导航:首页 > 方法技巧 > 对数函数解题技巧与方法

对数函数解题技巧与方法

发布时间:2022-08-03 15:17:22

㈠ 对数函数的祥细解法

一、对数定义及运算法则问题
利用对数的运算法则可以将对数的乘、除、乘方、开方运算转化为对数的加、减、乘、除运算,反之也可以将对数的加、减、乘、除运算转化为乘、除、乘方、开方运算,这充分显示了对数运算的优越性

中学生数理化学研版对数函数选择题是考查对数函数基础知识的常见题型,其解题基本原则是:小题巧做,避免小题大做.下面结合例题介绍对数函数选择题的常用解法,给大家参考.一、筛选法它是充分利用选择题中单选题的特征,从选择支人手,根据条件与选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设矛盾的选择支逐一排除,从而得到正确结论的方法.例l函数y一2,(xeR)的反函数是().
A.y一fogZx(x>0)
B.夕=logZx(x)1)
C.夕一109,2(x)o)
D.夕=109二2(x)l)分析:因为函数y~2,经过(0,l)点,所以反函数经过点(1,0).故只有A、B满足此条件.又函数y一2z的值域是y>O,所以反函数的定义域为x>O,排除B.解:A.评注:根据题意排除是最简单的方法,不过有时还得深层挖掘题意,才能得到结果.二、特值法就是运用满足条件的某些特殊数值、特殊位置、特殊关系等对各选择支进行检验或推理,利用问题在某一特殊情况下不正确,则它在一般情况下也不正确的原理进行解题的方法.解:B.评注:图解法解题既节省时间,又直观易懂,它是解......(

㈡ 计算对数函数的方法

log2 12=log2(4x3)=log24+log23=log2 2^2+log2 3=2log 2 2+log2 3=2+log2 3
把真数化成n个因数的乘积,然后利用公式loga(x1*x2*x3*.......*xn)=logax1+logax2+logx3+.......logxn
再化简,把对数能开出来的开出来,如果不能开出来的就保留。

㈢ 对数函数的方法与例题 公式

1对数的概念
如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.
由定义知:
①负数和零没有对数;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)
3对数的运算性质
如果a>0,a≠1,M>0,N>0,那么
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaMn=nlogaM (n∈R).
问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?
②logaan=? (n∈R)
③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数
b—
N—a—对数的底数
b—
N—运


质am·an=am+n
am÷an=
(am)n=
(a>0且a≠1,n∈R)logaMN=logaM+logaN
logaMN=
logaMn=(n∈R)
(a>0,a≠1,M>0,N>0)

难点疑点突破
对数定义中,为什么要规定a>0,,且a≠1?
理由如下:
①若a<0,则N的某些值不存在,例如log-28�
②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数�
③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数�
为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数�

解题方法技巧
1
(1)将下列指数式写成对数式:
①54=625;②2-6=164;③3x=27;④13m=5�73.
(2)将下列对数式写成指数式:
①log1216=-4;②log2128=7;
③log327=x;④lg0.01=-2;
⑤ln10=2.303;⑥lgπ=k.
解析由对数定义:ab=N�logaN=b.
解答(1)①log5625=4.②log2164=-6.
③log327=x.④log135.73=m.

解题方法
指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N�logaN=b.(2)①12-4=16.②27=128.③3x=27.
④10-2=0.01.⑤e2.303=10.⑥10k=π.
2
根据下列条件分别求x的值:
(1)log8x=-23;(2)log2(log5x)=0;
(3)logx27=31+log32;(4)logx(2+3)=-1.
解析(1)对数式化指数式,得:x=8-23=?
(2)log5x=20=1. x=?
(3)31+log32=3×3log32=?27=x?
(4)2+3=x-1=1x. x=?
解答(1)x=8-23=(23)-23=2-2=14.
(2)log5x=20=1,x=51=5.
(3)logx27=3×3log32=3×2=6,
∴x6=27=33=(3)6,故x=3.
(4)2+3=x-1=1x,∴x=12+3=2-3.

