‘壹’ 高考数学考试技巧和方法有哪些
怎样学好高中数学?首先要摘要答题技巧
现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?
高中数学试卷
怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.
‘贰’ 高中数学经典解题技巧和方法
2019学魁`榜邱崇数学解题技巧(含终极秒杀选填)(16.6G超清视频)
链接:
若资源有问题欢迎追问~
‘叁’ 高中数学概率题,排列组合的解题方法与技巧,只要有用都给分,在线教导或QQ,给你一百分,或给有用的资料
首先,谈谈排列组合综合问题的一般解题规律:
1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
2)排列与组合定义相近,它们的区别在于是否与顺序有关。
3)复杂的排列问题常常通过试验、画 “树图 ”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。
4)按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。
5)处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
6)在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。
总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。
其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。
一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。
例1、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
A. 24个 B.30个 C.40个 D.60个
[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有A42个,2)0不排在末尾时,则有C21 A31A31个,由分数计数原理,共有偶数A42 + C21 A31A31=30个,选B。
二.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。如例1中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53--3A42+ C21A31=30个偶数。
三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
四.相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.
例2、有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种.(结果用数值表示)
解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有A55种排法;又3本数学书有A33种排法,2本外语书有A22种排法;根据分步计数原理共有排法A55 A33 A22=1440(种).
注:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题.
五.不相邻问题用“插空法”:不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.
例3、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个.(用数字作答)
解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有A22种排法,再把5与6也捆绑成一个大元素,其内部也有A22种排法,与数字3共计三个元素,先将这三个元素排好,共有A33种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有A42种插法,所以符合条件的八位数共有A22 A22 A33 A42=288(种).
注:运用“插空法”解决不相邻问题时,要注意欲插入的位置是否包含两端位置.
六.顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
例4、6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?
分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。故符合条件的排法有A66 ÷A33 =120种。(或A63种)
例5、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。
解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。(也可以是A77 ÷A33种)
七.分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。
例6、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?
分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有A77种。
八.逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。
例7.将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有()
A.6 B.9 C.11 D.23
解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B
九、构造模型 “隔板法”: 对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。
例8、方程a+b+c+d=12有多少组正整数解?
分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有C113 .
