导航:首页 > 方法技巧 > 钼测定方法快速

钼测定方法快速

发布时间:2022-07-24 23:27:40

⑴ 土壤有效钼的测定注意事项有哪些

注意事项:

1.蒸发溶液要小心,防溅,近干时要小心,100ml溶液可以分几次加入烧杯。
2.在马福炉中温度不得超过550度,防止Mo损失。
3.在用盐酸溶解灼烧过的残渣时,其中碳酸盐会剧烈反应放出CO2,可能引起溅出损失,可以先加少量水于烧杯中:再少量多次地将盐酸加入,盐酸的加入量要一致,因为还原和显色反应都要求一定的酸度,酸度太高时,钼容易进一步还原为三价,而三价钼的络合物是无色的。酸度过低则显色慢,酸度变化对颜色稳定性影响大。
4.Mo2+与CNS-生成Mo(CNS)5,如果反应条件不同,会生成颜色较浅的其它络给物,所以反应条件要严格控制,HCl浓度控制在3 ~ 6%,最好为5%;KCNS浓度控制在0.8 ~ 2.4%,最好为1.6%。
5,在盐酸溶液中,生成有色络合物的金属元素较多,一些金属络合物也会同时被有机溶剂萃取。如果钨、钒含量较高,要先加入柠檬酸络合以除去钨鲰钒等元素及部分过量铁。一些样品中这些元素量很少,可以省去这一步。
6.加入试剂的顺序不能变动,必须先加KCNS溶液,然后加SnCl2,如果先加SnCl2,则会 弹成钼的含氯化合物如K2(MoOCl5)、K2(Mo02Cl3)等,再加人KCNS也很难生成Mo(CNS)5,降低了溶液的颜色。
7.六价铝还原为五价后,如溶液中有二价铁,可使Mo5+稳定而不致还原为M03+
,增加了Mo(CNS)5的颜色强度和稳定性,过量的SnCl2在Fe2+不存在时,将引起Mo(CNS)5较快褪色,所以标准溶液在进行显色测定时,也要加入少量铁,加入的量应大于溶液含钼量。一般样品溶液中都含有多于Mo含量的数,所以不必另加。
8.有些样品溶液(如酸性红壤等)含有很多铁,.按操作步骤用SnCl2还原时,不能将Fe3+一次还原为Fe2+,使整个溶液仍为Fe(CNS)3的血红色,遇此情况,,应增加SnCl2用量,至红色消失;也有人在用有机试剂萃取后,再加一些SnCl2还原Fe3+去除红色。
9,钼的络合物在有机溶剂中稳定而在水中不太稳定,所以显色后应立即用有机试剂萃取。萃取剂除角异戊醇外,还可用醋酸乙酯、醋酸丁酯、乙醚等。因异戊醇比重小于水,为了萃取操作方便,可加入四氯化碳(1:1)以增加比重。萃取剂最好先用KCNS和SnCl2振荡饱和,再分离去后使用,以保证测定结果不受影响。
10.萃取振荡不要过分剧烈,否则易形成乳浊液不易分离。所得有机相中、仍有微小水滴,增加浊度影响比色,若发生此情况,应先离心分离去水滴,然后比色测定。
11.萃取后应尽快比色,一般颜色可稳定l小时车右。据测定:某一样品显色后立即测,回
收率为95 ~ 98%,过30分钟以后测,回.收率饵85 ~ 89%。
12.一般样品含钼量都很低,而实验室中常常用到许多钼试剂,如钼酸铵等,所以必须注意防止污染干扰,器皿要充分洗净。同时做空白。

⑵ 钼精矿化学分析方法

钼精矿化学分析方法包括12个部分:
1.钼量的测定 钼酸铅重量法
2.二氧化硅量的测定 硅钼蓝分光光度法、重量法
3.砷和锑量的测定 原子荧光光谱法
4.锡量的测定 原子荧光光谱法
5.磷量的测定 磷钼蓝分光光度法
6.铜、铅、铋、锌量的测定 火焰原子吸收光谱法
7.氧化钙量的测定 火焰原子吸收光谱法
8.钨量的测定 硫氰酸盐分光光度法
9.铁量的测定 火焰原子吸收光谱法
10.钾量和钠量的测定 火焰原子吸收光谱法
11.铼量的测定 硫氰酸盐分光光度法
12.油和水分总含量的测定 重量法

