能守恒条件可考虑用守恒定律。在理解概念、规律的基础上,只有不断通过解题实践提高分析解决问题的能力,不断总结解题经验教训,才能灵活运用规律解决问题。
3、注意物理状态、物理过程的分析。
对一道物理题在弄清题意确定应用的物理规律和研究对象后,就要对对象进行物理状态、物理过程的分析,对问题形成鲜明的物理图象。这样才容易排除一些错误观念的干扰,找准解决问题的出发点。尤其是对一些较难的、灵活性较大、情景较新的问题,分析清楚物理过程才容易找到解题的关键条件或问题中的隐蔽条件。
4、正确对待解题
高考是通过物理试题的求解成绩来区分考生能力的高低、优劣,理解和掌握物理理论当然应该表现为求解各种物理题方面,所以,解一定数量的较多类型的问题是必要的,这有利于加深对物理概念、规律的理解,提高解题的能力。但是,我们在解一道物理题时心里要清楚,解这道题不是目的而是一种手段,其目的是检查我们对概念、规律掌握的程度,培养和提高独立地、灵活地分析解决问题的能力。因为物理习题是不可穷尽的,现在流传的高中物理习题已经在万题以上,每年的高考试题又出现不少新题,对一个物理概念、物理规律的考查可以从许多角度、各种不同的方式进行,只有紧紧抓住解题的根本才能在高考中取得好成绩。
(1)精解少量典型题、浏览较多的习题。
对一些典型的有代表性的习题,要深入地重点求解,真正把问题弄懂。怎样选择有代表性的典型习题呢?首先要选择高考试题,高考试题概念性强,对概念、规律的考查深入、灵活,有的题立意新、情景新、设问角度新,有的题综合性强,有的题含义深刻,非常值得我们深入钻研。其次要选择应用概念、规律重要内容、要领性强、比较灵活的习题,也选择在解题方法、技巧上有一定代表性的习题。怎样才是真正弄懂这些精选的习题呢?这只有通过自己独立的反复思考才能达到,在解题过程中应该清楚地体会到应用了概念、规律的那些方面的内容来分析问题、建立关系,解这道题有几条思路,应该选择哪条思路解题,解题的关键在哪里,怎样求解解题方程,解得的结论有什么物理意义,解这道题对概念、规律有什么新的体会、认识,如果题目条件发生变化或已知和待求的倒过来问题是否能解等等。对其他的一些问题也要经过一定的选择,对这些题如果想一下就很清楚怎样求解,就不一定花太多时间去做。有的题想一下不知道怎样做就要认真对待,解出后要回头想想当初卡在什么地方解不出来,怎样突破的。利用这种方法能在较短的时间内接触较多的习题。只要我们抓住解题的根本。我们会发现真正具有代表性的典型题并不很多,许多题都是大同小异的。盲目地追求解题的数量没有多大效果,流传的有的题概念上模糊或错误,这种题解了后会起不良作用,要注意避免。
(2)以物理概念、规律、方法为核心不断总结经验教训,提高解题能力。
物理习题数量多、灵活性大,物理概念、规律、方法是解题的依据、出发点、灵魂,只有抓住这个根本,不断归纳总结才能提高解题能力。对习题的分类应从基本概念、规律上看。如从牛顿定律看把动力学问题分为:已知力求运动和已知运动求力两种基本类型是很有用的,还可细分为:在恒力作用下的运动,在万有引力作用下的天体运动,在弹性恢复力作用下的简谐运动等。但从形式上把问题分为:斜面问题、竖直问题、水平问题等没有什么用处。在解题过程中出现错误是常有的事,当代着名的哲学家波普尔认为:“我们能够从我们的错误中学习。”“我们的一切知识都只能通过纠正我们的错误而增长。”所以,我们应该抓住错误不放。发现错误是我们进步、提高的起点,许多错误是由于我们没有真正理解概念、规律造成的,找到错误的根源就使我们对概念、规律的理解提高一步,这是根本上的提高,极为有用。常常有这种情况:一个概念性错误会在多道题目中一犯再犯,这说明这个概念较难、又很重要,我们还没有找到错误的根源。应该引起我们的特别重视,可与同学讨论或问老师受到启发,但一定要通过自己独立的反复思考才能真正解决问题。有的较难的题我们一时解不出来,后来解出来了,但过了一段时间再看这道题又不会解了,这说明这道题没有真正搞懂。我们经过反复思考找出症结所在,对提高解题能力很有好处。通过一定量习题的求解,我们会发现在理解概念、规律方面的许多问题,也会发现解题方法、技巧方面的许多问题,还会积累不少的解题技巧、经验,这些都要求我们及时地归纳总结。例如:力学问题中研究对象的选定;力学规律的选用;怎样利用图象分析解决问题;怎样确定电势的高低;如何识别电路结构(串、并联关系);怎样画草图找出解题思路;如何利用光路可逆性等等。