解题技巧
①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.
②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3
已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.
解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;
思路二,对指数式的两边取同底的对数,再利用对数式的运算求值�
解答解法一∵logax=4,logay=5,
∴x=a4,y=a5,
∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.

㈣ 对数函数技巧

可通过指数函数或对数函数的单调性来比较两个指数式或对数式的大小。

(2)求函数y=af(x)的单调区间,应先求出f(x)的单调区间,然后根据y=au的单调性来求出函数y=af(x)的单调区间.求函数y=logaf(x)的单调区间,则应先求出f(x)的单调区间,然后根据y=logau的单调性来求出函数y=logaf(x)的单调区间。

(3)根据对数的定义,可将一些对数问题转化为指数问题来解。

(4)通过换底,可将不同底数的对数问题转化为同底的对数问题来解。

(5)指数方程的解法:

(iii)对于方程f(ax)=0,可令ax=y,换元化为f(y)=0。

(6)对数方程的解法:

(ii)对数方程f(logax)=0,可令logax=y化为f(y)=0。

(7)对于某些特殊的指数方程或对数方程可通过作函数图象来求其近似解。

㈤ 指数,对数函数解题应注意的问题和方法

1、指数和对数的运算
指数和对数的运算是学习指数函数和对数函数的基础,在初中我们接触了一些指数和对数的运算法则,但是在高中阶段我们对纯粹的计算要求不高,但是应用很多的,所以必须记住相应的计算法则,和一些常用的特殊值如 这样的恒等式,对解答本部分题目用处很大,也对我们接指数对数方程和不等式用处很大.
2、指数函数和对数函数
指数函数和对数函数是高考考查的重点,必须记住常见的指对数函数,
如 还有两个特殊的
利用这些函数记住相应的函数的性质和图像,这部分题目考查有函数过定点,函数值得大小比较,函数的图像变换等等
3、指数方程,对数方程及其不等式
这是我们在解题过程中常用到的,也是由函数的单调性得到的函数的一类应用问题,化成同底是解决这类问题的关键,方程就要注意特殊值,不等式就要注意函数的单调性,但是对于对数函数来说的话,必须注意定义域的限制!
4、指数型和对数型的复合函数
复合函数的求值,复合函数的单调性等都是考查的重点,所以必须熟悉常见的复合函数的处理方法,复合函数的单调性的判断法则等.对数型复合函数是考查的重点,因为涉及到定义域问题是学生最最容易出现的问题,所以应该明白为什么上课的时候总是在强调函数问题在处理的时候一定要定义域优先了!
5、指数函数和对数函数的关系
指数函数和对数函数互为反函数,图像关于直线 对称,把握住这两点就没有问题了,像2013年的陕西文科的最后一道题的第一问就涉及到指数函数的反函数问题,其实就是所对应的对数函数而已!
总之函数的学习一定要注意归纳题型和方法,总结解题的常见思路和方法,从而慢慢的掌握解题的思路和方法,解题是一个复杂的过程,还是需要多多的练习了!
解题方法:
(1)可通过指数函数或对数函数的单调性来比较两个指数式或对数式的大小.
(2)求函数y=af(x)的单调区间,应先求出f(x)的单调区间,然后根据y=au的单调性来求出函数y=af(x)的单调区间.求函数y=logaf(x)的单调区间,则应先求出f(x)的单调区间,然后根据y=logau的单调性来求出函数y=logaf(x)的单调区间.
(3)根据对数的定义,可将一些对数问题转化为指数问题来解.
(4)通过换底,可将不同底数的对数问题转化为同底的对数问题来解.
(5)指数方程的解法:
(iii)对于方程f(ax)=0,可令ax=y,换元化为f(y)=0.
(6)对数方程的解法:
(ii)对数方程f(logax)=0,可令logax=y化为f(y)=0.
(7)对于某些特殊的指数方程或对数方程可通过作函数图象来求其近似解.