具体的买本书看吧

⑶ 谁知道用723分光光度计测定钼的计算方法什么详细点好最好~谢谢了~~~~

1 主题内容与适用范围本标准规定了用过硫酸钾(或硝酸-高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。总磷包括溶解的、颗粒的、有机的和无机磷。本标准适用于地面水、污水和工业废水。取25mL试料,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。在酸性条件下,砷、铬、硫干扰测定。2 原理在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。3 试剂本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。3.1 硫酸(H2SO4),密度为1.84g/mL。3.2 硝酸(HNO3),密度为1.4g/mL。3.3 高氯酸(HClO4),优级纯,密度为1.68g/mL。5.4 硫酸(H2SO4),1+1。3.5 硫酸,约c(1/2H2SO4)=1mo1/L:将27mL硫酸(3.1)加入到973mL水中。3.6 氢氧化钠(NaOH),1mo1/L溶液:将40g氢氧化钠溶于水并稀释至1000mL。3.7 氢氧化钠(NaOH),6mo1/L溶液;将240g氢氧化钠溶于水并稀释至1000mL。3.8 过硫酸钾,50g/L溶液:将5g过硫酸钾(K2S2O8)溶解干水,并稀释至100mL。3.9 抗坏血酸,100g/L溶液:溶解10g抗坏血酸(C6H8O6)于水中,并稀释至100mL。此溶液贮于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。3.10 钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100mL水中。溶解0.35g酒石酸锑钾[KSbC4H4O7· 1 H2O]于100mL水中。在不断搅拌下把钼酸铵溶液徐徐加到300mL硫酸(3.4)中,加酒石酸锑钾溶液并且混合均匀。此溶液贮存于棕色试剂瓶中,在冷处可保存二个月。3.11 浊度一色度补偿液:混合两个体积硫酸(3.4)和一个体积抗坏血酸溶液(3.9)。使用当天配制。3.12 磷标准贮备溶液:称取0.2197±0.001g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移至1000mL容量瓶中,加入大约800mL水、加5mL硫酸(3.4)用水稀释至标线并混匀。1.00mL此标准溶液含50.0μg磷。本溶液在玻璃瓶中可贮存至少六个月。3.13 磷标准使用溶液:将10.0mL的磷标准溶液(3.12)转移至250mL容量瓶中,用水稀释至标线并混匀。1.00mL此标准溶液含2.0μg磷。使用当天配制。3.14 酚酞,10g/L溶液:0.5g酚酞溶于50mL95%乙醇中。4 仪器实验室常用仪器设备和下列仪器。4.1 医用手提式蒸气消毒器或一般压力锅(1.1~1.4kg/cm2)。4.2 50mL具塞(磨口)刻度管。4.3 分光光度计。注:所有玻璃器皿均应用稀盐酸或稀硝酸浸泡。5 采样和样品5.1 采取500mL水样后加入1mL硫酸(3.1)调节样品的pH值,使之低于或等于1,或不加任何试剂于冷处保存。注:含磷量较少的水样,不要用塑料瓶采样,因易磷酸盐吸附在塑料瓶壁上。5.2 试样的制备:取25mL样品(5.1)于具塞刻度管中(4.2)。取时应仔细摇匀,以得到溶解部分和悬浮部分均具有代表性的试样。如样品中含磷浓度较高,试样体积可以减少。6 分析步骤6.1 空白试样按(6.2)的规定进行空白试验,用水代替试样,并加入与测定时相同体积的试剂。6.2 测定6.2.1 消解6.2.1.1 过硫酸钾消解:向(5.2)试样中加4mL过硫酸钾(3.8),将具塞刻度管的盖塞紧后,用一小块布和线将玻璃塞扎紧(或用其他方法固定),放在大烧杯中置于高压蒸气消毒器(4.1)中加热,待压力达1.1kg/cm2,相应温度为120℃时、保持30min后停止加热。待压力表读数降至零后,取出放冷。然后用水稀释至标线。注:如用硫酸保存水样。当用过硫酸钾消解时,需先将试样调至中性。6.2.1.2 硝酸-高氯酸消解:取25mL试样(5.1)于锥形瓶中,加数粒玻璃珠,加2mL硝酸(3.2)在电热板上加热浓缩至10mL。冷后加5mL硝酸(3.2),再加热浓缩至10mL,放冷。加3mL高氯酸(3.3),加热至高氯酸冒白烟,此时可在锥形瓶上加小漏斗或调节电热板温度,使消解液在锥形瓶内壁保持回流状态,直至剩下3~4mL,放冷。加水10mL,加1滴酚酞指示剂(3.14)。滴加氢氧化钠溶液(3.6或3.7)至刚呈微红色,再滴加硫酸溶液(3.5)使微红刚好退去,充分混匀。移至具塞刻度管中(4.2),用水稀释至标线。注:①用硝酸-高氯酸消解需要在通风橱中进行。高氯酸和有机物的混合物经加热易发生危险,需将试样先用硝酸消解,然后再加入硝-酸高氯酸进行消解。②绝不可把消解的试作蒸干。③如消解后有残渣时,用滤纸过滤于具塞刻度管中,并用水充分清洗锥形瓶及滤纸,一并移到具塞刻度管中。④水作中的有机物用过硫酸钾氧化不能完全破坏时,可用此法消解。6.2.2 发色分别向各份消解液中加入1mL抗坏血酸溶液(3.9)混匀,30s后加2mL钼酸盐溶液(3.10)充分混匀。注:①如试样中含有浊度或色度时,需配制一个空白试样(消解后用水稀释至标线)然后向试料中加入3mL浊度——色度补偿液(3.11),但不加抗坏血酸溶液和钼酸盐溶液。然后从试料的吸光度中扣除空白试料的吸光度。②砷大于2mg/L干扰测定,用硫代硫酸钠去除。硫化物大于2mg/L干扰测定,通氮气去除。铬大于50mg/L干扰测定,用亚硫酸钠去除。6.2.3 分光光度测量室温下放置15min后,使用光程为30mm比色皿,在700nm波长下,以水做参比,测定吸光度。扣除空白试验的吸光度后,从工作曲线(6.2.4)上查得磷的含量。注:如显色时室温低于13℃,可在20~30℃水花上显色15min即可。6.2.4 工作曲线的绘制取7支具塞刻度管(4.2)分别加入0.0,0.50,1.00,3.00,5.00,10.0,15.0mL磷酸盐标准溶液(3.14)。加水至25mL。然后按测定步骤(6.2)进行处理。以水做参比,测定吸光度。扣除空白试验的吸光度后,和对应的磷的含量绘制工作曲线。7 结果的表示总磷含量以C(mg/L)表示,按下式计算:式中:m——试样测得含磷量,μg;V——测定用试样体积,mL。8 精密度与准确度8.1 十三个实验室测定(采用6.2.1.1消解)含磷2.06mg/L的统一样品8.1.1 重复性实验室内相对标准偏差为0.75%。8.1.2 再现性实验室间相对标准偏差为1.5%。8.1.3 准确度相对误差为+1.9%。8.2 六个实验室测定(采用6.2.1.2消解)含磷量2.06mg/L的统一样品。8.2.1 重复性实验室内相对标准偏差为1.4%。8.2.2 再现性实验室间相对标准偏差为1.4%。8.2.3 准确度相对误差为1.9%。质控样品主要成分是乙氨酸(NH2CH2COOH)和甘油磷酸钠()。