B. 高中物理怎么总结解题方法,技巧!!!!!
高中物理考试常见的类型无非包括以下16种,本文介绍了这16种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对!
题型1直线运动问题
题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.
思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.
题型2物体的动态平衡问题
题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.
思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.
题型3运动的合成与分解问题
题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.
思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.
题型4抛体运动问题
题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.
思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解
题型5圆周运动问题
题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.
思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.
(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.
题型6牛顿运动定律的综合应用问题
题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.
思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.
对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2①。GMm/R2=mg②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化.
题型7机车的启动问题
题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析.
思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f.
这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力).
(2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.
过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F·s计算,不能用W=P·t计算(因为P为变功率).
题型8以能量为核心的综合应用问题
题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.
思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.
题型9力学实验中速度的测量问题
题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度.
思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt.
题型10电容器问题
题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面.
思维模板:
(1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关.
(2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)
(3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连).
题型11带电粒子在电场中的运动问题
题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计算题.
思维模板:(1)处理带电粒子在电场中的运动问题应从两种思路着手
①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.
②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择).
(2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力
①质子、α粒子、电子、离子等微观粒子一般不计重力;
②液滴、尘埃、小球等宏观带电粒子一般考虑重力;
③特殊情况要视具体情况,根据题中的隐含条件判断.
(3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口.
题型12带电粒子在磁场中的运动问题
题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:
(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.
思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法.
(1)圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示).
看大图
(2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ.
(3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度.
题型13带电粒子在复合场中的运动问题
题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况.
(1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动.
(2)带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在一直线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动.
(3)带电粒子在变化电场或磁场中的运动:变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动.
思维模板:分析带电粒子在复合场中的运动,应仔细分析物体的运动过程、受力情况,注意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永远不做功),然后运用规律求解,主要有两条思路.
(1)力和运动的关系:根据带电粒子的受力情况,运用牛顿第二定律并结合运动学规律求解.
(2)〖JP3〗功能关系:根据场力及其他外力对带电粒子做功的能量变化或全过程中的功能关系解决问题.(该部分内容在《试题调研》高分宝典系列之《高考决战压轴大题》第72页到114页有更详细的讲解,请同学们参阅)
题型14以电路为核心的综合应用问题
题型概述:该题型是高考的重点和热点,高考对本题型的考查主要体现在闭合电路欧姆定律、部分电路欧姆定律、电学实验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等.有关实验的内容在《试题调研》第4辑中已详细讲述过,这里不再赘述.
思维模板:
(1)电路的动态分析是根据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻变化而引起整个电路中各部分电流、电压和功率的变化情况,即有R分→R总→I总→U端→I分、U分
(2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常根据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理.
(3)导体的伏安特性曲线反映的是导体的电压U与电流I的变化规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生变化,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等.
电源的外特性曲线(由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线)的纵截距表示电源的电动势,斜率的绝对值表示电源的内阻.
题型15以电磁感应为核心的综合应用问题
题型概述:此题型主要涉及四种综合问题
(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力.
(2)电路问题:电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算.
