导航:首页 > 方法技巧 > 求题目的方法和技巧

求题目的方法和技巧

发布时间:2022-08-22 23:06:07

❶ 数学选择题答题技巧

数学选择题的解题技巧——解题技巧(7)
会做的题当然要做对、做全、得满分,而不会做的或是难题该怎样得分呢?首先遇到难题不要放弃,岂不知"易题得满分难,难题得小分易",一般的难题第一、二问都是能得分的,即使一点思路都没有,我们不妨罗列一些相关的重要步骤和公式,也许不觉中已找到了解题的思路。再就是要学会"分段得分",高考数学解答题评分的总原则是"分段给分",即会多少知识给多少分,所以你可能前面某个地方卡住了,可以先跳过去,假定它是正确的,向后求解;或是前后两问无联系,只做其中某一问等等。

【对各类具体的题型,也有一些具体的对策,以最快最精确的解答。】

●选择题的解法:选择题得分关键是考生能否精确、迅速地解答。究。掌握这方面的技巧,充分发挥主观能动性数学选择题的求解有两种思路:一是从题干出发考虑,探求结果;二是题干和选择的分支联合考虑或从选择的分支出发探求是否满足题干条件,由于答案在四个中找一个,随机分一定要拿到。选择题解题的基本原则是:"充分利用选择题的特点,小题尽量不要大做"。

●填空题的解法:填空题答案有着简短、明确、具体的要求,解题基本原则是小题大做别马虎,特别是解的个数和形式是否满足题意,有没有漏解和不满足题目要求的解要认真区别对待。今年数学高考填空题的分值增加许多,其得分情况对高考成绩大有影响,所以答题时要给予足够的精力和时间,填空的解法主要有:直接求解法、特例求解法、数形结合法,解题时灵活应用。

●解答题的解法:解答题得分的关键是考生能否对所答题目的每个问题有所取舍,一般来说在解答题中总是有一定数量的数学难题(通常在每题的后半部分和最后一、两题中),如果不能判别出什么是自己能做的题,而在不会做的题上花太多的时间和精力,得分肯定不会高。解答题解题时要注意:书写规范,各式各样的题型有各自不同的书写要求,答题的形式对了基本分也就得到了,立体几何题有规定的书写要求,解题时务必注意。审题清晰,题读懂了解题才能得到分,要快速在短时间内审清题意,知道题目表达的意思,题目要解决的是什么问题,关键的字词是什么,特殊的情形有没有,不能一知半解,做了一半才发现漏了条件推翻重来,费了精力影响情绪。压轴题一般有3问,这样的题目至少有两问的,第一问,其实不难,你要有信心做出来,一般也就是个简单的理论的应用,不会刁难你,所以,你要作出来。如果有第三问,那么第二问多半是中继作用,就是利用第一问的结论,然后第三问有要用到它自己。这一问,比较难一点,但是,如果你时间允许,还是可以做出来的。 第三问嘛,如果时间很紧张,我个人建议,放弃吧,回头检查你作的其他题目,效果更好。

究。掌握这方面的技巧,充分发挥主观能动性
解答题中,由于是按步给分,应特别注意过程步骤的严谨和规范,追求"表达的准确、考虑的周密、书写的规范、语言的科学",写清得分点,清楚地呈现自己的思维层次。否则会做的题目若不注意准确表达和规范书写,常常会被"分段扣分",如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论;立体几何证明题中注意定理使用的条件要缺一不可,不能疏漏等等。解答题应注意"大题小做,大题细作"。另外,注意 "快慢结合,合理把握时间"。慢主要体现在审题方面,看题要清,审题要透彻,合理方面脚步,防止错看,漏看,从一定义上说:"成在审题,败在审题"。快主要是解答要快速准确,一步到位,尽量减少反工检查的时间。总体时间的把握上,在保证选填的基础上,要留出充分的时间放在解答题上,保证充分的思维时空,另外还应预留时间对把握不足的题目进行复查。

每年高考试题总有创新,对新型的探索开放题的解题要诀有:(1)试:阅读题意,分清条件和结论,尝试最简单、最基础的运算。(2)猜:在前面尝试的基础上,大胆猜想,可以运用归纳、类比、推广、化归等思想方法多角度、多维度地猜想,合理进行猜想是关键的一步。(3)证:综合运用数学知识进行求解与证明,要注意前后联系,过程严谨。在探索开放题的解答过程中,要注意尝试举例,并进行多方位的联想,将式子结构、运算法则、解题方法、问题的结论等引申、推广或迁移,从而进行大胆的猜想,最后再进行规范的证明。

❷ 高中数学解题方法及技巧

分享高中数学椭圆解题方法

此回答为文科版,删去了原来比较难或用的不多的的一些知识点和相关例题,适用于文科生和基础稍差的理科生。

一、设点或直线

做题一般都需要设点的坐标或直线方程。点可以设为,就可以。还要注意的是,很多点的坐标都是设而不求的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)

二、转化条件

有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。

向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0)、平行四边形

斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

使用斜率转化一定不要忘了单独讨论斜率不存在的情况!