⑷ 垂直电极-发射光谱法测定银、硼、锡、钼、铅

方法提要

试样以焦硫酸钾、氟化钠、三氧化二铝和碳粉混合物作缓冲剂,锗作内标元素,于平面光栅摄谱仪上,用垂直电极、对电极进行两次重叠摄谱(截取曝光),谱板在自动测微光度计上测量各元素谱线黑度,并自动扣除分析线和内标线各自的背景黑度,采用内标法计算得到试样中银、硼、锡、钼、铅的含量。

方法适用于水系沉积物、土壤和岩石中银、硼、锡、钼、铅的测定。

方法检出限(3s):银0.01μg/g;硼0.5μg/g;锡0.2μg/g;钼0.1μg/g;铅0.2μg/g。

方法测定范围:见表84.50。

仪器及材料

摄谱仪WP-1型光栅摄谱仪。

自动测微光度计GBZ-1型。

电极规格上电极为平头柱状,直径4mm,长10mm;下电极为细颈杯状,孔径3.8mm,孔深4.0mm,壁厚0.6mm,细颈的直径2.6mm,颈长4mm。

感光板天津Ⅰ型光谱感光板,将9cm×24cm感光板裁成两块9cm×12cm感光板放置在9cm×24cm暗盒中。

自动玛瑙研钵。

试剂

焦硫酸钾(光谱纯)。

氟化钠(光谱纯)。

三氧化二铝(光谱纯)。

碳粉(光谱纯)。

二氧化锗(光谱纯)。

二氧化硅(光谱纯)。

三氧化二铁(光谱纯)。

白云岩。

硫酸钾(光谱纯)。

硫代硫酸钠。

无水亚硫酸钠。

冰乙酸。

硫酸铝钾。

米吐尔。

对苯二酚。

无水碳酸钠。

溴化钾。

硼酸。

蔗糖溶液20g/L,(1+1)乙醇溶液。

缓冲剂按(22+20+43+14+0.007)的比例称取22gK2S2O7、20gNaF、43gAl2O3、14g碳粉、0.007gGeO2,将其混合研磨均匀。

基物合成标准基物按(72+15+4+4+2.5)的比例称取72gSiO2、15gAl2O3、4gFe2O3、4g白云岩、2.5gK2SO4。混合基物在950℃灼烧,冷却后磨匀备用。所用基物均应进行相应的空白实验,验证所含测定元素的含量较低时才能被采用。

标准系列的配制:标准系列中被测定元素均以稳定的氧化物或含氧盐形式加入到基物中充分磨匀而成。标准系列中各元素的含量见表84.49。

表84.49 标准系列的元素含量(单位:μg·g-1)

①标准基物中含有痕量被测元素,其含量已经过多种灵敏可靠的方法进行定值,故本系列中的前几级的含量值均是经过相应校正后的数值。

显影液A液称取11.5g米吐尔、275gNa2SO3、57.5g对苯二酚溶于5000mL水中,摇匀,储存于棕色玻璃瓶中在暗房内保存。

显影液B液称取230gNa2CO3、35gKBr溶于5000mL水中,摇匀,储存于棕色玻璃瓶中在暗房内保存。

定影液称取1200gNa2S2O3、75gNa2SO4、240mL(28+72)HAc、38.5gH3BO3和75g硫酸铝钾溶于5000mL水中,摇匀,储存于棕色玻璃瓶中在暗房内保存。

校准曲线

分别称取0.2000g标准系列和0.2000g缓冲剂置于自动玛瑙研钵中研磨2min后再装入两根下电极中,滴加2滴蔗糖溶液,90℃烘干备测定用。

发射光谱仪摄谱条件。中间波长290nm,狭缝12μm,垂直电极架,交流电弧,4A起弧,5s后电流升至14A,每根电极截取曝光时间35s,两根电极重叠摄谱。

显影和定影条件。显影液A液、B液按体积比(1+1)混合,显影温度20℃。测定硼、锡、铅元素感光板(短波位置)显影3.5s;测定银、钼元素感光板(长波位置)显影2.5s。

将显影后的光谱感光板立即放入定影液中定影15min。

测光。用GBZ-1型自动测微光度计对表84.50所列分析线对进行相对黑度测定并自动处理数据,自动扣除分析线和内标线的背景。测定时每条谱带要调焦。

表84.50 分析线对及测定线性范围

以银、硼、锡、钼、铅量的lgC为横坐标,黑度差ΔP为纵坐标,绘制各元素校准曲线。

分析步骤

称取0.2g(精确至0.0001g)试样(粒径小于0.075mm)和0.2000g缓冲剂置于自动玛瑙研钵中研磨2min,将试样与缓冲剂混匀,装入两根下电极中,滴加2滴蔗糖溶液,90℃烘干备测定用。

与校准曲线的标准系列同批操作,依次对各试样进行两次重叠摄谱、相板处理及相对黑度测定,测量时每条谱带要调焦。在校准曲线上查得试样中各元素的含量,并打印分析结果。含量超过校准曲线范围的可再用缓冲剂按比例冲稀,再重新按测定步骤进行。

⑸ 合金中钼的比色法测定

用硫氰酸铵显色法

⑹ 一般钼矿石和化探样品中钼的物相分析

方法提要

本分析系统可测定辉钼矿、钼华和铁钼华,褐铁矿吸附包裹的钼也列入钼华中。方法采用氨水⁃Na2CO3溶液浸取钼华(氧化物),继用HCl(1+1)浸取铁结合相中Mo(包括铁钼华),残渣中测定硫化钼,方法适用于钼矿石和化探样品中钼的物相分析。分相后选用高灵敏的方法测定钼。分析流程见图1.32。

图1.32 钼矿石中钼的物相分析流程

试剂配制

氨水⁃Na2CO3混合溶液 称20g Na2CO3溶于120mL 水中,加100mL NH4OH,混匀。

钼标准溶液 称取0.075g 经500~525℃烘1h 的纯MoO3溶于少量 NaOH 溶液中,用H2SO4酸化后移入1000mL容量瓶中,以水定容,此溶液含50μg/mL Mo。