又如方程a+b+c+d=12非负整数解的个数,可用此法解。
十.排除法:对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.
例9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种.
A.140种 B.80种 C.70种 D.35种
解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符合题意的抽取方法有C93-C43-C53=70(种),故选C.
注:这种方法适用于反面的情况明确且易于计算的习题.
十一.逐步探索法:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律
例10、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。
解:两个数相加中以较小的数为被加数,1+100100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99为被捕加数的只有1种,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500种
十二.一一对应法:
例11.在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?
解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场。
‘肆’ 高考数学各类题型的做题技巧有哪些
1、选择题
选题题一共12个(8个单选+4个多选),时间在25分钟内解决,不能拖延太久,选择题答案就在选项里面,你的目的是把它选出来,不是做出来,所以一定要充分发挥好选择题的特点,通过排除法、特殊值代入法、数形结合法、观察法、列举推理的方法等等,只要把正确选项找出来就可以,千万不要每个题目都按部就班去计算,那样会耽误很多时间,多选题先把拿得准的写上,拿不准的宁可不选也不要贸然选上,宁要3分不要得0分。
2、填空题
填空题就4个,时间控制在15分钟内,一般来说有2个是比较简单的,只要细心去计算都不会丢分,剩下两个或者最后一个会有难度,结合自己的情况,量力而行,不要为了一个填空题耽误太久的时间是最起码的策略。注意填空题是把答案具体做出来,千万要考虑全面,不要漏解,不要漏单位等等。
3、解答题
三角函数和解三角形一般是个基础性题目,只要公式变形应用熟练就没啥问题,审题要看清楚,如果这个题目是选条件做的,那么多去看看每个条件的逻辑关系,务必保证第一个大题不要丢分啊。
数列题把通项公式的方法牢记于心,几个方法反复运用熟练,然后再找出求和办法,一般都是这么个套路,这个题目计算会多一点,做题时要细心一点,不要计算上出错。
立体几何题目也算是个基础性题目,第一问往往是证明垂直或者平行,认真看清楚图形,理清楚各条线和面的位置,不要在第一问丢分,第二问一般会穿插计算,求二面角或者体积之类的问题,所以在做这类题目时如果建立坐标系比较容易,那么就建立坐标系来解决,计算时一定要细心,切记浮躁。
概率与统计题目这几年放到后面来了,去年更是放到最后一个题目来考察,这个题目往往题干很长,信息量很大,好多考生把握不住条件,感觉读不懂,做这类题目一定要静下心来去读题,一遍不行就两遍,再不行就三遍,直到弄明白为止,要不然做题也不可能做出来,再一个计算量还比较大,所以务必保证公式带入正确,计算结果保证正确,这样才有可能会得分。
圆锥曲线题目,这个题目算是个中等偏上的题目了,第一问只要基础没问题就可以轻易拿到分,关键问题出在第二问,要想做对第二问,除了基础知识好之外还需要对代数式的化简技巧和方法多总结,曲线和曲线之间的相交关系也是很重要,用代数关系表示出平面图形的关系是这个题目的关键,在平时复习中根据自己的具体情况量力而行。
最后一个题型往往就是函数与导数的综合题,这个题型想拿到满分确实很难,去年山东省模拟考这个题型,全省近60万考生就只有一名同学得了满分,可想而知这个题目的难度之大,所以针对不同层次的学生合理安排自己的做题时间,第一问往往难度不是特别大,拿到4分左右还是可以的,后面的分数想要拿到,既要保证时间充足还要保证计算化简的正确性,其中的解题技巧和方法相对也是比较高难度的,如果是学霸的可以来挑战下这个题目,分数不到130分的同学,还是把前面题目做好为宜。
‘伍’ 高中数学概率题有什么答题技巧么
概率与统计
一.专题综述
在中学数学里,排列、组合、二项式定理、概率统计相对比较独立,他们与实际生活联系较紧,解决本部分的问题也有比较独特的思维方式,高考对本部分考察的命题往往具有一定得灵气。 1.考纲要求
(1)掌握解决排列组合应用题的基本方法,会利用二项式定理解决问题; (2)了解随机事件的发生存在着规律性和随机事件概率的意义; (3)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率;
(4)了解互斥事件与相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率;
(5)会计算事件在n次独立重复试验中恰好发生k次的概率;
(6)掌握离散型随机变量的期望与方差,三种抽样方法,样本频率直方图及条形图,正态分布;
(7)了解回归分析的原理及线性回归分析。
2.考题设置与分值
从试题题型来看,(1)排列组合应用题与概率结合每年1道客观题;(2)二项式定理每年1道客观题,主要考查二项式定理的通项应用或系数性质求系数
和,(3)概率与统计以应用题为背景命题,有选择题,也有填空题,但更多是解答题,基本上是1小1大题,解答题将等可能事件的概率与独立事件或互斥事件问题综合在一起命题,或将概率与离散型随机变量分布列综合求数学期望与方差。
对本部分考察总分值约25分
3.考试重点与难度:
本专题内容从历年高考试题来看,考纲规定的考点都有考查。
概率应用问题仍是高考考查学生实践能力的热点问题.问题背景多联系生活实际,有时大胆创新、构思新颖,综合考查多种分支知识及多种思想方法,在知识网络的交汇处设计试题. 一般通过模球类的问题、元素分配类问题、计数类问题等,来考查学生利用排列组合知识求等可能性事件的概率,以及考查互斥事件、相互独立事件、独立重复试验等概率问题的掌握和应用.