㈥ 关于对数函数计算的方法

1对数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运算性质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28� ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数� ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数�为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数� 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④13m=5�73. (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:ab=N�logaN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N�logaN=b.(2)①12-4=16.②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3

㈦ 对数函数的运算法则及公

1.对数源于指数,是指数函数反函数
因为:y = ax

所以:x = logay

2. 对数的定义
【定义】如果 N=ax(a>0,a≠1),即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作:

x=logaN
其中,a叫做对数的底数,N叫做真数,x叫做 “以a为底N的对数”。

2.1对数的表示及性质:

1.以a为底N的对数记作:logaN

2.以10为底的常用对数:lgN = log10N

3.以无理数e(e=2.71828...)为底的自然对数记作:lnN = logeN

4.零没有对数.

5.在实数范围内,负数无对数。 [3]在虚数范围内,负数是有对数的。

-------------------------------------------------------------------------------------------------------------------------------------

注: 自然对数的底数 e :https://www.guokr.com/article/50264/

细胞分裂现象是不间断、连续的,每分每秒产生的新细胞,都会立即和母体一样继续分裂,一个单位时间(24小时)最多可以得到多少个细胞呢?答案是:当增长率为100%保持不变时,在单位时间内细胞种群最多只能扩大2.71828倍。 数学家把这个数就称为e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值。

-----------------------------------------------------------------------------------------------------------------------------------

3.对数函数
【3.1定义】
函数 叫做对数函数(logarithmic function),其中x是自变量。对数函数的定义域是 。
【3.2函数基本性质】
1、过定点 ,即x=1时,y=0。
2、当 时,在 上是减函数;
当 时,在 上是增函数。

4.对数运算法则(rule of logarithmic operations)
对数运算法则,是一种特殊的运算方法。指 积、商、幂、方根 的对数的运算法则

由指数和对数的互相转化关系可得出:

1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即:

2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即:

3一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即:

4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即:

5.推导

5.对数公式
5.1基本知识

① ;

② ;
③负数与零无对数.
④ * =1;
⑤ ;
5.2恒等式及证明
a^log(a)(N)=N (a>0 ,a≠1)
对数公式运算的理解与推导by寻韵天下(8张)
推导:log(a) (a^N)=N恒等式证明
在a>0且a≠1,N>0时
设:当log(a)(N)=t,满足(t∈R)
则有a^t=N;
a^(log(a)(N))=a^t=N;
证明完毕