分析步骤

(1)氧化物相钼的测定。称取0.5~2.0g试样于 250mL 锥形瓶中,加入70mL NH4OH⁃Na2CO3混合溶液,塞上带有50cm长的玻璃管的橡皮塞,水浴浸取2h(钼钨钙矿较少时可延长至4h)。过滤于100mL容量瓶中,用水洗锥形瓶2~3次,洗残渣3~4次。滤液测定Mo,残渣保留,用于测定下一项。

(2)铁结合相钼的测定。将上述不溶残渣转入原锥形瓶中,加入50mL HCl(1+1),置于沸水浴上浸取15min,取下。用中速滤纸加纸浆过滤于100mL容量瓶中,用HCl(2+9g)洗锥形瓶2~3次,洗残渣3~4次。滤液测定Mo,残渣保留,用于测定下一项。

(3)硫化钼相钼的测定。将浸取结合相的残渣连同滤纸放入刚玉坩埚中,在电热板上炭化后,置于马弗炉中,于400~500℃下灼烧20min,取出,加入5g Na2O2,混匀,在马弗炉中600~700℃熔融2~5min,取出冷却,放在250mL烧杯中,加30mL热水浸取,浸出物于电炉上煮沸25~30min,滤入100mL容量瓶中,加1滴酚酞指示剂,以下同分相后Mo的测定。

(4)分相后钼的测定。滤液定容后,分取部分试液于50mL容量瓶中,加1滴酚酞指示剂,用H2SO4(1+1)中和,从无色经红色至无色。待溶液冷却,再加10mL H2SO4(1+1),用水稀释至25mL左右,加0.5mL10g/LCuSO4溶液、2.5mL 100g/L 硫脲溶液、1.5mL 10g/L抗坏血酸溶液、5mL 500g/LKCNS溶液,以水定容。6min后,在波长460nm处,用1cm或2cm吸收皿测定吸光度。

工作曲线:取含0、20、50、100……250μg Mo标准溶液于50mL容量瓶中,加10mL H2SO4(1+1),用水稀释至25mL左右,以下同上述进行。

注意事项

(1)存在干扰离子时,可在调整酸度后加入适量掩蔽剂,如W可加入4g柠檬酸,Bi、Sb可加入2g酒石酸,Sn可加入10mL饱和草酸溶液掩蔽。

(2)如Mo含量超过工作曲线时,可分取溶液用试剂空白稀释再进行比色测定。

(3)低含量Mo可用催化极谱法测定。

⑺ 矿石中的钼如何测定

比色法就是把钼反应成溶液状态,再加点辅助试剂,放在一个有比色板的板上靠颜色的深浅判断钼的含量。除了这个还有吸光法,这个好像更准确

⑻ 测定方法

铼通常采取光度法、极谱法和ICP-MS法等进行测定。

光度法测铼的试剂很多,特别是三苯甲烷、噻嗪、吖啶类染料以及肟类、含硫基的有机试剂等均能与Re7+或Re4+形成有色配合物,大部分可被有机溶剂所萃取,一定量的钼不干扰测定。经萃取分离后的有机相有很深的颜色并与浓度成正比,可直接进行铼的光度法测定。

有关试剂的测试条件及灵敏度列于表62.19中。

表62.19 一些光度法测定铼的灵敏度比较

续表

肟类有机显色剂需预先将ReO-4与其他元素分离,再以氯化亚锡还原为Re(Ⅳ),然后显色测定。

62.5.3.1 萃取分离-硫氰酸盐光度法

方法提要

试样经氧化镁烧结分解,水浸取,大量Fe、Mo、W、Nb、V、Ca、Mg、Al、Bi、Mn、Ag、Zn、Ni、Co、Cr、Sn、Cu、Te等不进入溶液或不干扰铼的测定。在酒石酸存在下,调节pH8~9,用氯化四苯胂-三氯甲基烷萃取分离高铼酸,可进一步分离V、W、Mo、Nb、Cu、Cr等干扰离子。

将三氯甲烷分出后置水浴上蒸干,以6mol/LHCl溶解高铼酸盐,以二氯化锡还原,硫氰酸盐显色,乙酸丁酯萃取,有机相于分光光度计430nm波长处,测量吸光度测定铼量。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定,也适用于钨矿石中铼量的测定。测定范围w(Re):(1~300)×10-6

仪器

分光光度计。

试剂

氧化镁。

酒石酸。

盐酸

过氧化氢。

氢氧化铵。

三氯甲烷。

乙酸丁酯。

碳酸氢钠溶液(100g/L)。

氯化四苯胂(TPAC)溶液(20g/L)。

氯化钠溶液(100g/L)。

硫氰酸钾溶液(250g/L)。

二氯化锡溶液(350g/L)在(1+1)HCl中投入一定量颗锡粒,贮于棕色瓶中。

铼标准储备溶液ρ(Re)=50.0μg/mL称取10.00mg高纯金属铼于100mL烧杯中,加20mL(1+1)氢氧化铵,5mLH2O2,置水浴上溶解并蒸干,加少量水温热溶解,移入200mL容量瓶中,用水稀释至刻度,混匀。

铼标准溶液ρ(Re)=5.0μg/mL用水稀释铼标准储备溶液制得。

酚酞指示剂(10g/L)乙醇溶液。

校准曲线

曲线A:分取0mL、0.50mL、1.00mL、1.50mL、2.00mL铼标准溶液。曲线B:分取0mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL、6.00mL铼标准溶液,分别置于一组25mL带塞比色管中,补加水至8mL,加8mLHCl、混匀。加入1.5mLKSCN溶液,1.5mLSnCl2溶液(每加一次试剂都混匀),放置20min后,加入6.0mL(曲线A)或10.0mL(曲线B)乙酸丁酯,振摇15min,放置分层后,取有机显色液于分光光度计上,在波长430nm处,用3cm(曲线A)或2cm(曲线B)比色皿,以乙酸丁酯作参比测量吸光度,绘制校准曲线。