总起来将,高考对本部分内容的考察无论是客观题还是主观题都属于中档题。
二.考点选讲
【考点1】排列、组合的应用题
排列、组合的应用题是每年高考的必考点,几种典型的分析思路和典型的模型是我们要掌握的重点。
【考点2】二项式定理
对二项式定理的考查主要是两个方面:(1)展式的通项公式的应用(求指定项);(2)用赋值法研究展式的系数。
【考点3】概率的计算
【考点4】概率与统计综合
从“统计”纳入高中教学内容后,“统计”中除“回归分析”这一考点外,几乎所有考点都在近几年的高考中出现过,除一个主观题外,有时还有客观题,一年一个花样。这一部分考题历年都考得不难,有的还是简单题,但由于本部分内容相对独立,学生平时用的少,老师教学花的时间也不多,所以考生失分比较严重,应引起重视,特别是“回归分析”。
‘陆’ 高考数学概率题目怎么样做
考数学五个大题中基本上必考一个概率方面的应用题,这个应用题难度并不大。
只要把相关基础知识掌握了,这个题目应该可以得满分的。概率大题基础知识梳理:第一:概率计算。这里概率计算非常简单,一般只需要进行很简单的分类讨论即可。比小题里面概率计算还简单,后面真题解析里面就知道了。第二:分布列和数学期望。分布列分两行,第一行是基本事件,第二行是该基本事件发生的概率。数学期望是每一列的基本事件的值乘以相应概率,然后再相加即可。(也就是加权平均数)第三:线性回归方程。比较难的也就是自变量的系数比较复杂难记,但无论是文科还是理科,考到线性回归方程的话,都会直接给出具体的公式,只需要套用即可。有的时候离散点不是线性的,但是都会有提示的,还是按照提示去套公式即可。真题解析:2016一卷理解析:从条形图,我们可以轻松看出来,100台机器三年内更换8件易损零件的数量有
20台,更换9件易损零件的有40台,更换10件易损零件
的有20台,更换11件易损零件的有20台。
题意中说了,100台机器更换的易损零件书的频率代替一台机器更换的易损零件数发生的概率。也就是说一台机器,一年更换8件的概率为20%,更换9件的概率为40%,更换10件的概率为20%,更换11件的概率为20%。X表示两台机器三年内需要更换的易损零件数,那么最低需要更换16件,最高需要更换22件。如果两台需要更新16件,也就是每台更新8件的事件同时发生,所以P(n=16)=20%x20%=4%如果两台需要更新17件,也就是一台更新8件,一台更新9件,又分为两种情况,第一台更新8件第二台更新9件,以及第一台更新9件第二台更新8件。所以P(n=17)
=2x20%x40%=16%同理,P(n=18)=40%x40%(两台各
9件)+2x20%x20%(一台8件一台10件)=24%P(n=19) =2x40%x20%(一台9件一台10件)+2x20%x20%(一台8件一台11件)=24%P(n=20)=2x40%x20%(一台9件一台11件)+20%x20%(两台各10件)=20%P(n=21) =2x20%x20%(一台10件一台11件)=8%P(n=22)
=20%x20%(两台各11件)=4%所以分布列就是:第二问求概率问题,n=18件P为P1+P2+P3=44%,n=19件P为68%,很显然n的最小值是19。
第
‘柒’ 高考数学概率题解题常用方法,你都会吗
解高考概率问题,首先要分清问题涉及到的概率类型,如等可能型,互斥型,相互独立型,还有几何概型,每种类型都有相应的处理方法。平时做题的时候广泛使用表格法,使有关内容、解题方法和技巧一目了然;从浩瀚的题海中归纳、总结出的题型解法,对解题具有很大的指导作用;用系列分析对教材的重点、难点进行诠释,对掌握这方面知识起到事半功倍的效果.
‘捌’ 数学中的概率题应该怎么算什么技巧算的最快
数学里面你会遇到很多的概率题,这类题是比较容易拿分的,你不要觉得这个东西很难,其实它并不难。无论是高考的时候涉及到的一些概率一些计算,还是说到了大学之后你选线性代数与数理统计,概率论这些东西它本身都是有规律的。
概率类型的题目公式一定要记住,就是无论别人告诉你什么样的解题思维告诉你,你应该从哪一个角度去想,最基本的都是公式,公式都记不住的话,下面那些技巧都没有用,公式记住了之后,就是你要静下心来自己去琢磨这个题,它的思维逻辑结构是怎样的,然后自己想不明白这个逻辑,那你听别人讲多少次都是觉得混乱的。摸不清一个题,出题的思路,解题的思路,摸不清公式了,这道题你是解不出来的。
‘玖’ 高中数学概率计算法则
高中数学概率计算法则主要为概率的加法法则
概率的加法法则为:
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1
推论3:若B包含A,则P(B-A)= P(B)-P(A)
推论4(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)
以上公式就被称为全概率公式。