==================================================================

㈧ 对数函数的解题技巧

您好。对数函数一些必要的数值要熟练 比如一些常用的乘方立方的值。对于计算题要多做,对数函数十分灵活~

㈨ 解答对数时有什么技巧 对数的解答有技巧没

解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④13m=5 73. (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:ab=N logaN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b.(2)①12-4=16.②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值; 思路二,对指数式的两边取同底的对数,再利用对数式的运算求值 解答解法一∵logax=4,logay=5, ∴x=a4,y=a5, ∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1. 解法二对所求指数式两边取以a为底的对数得 logaA=loga(x512y-13) =512logax-13logay=512×4-13×5=0, ∴A=1. 解题技巧 有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4 设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围. 解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数? 解答∵x>0,y>0,x·y1+lgx=1, 两边取对数得:lgx+(1+lgx)lgy=0. 即lgy=-lgx1+lgx(x≠110,lgx≠-1). 令lgx=t, 则lgy=-t1+t(t≠-1). ∴lg(xy)=lgx+lgy=t-t1+t=t21+t. 解题规律 对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解. ∴Δ=S2+4S≥0,解得S≤-4或S≥0, 故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞). 5 求值: (1)lg25+lg2·lg50+(lg2)2; (2)2log32-log3329+log38-52log53; (3)设lga+lgb=2lg(a-2b),求log2a-log2b的值; (4)求7lg20·12lg0.7的值. 解析(1)25=52,50=5×10.都化成lg2与lg5的关系式. (2)转化为log32的关系式. (3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢? (4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数, 设x=7lg20·12lg0.7能否先求出lgx,再求x? 解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2 =2lg5+lg2·(1+lg5)+(lg2)2 =lg5·(2+lg2)+lg2+(lg2)2 =lg102·(2+lg2)+lg2+(lg2)2 =(1-lg2)(2+lg2)+lg2+(lg2)2 =2-lg2-(lg2)2+lg2+(lg2)2=2. (2)原式=2log32-(log325-log332)+log323-5log59 =2log32-5log32+2+3log32-9 =-7. (3)由已知lgab=lg(a-2b)2 (a-2b>0), ∴ab=(a-2b)2, 即a2-5ab+4b2=0. ∴ab=1或ab=4,这里a>0,b>0. 若ab=1,则a-2b<0, ∴ab=1( 舍去). ∴ab=4, ∴log2a-log2b=log2ab=log24=2. (4)设x=7lg20·12lg0.7,则 lgx=lg20×lg7+lg0.7×lg12 =(1+lg2)·lg7+(lg7-1)·(-lg2) =lg7+lg2=14, ∴x=14, 故原式=14. 解题规律 ①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3). ②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6 证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0); (2)logab·logbc=logac; (3)logab=1logba(b>0,b≠1); (4)loganbm=mnlogab. 解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证. (2)中logbc能否也换成以a为底的对数. (3)应用(1)将logab换成以b为底的对数. (4)应用(1)将loganbm换成以a为底的对数. 解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN, ∴b=logcNlogca.∴logaN=logcNlogca. (2)由(1)logbc=logaclogab. 所以logab·logbc=logab·logaclogab=logac. (3)由(1)logab=logbblogba=1logba. 解题规律 (1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab. 7 已知log67=a,3b=4,求log127. 解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢? 解答已知log67=a,log34=b, ∴log127=log67log612=a1+log62. 又log62=log32log36=log321+log32, 由log34=b,得2log32=b. ∴log32=b2,∴log62=b21+b2=b2+b. ∴log127=a1+b2+b=a(2+b)2+2b. 解题技巧 利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧 8 已知x,y,z∈R+,且3x=4y=6z. (1)求满足2x=py的p值; (2)求与p最接近的整数值; (3)求证:12y=1z-1x. 解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答? 解答(1)解法一3x=4y log33x=log34y x=ylog34 2x=2ylog34=ylog316, ∴p=log316. 解法二设3x=4y=m,取对数得: x·lg3=lgm,ylg4=lgm, ∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4. 由2y=py, 得 2lgmlg3=plgmlg4, ∴p=2lg4lg3=lg42lg3=log316. (2)∵2=log39<log316<log327=3, bdsfid="114" ∴log32716<log3169,∴p-2="" 而2716<169,="" p-2="log316-log39=log3169," 又3-p="log327-log316=log32716," ∴2<p 3-p. ∴与p最接近的整数是3. 解题思想 ①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢? ②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+, ∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6, 所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm, 故12y=1z-1x. 解法二3x=4y=6z=m, 则有3=m1x①,4=m1y②,6=m1z③, ③÷①,得m1z-1x=63=2=m12y. ∴1z-1x=12y. 9 已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1). 解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab? 解答logma+b3=logm(a+b3)212=</log316

阅读全文

与对数函数解题技巧与方法相关的资料

热点内容
ktm检测方法 浏览:151
十合一正确使用方法 浏览:579
两个薄膜水泵连接方法 浏览:54
邮件发送图片方法 浏览:332
西瓜酱怎么调制方法 浏览:706
蒸汽烟怎么使用方法 浏览:143
肝郁结最好的锻炼方法 浏览:692
线雕的使用方法有哪些 浏览:349
嘴唇烫伤用什么方法好的最快 浏览:650
电信卡手机充值方法 浏览:51
视频卖货方法 浏览:578
治疗黄褐斑用什么方法好 浏览:359
手机铃声卡顿的维修方法 浏览:790
研究动植物的辨认方法 浏览:901
用煮方法的菜的图片 浏览:566
家电给手机充电方法 浏览:532
用什么方法消灭皮肤螨虫 浏览:292
小摄像头安装方法 浏览:360
密封件硫化产能测量方法 浏览:56
芹菜豆苗种植方法 浏览:35