分析步骤

根据铼的含量,称取0.1~2g(精确至0.0001g)试样。铼量小于5×10-6,称取2g;5×10-6~30×10-6,称取1g;30×10-6~60×10-6,称取0.5g;大于60×10-6,则称取0.1~0.3g。也可用萃取剂体积进行调节。将试样置于预先盛有2gMgO的20mL瓷坩埚中(称取1g试样增加2gMgO),搅拌均匀,再覆盖约0.5gMgO,置于高温炉中由低温逐渐升温至(630±20)℃保持2h,取出冷却。

将烧结物倒入已盛有4~5滴H2O2的100mL烧杯中,以热水洗坩埚数次,洗液倒入烧杯用水冲稀至50mL体积左右(浸出体积不宜太小,煮沸后体积约有30mL即可),盖上表面皿,置电炉上煮沸10min,再移在低温控温电热板上保温2h,使溶液清澈后取下冷却。沉淀用中速滤纸过滤,滤液以100mL烧杯承接,沉淀用水洗5~6次。

滤液置控温电热板上蒸发至约10mL,加入1g酒石酸,取下,加1滴酚酞指示剂,用(1+1)氢氧化铵中和至溶液变红,用少量水移入已盛有2mLNaHCO3溶液的60mL分液漏斗中,体积控制为20mL,加入1mLTPAC溶液,10mL三氯甲烷,萃取2min,静置分层,用干滤纸条擦净漏斗颈部存在的水珠,小心地将三氯甲烷放入20mL干烧杯中。向水相中再加5mL三氯甲烷,萃取2min,同法将三氯甲烷合并入20mL烧杯中,加入0.1mLNaCl溶液,置沸水浴上蒸干。加入6mL(1+1)HCl,继续置沸水浴上加热5min,取下冷却。用10mL(1+1)HCl将烧杯内溶液移入25mL带塞比色管中,混匀。以下按校准曲线进行测定。

铼含量的计算参见式(62.2)。

62.5.3.2 环己酮萃取分离-α-糠偶酰二肟光度法

方法提要

试样经氧化镁烧结,热水浸取,大部分元素得到分离。微克量的钼、铋、砷、铅、镍等干扰元素,可用环己酮在碱性溶液中萃取分离。微量高铼酸在4.2~5mol/LH2SO4介质中被氯化亚锡还原为四价,四价铼可催化α-糠偶酰二肟的酸解,产生α-糠偶酰二酮。在320nm处有一新吸收峰(加入柠檬酸可促进催化反应),可检出0.005~0.06μg/mLRe。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定,测定范围w(Re):(0.01~100)×10-6

仪器

分光光度计。

试剂

氧化镁。

过氧化氢。

硫酸c(1/2H2SO4)=12.5mol/L。

环己酮。

三氯甲烷。

氢氧化钠溶液(200g/L)。

硫酸钠溶液(100g/L)。

柠檬酸溶液(192g/L)。

α-糠偶酰二肟溶液0.4gα-糠偶酰二肟溶于100mL乙醇。

氯化亚锡溶液称取0.7gSnCl2·2H2O于200mL烧杯中,加约30mL水,边搅拌边缓慢加入42mLH2SO4,待氯化亚锡全部溶解后移入100mL容量瓶中,用水稀释至刻度,混匀。

铼标准储备溶液ρ(Re)=50.0μg/mL称取25.00mg金属铼置于50mL烧杯中,加入5mLHNO3,5mL(1+1)H2SO4,在控温电热板上加热溶解,蒸发至2~3mL,用水吹洗杯壁,再蒸发至硝酸全部除尽。用水移入500mL容量瓶中并稀释至刻度,混匀。

铼标准溶液ρ(Re)=1.0μg/mL用水稀释铼标准储备溶液制备。

校准曲线

分取0.00mL、0.05mL、0.10mL、0.20mL、0.40mL、0.60mL铼标准溶液置于一组50mL分液漏斗中,加入5mLNaOH溶液、5mLNa2SO4溶液、10mL环己酮,萃取1min,静置分层后弃去水相。往有机相中加10mL水和10mL三氯甲烷,反萃取1min,分层后弃去有机相。水相放入50mL烧杯中,加0.5mL12.5mol/LH2SO4、数滴过氧化氢,置水浴上蒸发至1~2mL,反复加过氧化氢至黄色褪去,用水吹洗杯壁,蒸发至水分及过氧化氢完全逸出。

取下冷却,加2.5mL水、1mL柠檬酸溶液,用少量水将溶液移入10mL比色管中,加2mL2.5mol/LH2SO4,冷却,加2.5mLα-糠偶酰二肟溶液、1.5mLSnCl2溶液,用水稀释至刻度,混匀,放置过夜(温度应不低于20℃),次日于分光光度计上,在波长380nm处测量吸光度,绘制校准曲线。

分析步骤

称取0.5~1g(精确至0.0001g)试样,置于已盛有3gMgO的瓷坩埚中,搅匀,再覆盖约1g,置高温炉中由低温升至700℃保持2h,取出冷却。用热水浸取,加数滴过氧化氢,煮沸30min,用中速滤纸过滤于100mL容量瓶中,用水洗烧杯及沉淀数次,并稀释至刻度,混匀。

分取20.00mL上述溶液于100mL烧杯中,在控温电热板上蒸发至近干,取下,加入5mLNaOH溶液,5mLNa2SO4溶液,移入50mL分液漏斗中,总体积为10mL左右。向分液漏斗中加10.0mL环己酮,萃取1min,以下按校准曲线进行测定。

铼含量的计算参见式(62.1)。

注意事项

烧结过程中,应经常开启炉门,以便充分氧化。

62.5.3.3 苯萃取-丁基罗丹明B光度法

方法提要

试样经氧化镁烧结,热水浸取。在2~3mol/LH3PO4介质中,高铼酸与丁基罗丹明B形成橙红色配合物,可用苯萃取铼的有色配合物,最大吸收峰在565nm波长处,摩尔吸光系数为4×104,借以进行光度法测定。本方法适用于稀有和有色金属等一般矿石和岩石中铼量的测定。测定范围w(Re):(1~300)×10-6