几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)

有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。

三、代数运算

转化完条件就剩算数了。很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。

解析几何中有的题目可能需要算弦长,可以用弦长公式

解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为和,AB与x轴交于D,则(d是点O到AB的距离;第三个公式教材上没有,解要用的话需要把下面的推导过程抄一下)。

❸ 做数学题的方法和技巧

中小学数学,还包括思维数学,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?文都教育建议家长们,培养孩子从小就习惯用这些思维和方法来解题!

形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国着名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

第二、定向猜测,反复实践,在不断分析、调整中寻找规律。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出

乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观察”的要求:

第一、观察要细致、准确。

第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学、中学数学要培养学生初步的抽象思维能力,重点突出在:

(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地

推理。

对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

解题技巧

选择题答题攻略

1、剔除法

利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2、特殊值检验法

对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3、极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4、顺推破解法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5、逆推验证法

将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6、正难则反法

从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7、数形结合法

由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8、递推归纳法

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9、特征分析法

对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

填空题答题攻略

数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

1、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法

当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

3、数形结合法

借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

4、等价转化法

通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

❹ 选择题的答题方法和技巧

1、特值检验法

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2、极端性原则

极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3、剔除法

剔除利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4、数形结合法

由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5、递推归纳法

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

❺ 数学做题的方法及技巧

考试做题的最高境界是什么?不是全部题目都会做,而是不会做的题目也能得分、甚至蒙出答案能得满分!在中考和高考的独木桥上,流行着“提高一分,干掉千人”的说法。那么学会下面的“蒙题”技巧,老师保证你的数学肯定不仅仅提高一分。废话少说,步入正题!

03

解答题蒙法

1,证明题中,如果有某一个结论实在不知道怎么推导出来,可以把题目中所有的条件抄一遍,然后直接写出你想要的结论即可(情况好的话一分不扣!情况不好的话,也就扣一些步骤分)

2,证明题中,第二第三题可以直接引用第一题的结论(即使第一题是要你证明的结论,你没有证明出来也可以用!)

3、一般而言,压轴题的第三小问,都要用第一小题中的结论。(所以,压轴题的第三小问,即使做不出来,也要把第一小题中的结论写上去,可以得一到两分的步骤分!)

4、空间几何证明题中,即使不会证明,也要建立空间直角坐标系,并写上你建系时的套话。

5、实在一点儿都不会做的题目,把所有你觉得用得上的、跟本题有关的公式定理都写上去。并且,每一小题都要重复写上(意思就是:第一小题写了,第二、第三小题也要写!)

❻ 高中数学解题套路和技巧有哪些

一.解题时需要注意的问题
1.精选题目,避免题海战术 只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2. 认真分析题目 解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。
3. 做好题目总结 解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
1)在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2)在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3)能否归纳出题目的类型,进而掌握这类题目的解题方法。
二.数学解题的一些技巧
1.思路思想提炼法 催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。
2. 典型题型精熟法 抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。
3. 逐步深入纠错法 巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。

❼ 一般做数学题的解题技巧是什么

做选择题时最忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,有时候还会选错。所以一定要读透题,由题迅速联想到涉及的概念、公式、定理以及以及知识点中要注意的问题。在做选择题的过程中,遇到关键性的词语可用笔做个记号,第一遍没做出的题也要做个记号,但要注意与其他记号区分开来,这样不容易遗漏。
选择题的客观性强技巧也多。以下6种事半功倍的解题技巧可供大家采用:
1、直接法
有些选择题是由计算题、应用题、证明题、判断题改编而成的。这类题目比较简单,可直接从题设的条件出发,得出正确结论。
2、排除法
在拿不准的情况下可逆向进行,从选项入手,一边审题边排除,一个一个地排除掉,直至得到正确选项。
3、估值法
运用一些基本定义,如定义域、值域或不等式的有关知识来确定一个足够小的范围,要是四个选项中有一个答案是满足的,那么正确答案也就有了。
4、图形法
根据题中已知条件画出合适的图形,如数轴、几何、三角函数等图像,通过在图像上的分析得出答案。
5、推理法
根据题目中的已知条件推理下去,找出规律,归纳出正确笞案。
6、赋值法
在一些特殊形式的选择题中,给未知量赋一个适当的便于计算的值,就可确定正确笞案。
在解答数学选择题时如果能够做到准、快、巧,就既能在选择题部分获得高分,又能嬴得较多的时间去解答其他部分的问题,从而使得数学最终突破高分。