(3)图像问题:一般可分为两类,一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;二是由给定的有关物理图像分析电磁感应过程,确定相关物理量.
(4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等.
思维模板:解决这四种问题的基本思路如下
(1)动力学问题:根据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,根据楞次定律或右手定则判断感应电流的方向,进而求出安培力的大小和方向,再分析研究导体的受力情况,最后根据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解.
(2)电路问题:明确电磁感应中的等效电路,根据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最后运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等.
(3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时注意斜率的物理意义.
(4)能量问题:应抓住能量守恒这一基本规律,分析清楚有哪些力做功,明确有哪些形式的能量参与了相互转化,然后借助于动能定理、能量守恒定律等规律求解.
题型16电学实验中电阻的测量问题
题型概述:该题型是高考实验的重中之重,每年必有命题,可以说高考每年所考的电学实验都会涉及电阻的测量.针对此部分的高考命题可以是测量某一定值电阻,也可以是测量电流表或电压表的内阻,还可以是测量电源的内阻等.
思维模板:测量的原理是部分电路欧姆定律、闭合电路欧姆定律;常用方法有欧姆表法、伏安法、等效替代法、半偏法等.
C. 如何学好物理技巧方法
高一新同学进入高中已经半个学期,对高中物理的学习有了一些感性体会,普遍觉得高中物理难学,更想不通的是高中招生考试自然一百九,高中单元测验物理一十九,有的同学有点开始害怕物理。下面给大家分享一些关于如何学好物理技巧 方法 ,希望对大家有所帮助。
一.如何学好物理技巧方法
1.上好每节课,作好每次业
课前预习 ,发现问题,记下疑难,培养自学能力。
上课专心,积极主动,认真思考,适当笔记,培养思维能力。
课后复习,独立按时完成作业,培养解题能力。
2.注意观察,做好实验
学生实验:实验前,认真预习,弄清原理,明确步骤;实验时,认真观察,及时记录;实验后,处理分析,得出结论。
演示实验:注意观察,积极思考,共同分析,得出结论。
小实验:课外尽自己的力量实际动手做一做。
此外,日常生活中,要留心观察各种现象,用学过的物理知识进行分析解释。
3.重视理解,掌握方法
理解物理概念(物理量)的定义、意义、决定因素等。如密度、压强等。
理解物理规律的意义、条件。如欧姆定律等。
掌握研究物理问题的科学方法。如比值定义法、理想实验法、控制变量法等。
4.加强小结,全面巩固
学习物理时,要加强自我小结,可以写单元小结或章节小结,形式可以多种多样,如文字表述、方框图、表格等,特别是在复习时,更要加强小结,使知识结构化系统化。当然,解题后,也要注意小结,体会解题的方法、思路,并力求一题多解或一题多变等。
二.物理不好的表现
1、没有韧劲
物理很难,出题也很活,很多课本知识点不会原封不动的考,而是灵活运用,这就难倒了一大票人,所以要想学好物理,必须要有韧劲、要坚持、要勤奋、要持之以恒,只有钻进去了才能体会到物理的奥妙,学起来才会越来越轻松。
2.不愿动脑思考
一般物理学不会的女生,文科都比较好,人的左 右脑开发 的功能不一样,文科好的人越发喜欢做语文、英语类科目,会花更多的时间在文科上,所以更不愿意去学物理,也不想动脑思考物理,即使学了也是被动的。
3、不拘小节
物理不好的女生是那种放浪不羁,率性而为的女生,类似于假小子,或许他们有共同特点,就是不在乎一些小的细节,但是很注重过程。
4、 逻辑思维 混乱
物理最重要的就是逻辑思维能力,解题思路在做一道题目的过程中占了90%的作用,其余10%顶多是读题加计算。所以要想学好物理,一定要把物理的运动过程以及解题思路搞清楚了,只有这样才能学会物理。其实看过答案我们会发现,公式其实很简单,但思维过程就是想不到,所以物理差必须训练空间立体思维。
如何学好物理技巧方法相关 文章 :
★ 怎样学好物理方法总结
★ 怎样学好物理方法与技巧
★ 学习好物理的五个技巧
★ 学好初中物理最有效的5个方法
★ 学好高中物理的方法与技巧
★ 学好初中物理的十六个技巧
★ 学好高中物理有哪些学习方法和技巧
★ 学好物理的11个方法,包你学好物理
★ 初中物理学习的正确方法有哪些?如何掌握?