仪器

分光光度计。

试剂

氧化镁。

磷酸。

氢氧化铵。

苯。

丁基罗丹明B溶液0.1g丁基罗丹明B溶于100mL水中。

铼标准溶液ρ(Re)=5.0μg/mL配制见62.5.3.1萃取分离-硫氰酸盐光度法。

校准曲线

分取0mL、1.00mL、2.00mL、3.00mL、4.00mL铼标准溶液于一组25mL比色管中,加4mL(1+1)H3PO4,加水稀释至10mL,加入1mL丁基罗丹明B溶液,混匀。准确加入5.0mL苯,萃取1min,静置分层后,在分光光度计上,于560nm波长处,用1cm比色皿测量吸光度,绘制校准曲线。

分析步骤

根据试样中铼的含量,称取0.5~1g(精确至0.0002g)试样置于事先盛有3gMgO的瓷坩埚中,充分搅匀,表面再盖一层,放入高温炉中,逐渐升高温度650~700℃,保持2h,取出冷却。将烧结物移入150mL烧杯中,用40~50mL水浸取,加热煮沸10min,稍冷后进行过滤,用水洗烧杯及滤纸各3次,将滤液加热浓缩至10mL左右,取下稍冷,加4mL(1+1)H3PO4,继续加热蒸发至体积小于10mL,移入25mL比色管中,用水洗烧杯2次,加水稀释至10mL。以下按校准曲线进行测定。

铼含量的计算参见式(62.2)。

注意事项

1)氧化镁纯度对空白影响很大,使用前应进行实验选择。烧结过程中,应稍开启炉门,以充分氧化。

2)显色时的磷酸浓度:铼含量低时,以0.3~1mol/L为宜,大于此酸度,色泽显着降低,小于此酸度,空白稍带颜色,最好控制在0.5~1mol/L。铼含量高时,可提高适当酸度。

3)汞、硝酸根、碘离子,高价锰以及其他氧化剂能与丁基罗丹明B显色,应除去。

4)大于0.1mg的钨、钒和铬影响测定;可分别采用酒石酸、抗坏血酸消除汞、硝酸根、碘离子。

62.5.3.4 催化光度法

方法提要

高铼酸盐可催化氯化亚锡还原碲酸钠成单质碲,在一定时间内所还原的碲量与铼量的浓度成正比,加入保护胶,碲呈棕黑色胶体存在于溶液中,于波长530~570nm,可用作光度法测定。

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

此反应若无高铼酸或其盐类存在时,在相当长的时间内是不会进行的。采用标准加入法,本法可测定0.001~0.1μg/mL铼。

仪器

分光光度计。

试剂

氧化镁。

三氯甲烷。

氢氧化钠溶液(200g/L)。

8-羟基喹啉溶液(25g/L)称取5g8-羟基喹啉于26mL(36+64)乙酸及适量水中,加热使之溶解,用水稀释至200mL。

氯化亚锡溶液(375g/L)称取37.5gSnCl2·2H2O溶于100mLHCl中。

混合液氯化亚锡溶液-500g/L酒石酸-浓盐酸-40g/L聚二烯醇(1+2+2+5)。

碲酸钠(5g/L)称取0.5gNa2TeO4加入5mLHCl及少量水溶解后稀释至100mL。

铼标准溶液ρ(Re)=50.0μg/mL配制见62.5.3.1萃取分离-硫氰酸盐光度法。然后配制铼含量为10.0μg/mL、1.0μg/mL、0.10μg/mL、0.050μg/mL、0.010μg/mL、0.005μg/mL、0.001μg/mL的系列。

酚酞指示剂(10g/L)乙醇溶液。

分析步骤

称取0.2~2g(精确至0.0001g)试样,置于预先铺有0.5~3.0gMgO的瓷坩埚中,充分搅匀,放入高温炉中逐渐升温到650℃,并在此温度下保持2h。取出冷却,用30~40mL热水将内容物移入150mL烧杯中,并洗净坩埚,加盖表面皿,在低温电热板上煮沸15~20min并保温至溶液清澈。取下稍冷,用中速滤纸过滤,用水洗烧杯及沉淀各3~4次,沉淀弃去。滤液收集在100mL烧杯中,在电热板上蒸发至5mL左右,将溶液移入50mL分液漏斗中(如有白色沉淀,可用小张滤纸或玻璃棉过滤除去),加入1滴酚酞,如溶液呈红色,则用(5+95)HCl调至红色恰好褪去,再加入2滴氢氧化钠溶液、1mL8-羟基喹啉溶液,混匀后放置5min。加入8mL三氯甲烷,剧烈振荡0.5min,待静置分层后,放出三氯甲烷。补加2滴氢氧化钠及0.5mL8-羟基喹啉,再加入8mL三氯甲烷,如此进行第二次和第三次萃取,然后再用5mL三氯甲烷萃取2次以除尽残留的8-羟基喹啉。各次有机相均弃去。将水相移入100mL烧杯中,分液漏斗用少量水洗2~3次,将合并的水溶液置低温电热板上蒸发至3~5mL,移入10mL容量瓶中,稀释至刻度,混匀(母液)。

吸取2.0mL母液4份,分别放入10mL比色管中,为A、B、C、D,另再取空白1份为E。再向B、C、D中分别加入相当于试液含铼量的0.7倍、1.4倍、2.1倍的铼标准溶液。向5支比色管中加水使溶液体积各为4.0mL,加入1mL混合液,混匀。放置使5支比色管中溶液的温度一致,分别加入1mL碲酸钠溶液并立即混匀。放置,待溶液出现适当的棕色即可于430~470nm处测量吸光度。测量时应严格控制每支比色管从加入碲酸钠起到比色读数的那一段时间间隔相一致。如室温较低,可置于45℃水浴上显色。