❽ 答题技巧的方法有哪些

期末考试临近,很多同学都感觉到了空前的学习压力。然而,最终考试成绩的取得一方面是对基础知识的掌握,另一方面就是考试中的技巧了。有的同学,平时学习成绩好,但在考试中往往出现发挥不佳的情况;另外,相当一部分同学总感觉考试时间不够用,也是缺乏应试技巧的表现。

01▶

自我暗示 消除焦虑

考试一旦怯场,面对试题就会头脑空空,平时熟悉的公式、定理回忆起来也变得困难,注意力不能集中,等到心情平静下来,已浪费了许多时间,看到许多未作的题目,则会再次紧张,形成恶性循环。这时要迅速进行心理调节,使自己快速进入正常应考状态,可采用以下两种方法调节焦虑情绪:

①自我暗示法。用平时自己考试中曾有优异成绩来不断暗示自己:我是考生中的佼佼者;我一定能考得理想的成绩;我虽然有困难的题目,但别人不会做的题目也很多。

②决战决胜法。视考场为考试的大敌,用过去因怯场而失败的教训鞭策自己决战决胜。

02▶

整体浏览 了解卷情

拿到试卷后,在规定的地方写好姓名和准考证号后,先对试卷进行整体感知,看看这份试卷共多少页、总题量是多少、分哪几大部分、有哪几种题型。这样不仅可以要防止试卷错误,尽早调换,避免不必要的损失;而且通过对全卷作的整体把握,能尽早定下作战方案。重要的是初步了解下试卷的难易度,以便自己合理安排答题时间,避免会做的没有做,不会做的却浪费了时间的情况出现。

03▶

两先两后 合理安排

试卷的难易、生熟占分高低大体心中有数了,情绪也稳定了,此时大脑里的思维状态由启动阶段进入亢奋阶段。只要听到铃声一响就可开始答题了。解题应注意“两先两后”的安排:

①先易后难。一般来说,一份成功的试卷,它上面的题目的排列应是由易到难的,但这是命题者的主观愿望,具体情况却因人而异。同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

②先熟后生。通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。总之要记住一句名言:“我易人易,我不大意;我难人难,我不畏难”。

04▶

一慢一快 慢中求快

一慢一快,指的是审题要慢要细,做题要快。题目本身是解题方法、技巧的信息源,特别是每卷必有的选择题中的题干中有许多解答该题的规定性。例如:选出完全正确的一项还是错误的一项,选一项还是两项等,这些一定要在读题时耐心地把它们读透,弄清要求,否则是在做无用功。考卷大多是容易的,在大家容易的情况下就看谁更细心,而细心最主要的就是审题时要慢要细心。

当找到解决问题的思路和方法后,答题时速度应快。做到这一点可从两方面入手,一、书写速度应快,不慢慢吞吞。二、书写的内容要简明扼要,不拖泥带水,噜嗦重复,尽量写出得分点就行了。

05▶

分段得分,每分必争

考试中经常有的同学答案是错误的,但依然得了分,这说明写出了得分点,而有的同学甚至一点解题思路都没有,只是将公式进行了罗列,也依然得到了分,都是同样的道理。尤其是有问的解答中,如果第一个不会千万不要放弃,一定要浏览完全部的问题,做到每分必争,切忌出现大量空题的情况。

对于会做的题目。对会做的题目要解决对而不全的老大难问题,如果出现跳步往往就会造成丢分的情况,因此,答题过程一定规范,重要步骤不可遗漏,这就是分段得分。

对于不会做的题目,这里又分两种情况,一种是一大题分几小题的,一种是一大题只有一问的。对于前者,我们的策略是“跳步解答”,第一小题答不出来,就把第一小题作为已知条件,用来解答第二小题,只要答得对,第二小题照样得分。对于后者,我们的策略是“缺步解题”,能演算到什么程度就什么程度,不强求结论。这样可以最大程度地得到分数。