D. 小结学物理的方法
学习物理重要,掌握学习物理的方法更重要。学好物理的“法宝”包括预习、听课、整理、应用(作业)、复习总结等。大量事实表明:做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记、做好练习是巩固、深化、活化物理概念的理解,将知识转化为解决实际问题的能力,从而形成技能技巧的重要途径;善于复习、归纳和总结,能使所学知识触类旁通;适当阅读科普读物和参加科技活动,是学好物理的有益补充;树立远大的目标,做好充分的思想准备,保持良好的学习心态,是学好物理的动力和保证。注意学习方法,提高学习能力,同学们可从以下几点做起。
一、课前认真预习
预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。
课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。对已学过的知识,如果忘了,课前预习时可及时补上,这样,上课时就不会感到困难重重了。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查,并从中总结出解题的一般思路和步骤。有能力的同学还可以适当阅读相关内容的课外书籍。
二、主动提高效率的听课
带着预习的问题听课,可以提高听课的效率,能使听课的重点更加突出。课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。这样听完课,不仅能掌握知识的重点,突破难点,抓住关键,而且能更好地掌握老师分析问题、解决问题的思路和方法,进一步提高自己的学习能力。
三、定期整理学习笔记
在学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。学习笔记要简明、易看、一目了然,符合自己的特点。做到定期按知识本身的体系加以归类,整理出总结性的学习笔记,以求知识系统化。把这些思考的成果及时保存下来,以后再复习时,就能迅速地回到自己曾经达到的高度。在学习时如果轻信自己的记忆力,不做笔记,则往往会在该使用时却想不起来了,很可惜的!
四、及时做作业
作业是学好物理知识必不可少的环节,是掌握知识熟练技能的基本方法。在平时的预习中,用书上的习题检查自己的预习效果,课后作业时多进行一题多解及分析最优解法练习。在章节复习中精选课外习题自我测验,及时反馈信息。因此,认真做好作业,可以加深对所学知识的理解,发现自己知识中的薄弱环节而去有意识地加强它,逐步培养自己的分析、解决问题的能力,逐步树立解决实际问题的信心。
要做好作业,首先要仔细审题,弄清题中叙述的物理过程,明确题中所给的条件和要求解决的问题;根据题中陈述的物理现象和过程对照所学物理知识选择解题所要用到的物理概念和规律;经过冷静的思考或分析推理,建立数学关系式;借助数学工具进行计算,求解时要将各物理量的单位统一到国际单位制中;最后还必须对答案进行验证讨论,以检查所用的规律是否正确,在运算中出现的各物理的单位是否一致,答案是否正确、符合实际,物理意义是否明确,运算进程是否严密,是否还有别的解法,通过验证答案、回顾解题过程,才能牢固地掌握知识,熟悉各种解题的思路和方法,提高解题能力。
五、复习总结提高
对学过的知识,做过的练习,如果不及时复习,不会归纳总结,就容易出现知识之间的割裂而形成孤立地、呆板地学习物理知识的倾向。其结果必然是物理内容一大片,定律、公式一大堆,但对具体过程分析不清,对公式中的物理量间的关系理解不深,不会纵观全局,前后联贯,灵活运用物理概念和物理规律去解决具体问题。因此,课后要及时的复习、总结。课后的复习除了每节课后的整理笔记、完成作业外,还要进行章节的单元复习。要经常通过对比、鉴别,弄清事物的本质、内在联系以及变化发展过程,并及时归纳总结以形成系统的知识。通过分析对比,归纳总结,便可以使知识前后贯通,纵横联系,并从物理量间的因果联系和发展变化中加深对物理概念和规律的理解。这样既能不断巩固加深所学知识,又能提高归纳总结的能力。