按下式计算试样中铼的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(Re)为试样铼的质量分数,μg/g;mRe为试样中的铼量,μg;m为称取试样的质量,g;a、2a、3a为分别向比色管B、C、D中加入铼标准的质量,μg;A、A1、A2、A3、A0分别为比色管A、B、C、D、E溶液的比色读数。

加入铼标准的量(a)应与试样中铼量比例适当,此值可由该矿区的钼、铼比求得,也可吸取1mL母液作单份比色测定,求得铼的大致含量。

注意事项

铜、汞、锗、锡、铅、锑、铋、砷、钌、锇在100μg内无影响,钼及钨的干扰用酒石酸消除;钼对碲的还原亦有微弱的催化作用,可用硫化物分离后测定或用8-羟基喹啉-氯仿萃取分离钼。硝酸抑制反应,其他酸影响颜色强度,故采用标准加入法。

62.5.3.5 亚硫酸钠底液极谱法

方法提要

试样经氧化镁烧结,水提取,铼呈铼酸盐溶解于溶液中,而留在沉淀中的大部分共生元素分离。在6~10g/LNa2SO3溶液中,铼呈现良好的极谱波,半波电位为-1.59V(对饱和甘汞电极)。铼含量在0.2~4.0μg/mL之间,波高与浓度呈线性关系。

铬大于铼5倍时影响测定。本方法可以测定0.0001%以上的铼。

仪器

示波极谱仪。

试剂

氧化镁。

亚硫酸钠溶液(200g/L)。

铼标准储备溶液ρ(Re)=100.0μg/mL称取0.1000g高纯金属铼置于烧杯中,加入5mLHNO3,置于水浴中加热溶解,然后用5mLHCl逐HNO3,重复3次。蒸发至3mL左右,移入1000mL容量瓶中,用水稀释至刻度,摇匀。用时逐级稀释至所需要的浓度。

校准曲线

取6份烧结过的氧化镁(与试样同时进行),用20mL热水转入100mL烧杯中,分别加入含铼0μg、10μg、20μg、…、200μg的铼标准溶液,煮沸10min,冷却后移入已盛有20mLNa2SO3溶液的一组50mL容量瓶中,用水稀释至刻度,摇匀,放置澄清。分取部分上层清液,置于电解池中,起始电位为-1.3V,用示波极谱进行测定。绘制标准曲线。

分析步骤

称取0.1~2g(精确至0.0001g)试样,置于瓷坩埚中,加入2g粉状氧化镁,充分搅匀,再覆盖一层。置于高温炉中,逐渐升温到700℃烧结2h。取出冷却后,用20mL热水将烧结物移入100mL烧杯中,煮沸10min,以下操作同校准曲线。

铼含量的计算参见式(62.2)。

注意事项

在硫酸-硫酸钠底液中,有硫酸羟胺存在下,铼-碲催化体系既可以用来测定碲,同时可以测定微量铼。此外,在盐酸-二乙基二硫代氨基甲酸钠、硫酸-甲基醛-铜-碲、盐酸-硫氰酸钾-α-糠偶醛二肟等介质中,铼也能产生灵敏的催化波。有的体系灵敏度较高,检测下限能达到0.00xμg/mLRe。

62.5.3.6 硫酸-EDTA-聚乙烯醇-二苯胍底液催化极谱法

方法提要

试样经氧化镁烧结后,水提取,过滤。在硫酸-EDTA-聚乙烯醇底液中,加入适量二苯胍,可使铼的催化波大为提高,检出量可达0.001μg/mL。于电位-0.50V~-0.8V处,作导数极谱图。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定。测定范围w(Re):(0.01~100)×106

试剂

氧化镁。

硫酸。

聚乙烯醇溶液(1g/L)。

二苯胍溶液(1g/L)加1滴(1+1)H2SO4

碲溶液ρ(Te)=10.0μg/mL称取0.2500g金属碲于50mL烧杯中,加10mLHNO3,在水浴上加热溶解,然后加5mLH2SO4,蒸发至3mL,冷却,用水移入250mL容量瓶并稀释至刻度,混匀。再用水稀释至要求浓度。

混合底液称取3g盐酸羟胺,0.6gEDTA,用水溶解后,加40mL(1+1)H2SO4,然后依次加入7.5mL碲溶液、4mL聚乙烯醇溶液、15g抗坏血酸、2mL二苯胍溶液,用水稀释至100mL,混匀。现用现配。

铼标准溶液ρ(Re)=0.50μg/mL配制方法见62.5.3.2环己酮萃取分离-α-糠偶酰二肟光度法。

仪器

极谱仪(带导数部分)。

校准曲线

取0.00mL、0.20mL、0.60mL、1.00mL、4.00mL、8.00mL、12.00mL、16.00mL铼标准溶液或0mL、0.20mL、0.60mL、1.00mL、2.00mL、4.00mL、6.00mL铼标准溶液,分别置于一组50mL烧杯中,置控温电热板上,加热蒸干,加入10.0mL混合底液微热溶解盐类,放置20min后,于极谱仪上,电位-0.5V~-0.8V处,作导数极谱图。绘制校准曲线。

分析步骤

根据试样中铼的含量,称取0.1~1g(精确至0.0001g)试样,置于已盛有2~3gMgO的瓷坩埚中,搅匀后再覆盖一层,置于高温炉中,逐渐升温至700℃,保持2h,取出冷却,置100mL烧杯中,加入30mL热水,加热煮沸5~10min。将溶液过滤于100mL烧杯中,用水洗烧杯和沉淀数次。滤液置控温电热板上加热蒸干,加入10.0mL混合底液微热溶解盐类,以下按校准曲线进行测定。

铼含量的计算参见式(62.2)。

注意事项

1)在烧结过程中,应稍开启炉门,以便充分氧化。

2)铼的催化波在4h内稳定性良好。碲量的多少影响铼催化波的波高,因此底液必须加准,10mL底液中含7.5μg碲为最佳量。二苯胍的加入能促使铼的催化波增高,加入量也应适当,过量反而使波高下降。