06▶

重视检查环节

答题过程中,尽量立足于一次成功,不出差错。但百密不免一疏,如果自己的考试时间还有些充裕,那么根不可匆忙交卷,而应作耐心的复查。将模棱两可的及未做的题目最后要进行检查、作答,特别是填空题、选择题不要留空白。

❾ 数学高考答题技巧与答题方法是什么

数学高考答题技巧与答题方法是如下:

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是。

4、选择与填空中出现不等式的题目,优选特殊值法。

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。


6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。

❿ 最准的万能选择题答题技巧口诀

每科考试中都有选择题,要想分数高,选择题一定不能错太多。那么除了知识点学习扎实以外,还有什么方法能做对选择题呢?下面是我为大家整理的最准的万能选择题口诀。

1 最准的万能选择题口诀——排除法
1、在单项选择题中,如其中两个或两个以上的选项存在承接、递进关系,即这两个或两个以上选项会同时成立,则正确项只能在上述选项之外去寻找。

2、在单项选择题中,如其中两个或两个以上的选项内容相近或类似,即这两个或两个以上选项会同时成立,则正确项只能在上述选项之外去寻找。

3、单项选择题中,一旦出现一对内容互相对立的选项,则正确选项往往由这两个对立选项中产生。
1 最准的万能选择题口诀——因果分析法
1、因果分析法,是指解答因果关系选择题时,把题肢与题干结合起来,具体分析它们之间是否构成因果关系而做出正确判断的方法。

2、正确把握事物之间的因果联系,必须明确原因和结果既是先行后续的关系,又是引起和被引起的关系。

3、需要注意的是事物的因果联系是多种多样的原因既有客观原因,也有主观原因;既有根本原因,也有一般原因;既有主要原因,也有次要原因。因此,解题时一定要根据题目的不同要求,分析它们之间的因果联系。运用因果分析法解答因果关系题,应把题肢和题干结合起来分析,以题干为因,所选题肢为果。

4、需要注意的是,因果关系题三不选:一是答非所问者不选;二是与题干规定性重复或变相重复不选;三是因果颠倒者不选。
1 最准的万能选择题口诀——找关键词
每个选择题只有一个立意,即一个中心思想。因而,看到试题后,认真阅读,并要很快地找到它的中心思想,最好用一句话的形式提取出立意。然后,再看题肢的设问,这样就能很快地找到答案。找关键词。一般来说,每个选择题的关键词大多在题干的最后一句话或第一句话中,如“范围关键词”:经济学道理……、哲学道理……等。“内容关键词”:措施是……、制度是……等。“形容词关键词”:根本……、主要……等。“动词关键词”表明……、说明……、体现……等。立意和关键词相结合,对做难度稍大的题目有较大的帮助。
1 最准的万能选择题口诀——组合筛选法
组合筛选法是指在组合型选择题中,通过筛选、排除含有错误题肢的组合,或者排除遗漏正确题肢的组合的方法。组合筛选法要求找出自己最熟知的能拿得准的题肢来推知组合选项的正误,这样就可以同时思考所有的题肢,转化为集中思考几个甚至一个题肢.这样做不仅减轻了思考压力,而且节约了解题时间,以利于迅速选出正确答案。运用组合筛选法解答组合型选择题,应依据自己最熟知的题肢来判断。若此题肢错误,含有该题肢的组合项均为错误;若此题肢正确,遗漏该题肢的组合项均为错误;遇到“公共题肢”的组合时,“公共题肢”可以免审,只要审析相异题肢的正误,就能得出正确答案。

阅读全文

与求题目的方法和技巧相关的资料

热点内容
养猪的正确方法图片 浏览:600
骨架稳定的正确锻炼方法 浏览:127
离散型数据适合什么方法分析 浏览:386
ph的测量方法必须满足的条件 浏览:350
化学降温的方法有哪些 浏览:837
钢筋根数有哪些表示方法 浏览:229
食品分析介绍过的方法类型 浏览:994
去火的治疗方法 浏览:622
动作连接方法 浏览:241
曲面屏手机防爆方法 浏览:764
干天麻的简单食用方法 浏览:82
肾虚怎么恢复正确方法 浏览:676
双阳鹿茸片正确食用方法 浏览:543
金刚藤功效与作用与食用方法 浏览:456
小红瓦安装方法 浏览:180
研究内容方法有什么 浏览:833
装修墙面方法有哪些 浏览:328
增强腹部锻炼方法 浏览:829
货车发动机左右摇晃解决方法 浏览:322
电灯带插座安装方法 浏览:609