六、做好思想准备,调整好学习心态
在学习物理的第一节课时,老师都会讲物理难学,在未学习物理之前就从高年级同学那里听说物理教难学。因此大部分同学在学习物理时都带有一些不正常的学习心态,主要表现有以下几个方面:(1)紧张、畏惧心理。物理难学在他们的心灵里留下了深深的烙印,他们害怕上物理课,害怕做物理作业,害怕老师课堂提问,害怕老师的个别谈话,怕做实验、怕动手,千方百计地回避学习,胆怯的心弦一天到晚紧绷着,不能理论联系实际,不能在实践中运用学过的知识,久而久之,越怕越难学,越难越怕学。(2)“一口吃个胖子”的心理。想把成绩搞上去,但经过一段时间的努力,成绩仍没有什么大的起色,随即产生“反正学不好了” 和“我不是学习的料”的错误心理。(3)消极心理。学习松松垮垮、马马虎虎,懒惰思想较重,学习缺乏主动性,处于被动应付状态,上课时经常“开小差”,盼望着“快下课”,老师提问大都说“不会。”
诚然,物理是难学,但绝非学不好,只要按物理学科的特点去学习,按照前面谈到的去做,理解注重思考物理过程,不死记硬背,常动手,常开动脑筋思考,不要一碰到问题就问同学或老师。在学习中要找出适合自己的学习方法,从学习中去寻找乐趣,就能培养自己学习物理的兴趣。比如一个学生在学习力的图示时就编了这样的顺口溜:“四定即定作用点、定方向、定标度、定长度,两标即标箭头、标数值和单位。”现代社会的发展,物理学起着不可估量的作用,同学们要以振兴中华为已任,以学好物理报效祖国为内部动力,要认识到自己学习的责任感和建设祖国的使命感,从而自发地、积极地、主动地学习,就一定能学好物理知识。
自解:
只要做到以下,应该就可以了
多做习题,多看概念,多多联想,多多思考,多多提问, 多多自信。
认真审题--磨刀不误砍柴功
把题中条件与物理概念原理结合,写出准确的物理表达式,是最重要的
E. 物理学习方法总结
我是大学的,物理一直都不错,有5年的物理应试学习经验。
以下是我的观点:
我认为初中、高中的物理所取得的成绩与你所做过的题目成正比,你在高中你就知道,高中的学习除了题还是题,老师都逼得你要疯。
物理这东西其实很简单,只要你捉住了他的本质,一切迎刃而解,当然要捉住他的本质,还是要基于做题的基础上,所以我这个过来人,语重深长的告诉你,要多做题。如果你还是有一种朦胧的感觉,那么说明你还没有捉住它本质,还是多做点题吧。至于做什么题,这还不简单,做考试模拟题,一天一套(我们在高中每天就要做几套,而且还不是一科呢),不光要做而且每一道题都要彻彻底底地弄懂,绝对不能对同样题型的题再范错误,要把错误与自己为什么这个范错误用本子记下来,考试前看看,很有用。而且要多做不同的题型,所谓见多识广,就是这个意思了。
还有很重要的就是多买练习册,少买辅导书,练习册要买有详细答案的那种,不然的话自己也不知道为什么对和错。
最后,有条件的话用VCM仿真实验,每天抽时间做实验,实验做多了,解题的时候思维会比较开阔。
学习方法因人而异,以上心得体会仅供参考,但希望能帮到你。
F. 怎样学好初中物理的方法技巧总结
学好物理的因素首先是态度、信念、意志,其次才是方法、思维。本文整理了初中物理学习方法,欢迎阅读。
善于观察、体会生活
观察物理现象,观察实验现象是我们学习物理的第一步,我们常说:百闻不如一见。只有你在观察中才会发现我们没有认识的世界,才会提出问题,才会想办法去解决问题,才能调动我们学习或探究的积极性。所以,物理来源于生活,生活离不开物理。希望同学们在生活中体会物理,学习物理,应用物理。
学会记笔记
虽然上课听课是非常重要的,但是笔记也是不可缺少的,需要将重点、难点记下来,下课之后整理一下,这样可以消化所学到的知识并且还可以对自己记录的笔记进行补充,还可以自己往笔记上添加一些内容,没到考试之前可以复习一遍,有很好的效果。
独立完成一定量作业
要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。把不会的题目搞会,并进行知识扩展识记,会收获颇丰。
勤于思考、总结方法
常言说的好:“三思而后行”,足说明思考的重要性。遇到问题要善于思考,善于分析。特别是物理问题要分析物理现象的发生、发展。从物理过程中寻找物理规律和求解物理问题的方法,顺藤摸瓜。你的思路广了,方法多了,你的能力也就高了。我们在物理学习中一定要注意物理方法的总结,往往方法比知识本身更重要。
以上就是我整理的初中物理学习方法,感谢阅读。
G. 高中物理学习方法总结
1 选一本好的参考书,适合自己能力的,一本就够不要多买,否则绝对做不完
2 上课跟着老师走,物理弱的话要更注重基础,而老师讲的基本上都是基础的东西
3 认真看书,最好能把书都再给它过几遍,要有印象,尤其是实验部分和公式,对所有实验有个印象,重点实验用VCM仿真实验多做几次(成绩不错的,建议从实验领域拿高分,因为现在高考很注重考察实验能力的题);而公式在解答题时,就算你都不会只要列出对的式子最少一个有3分
4 基础很重要,可以拿历年高考卷做,那里面的题目比较经典,尤其是选择题和实验题,不要随便挑战难题
5 经常复习,回顾,力求知识点都记牢,一般来讲高中物理比较简单的是力学的相互作用,加速度,平抛运动,交变电流,万有引力,变压器,这几个点一定要很熟,较难的部分你也要有个理解,动量和带电粒子在复合场的运动一般都是难点,就算学不好也没关系,当然你自己要认真学
6 高考基础题占60% 以上,中等题有20% 左右,全部对了你就有240分以上,这就是基础的重要!要有信心!
H. 常见物理思想方法的学习总结
常见物理思想方法的学习总结
1、等效转化思想
这是一种很重要的思想。通过它,把个体看成整体,可以省去不少麻烦,把整体化为个体,分别研究,有时更利于解决问题,这是整体与个体的相互转化;根据物理中的关系,把条件集中于一个地方,更容易针对性地解决问题,也可以把条件分散开来,解决全局问题,这便是集中与分散之间的转化;把一些物理量或元件,模型等效看做其他的东西(例如电容稳定后可以看做断路等等),是等效转化;把不好求的,不好分析的转化为好求,好分析的(例如圆形面积转化为正方形面积等),这边是繁向简的转化;此外,还有平面与空间,变量与常量的`转化等等。
2、守恒与变化思想
注意情境中的“变”与“不变”。守恒,是指物理情境中不变的量,或是两情境中相同的量(如能量,动量等);变化,是指物理情境中会变化的量,十分容易忽略,想清楚,考虑全它是如何变化的。
3、数学,物理结合思想
利用图形,图像来分析问题,运用数学中的方法来解决物理问题,例如几何关系,函数关系,等量关系(方程),极限思想,临界思想等等。
4、全局与突破,顺、逆推理思想
可以看完所有条件,站在一定的高度,观察全局来解题,找到没有用过的条件,想想它对解题有何用。也可以用顺向,逆向思维,一步一步把问题推出来,或根据公式找出影响问题的因素等。也可以找出题中的关键信息(突破口),从这里入手。
5、异、同思想
比较物理量、条件、模型等的“异”、“同”,通过这些,帮助理解,解决问题。
6、特殊值思想
可以规定一些值,用他们表示问题,易于分析,也可直接带入简单的数来分析,还可以找到一些特殊的量入手。(用特殊性找一般性的思路)
;