62.5.3.7 硫氰酸钾-α-糠偶酰二肟-盐酸底液催化极谱法

方法提要

试样经氧化镁烧结,热水浸取。在0.48mol/LHCl-3g/LSnCl2-0.5g/LKSCN-0.2g/Lα-糠偶酰二肟-!=0.008%丙酮体系中,铼在-0.93V处产生一灵敏的催化波,在0.1~0.8μg/mL铼浓度范围内,峰电流与浓度呈线性关系。本方法适用于稀有、有色金属等一般矿石和岩石中铼含量的测定。测定范围w(Re):(1~100)×10-6

仪器

示波极谱仪。

试剂

氧化镁。

丙酮。

盐酸。

二氯化锡溶液(150g/L)溶于(1+4)HCl。

硫氰酸钾溶液(25g/L)。

α-糠偶酰二肟溶液0.5gα-糠偶酰二肟溶于100mL(5+95)乙醇溶液。

铼标准溶液ρ(Re)=10.0μg/mL称取0.1000g(精确至0.0001g)高纯金属铼于100mL烧杯中,加5mLHNO3,置水浴上溶解,加5~8mLHCl,赶去剩余的硝酸,重复3次,最后剩3mL左右,取下,用水移入1000mL容量瓶中并稀释至刻度,混匀。吸取20.00mL于200mL容量瓶中,用水稀释到刻度,混匀。

校准曲线

分取0mL、0.50mL、1.00mL、1.50mL、2.00mL、3.00mL、5.00mL铼标准溶液,分别置于一组25mL容量瓶中,用水稀释至10mL左右,加入2mL(1+1)HCl、0.5mLSnCl2溶液、0.5mLKSCN溶液、1mLα-糠偶酰二肟溶液、4滴丙酮,用水稀释至刻度,混匀。将溶液倒入电解池中,用示波极谱仪导数部分,-0.93V处测量峰电流,绘制校准曲线。

分析步骤

称取0.5~2g(精确至0.0001g)试样,置于预先盛有3~5gMgO的瓷坩埚中,充分搅匀,表面再覆盖一层,置高温炉中,从低温逐渐升至700℃并保持2h,取出冷却。将烧结物移入100mL烧杯中,用40mL热水浸取并煮沸3~5min,冷却。移入50mL容量瓶中,用水稀释至刻度,混匀,放置澄清。

分取5.0~10.0mL清液于25mL容量瓶中,加入2mL(1+1)HCl,以下按校准曲线进行测定。

铼含量的计算参见式(62.1)。

注意事项

1)在烧结过程中,应稍开启炉门,以便充分氧化。

2)每加一种试剂均须混匀,低价铼只有在低酸度介质中与α-糠偶酰二肟、硫氰酸盐形成电活性配合物,可允许一定量EDTA、酒石酸、草酸等存在。

62.5.3.8 电感耦合等离子体质谱法

方法提要

采用氧化镁半熔法、过氧化钠熔融-丙酮萃取法或硝酸分解法处理试样,等离子体质谱法测定铼。一般ICP-MS的仪器检出限为0.001ng/mL,根据各种前处理方法的稀释倍数,并考虑到基体、空白等因素,对试样的测定限为w(Re):(0.2~2)×10-6

仪器

等离子体质谱仪。

试剂

氧化镁。

过氧化钠。

丙酮。

硝酸。

过氧化氢。

氢氧化钠溶液(250g/L)。

铼标准储备溶液ρ(Re)=100.0μg/mL称取0.14406g高纯铼酸铵(NH4ReO4)置于烧杯内,溶于水中,移入1000mL容量瓶内,用水稀释至刻度,摇匀。

铼标准溶液ρ(Re)=20.0ng/mL由铼标准溶液稀释配制。

铱内标溶液ρ(Ir)=20.0ng/mL。

分析步骤

(1)试样处理

a.氧化镁半熔法。称取0.5g(精确至0.0001g)试样置于瓷坩埚中,加入1.5gMgO,搅拌均匀,再覆盖0.5g,放入高温炉,逐渐升温至700℃,焙烧时炉门开一缝,使加入空气以促进铼的氧化。保持1h后,取出冷却,将坩埚内半熔物转入150mL烧杯中,用50mL热水浸取。煮沸1h,冷却。转入50mL容量瓶,用水稀释至刻度,摇匀,放置。取上清液干过滤后上机测定。

b.过氧化钠熔融-丙酮萃取法。称取0.5g(精确至0.0001g)试样,置于高铝坩埚中,加入3gNa2O2,搅匀,再覆盖一层,置于高温炉中,在700℃熔融10min,取出冷却,将坩埚置于烧杯中,加30mL热水提取,洗出坩埚,冷却后将碱性试样溶液和沉淀一并转入120mLTeflon分液漏斗中,补加氢氧化钠溶液至浓度约为5mol/L。加入10mL丙酮萃取Re,振荡1min,静止分层(如沉淀太多,需多加氢氧化钠溶液,转入50mL离心管离心,将上清液转入分液漏斗进行分相)。弃去下层水相和沉淀,加2mLNaOH溶液到分液漏斗中。振荡1min,进一步洗去丙酮相中的杂质,弃去下层水相。将丙酮相转入50mL离心管中,离心10min,用滴管取出上部丙酮到已加有2mL水的100mLTeflon烧杯中(这一次离心是为了保证丙酮相不会夹杂碱液,防止以后溶液含盐量过高而导致雾化器堵塞)。在电热板上加热,开始保持约50℃,待丙酮蒸发完后,升高电热板温度到120℃,继续加热溶液至干。用0.5mLHNO3中和溶解残渣。有时HNO3提取液呈黄色,可能是丙酮的降解产物,反复加热近干并滴加H2O2和HNO3,可使溶液清亮无色,最终转入10mL比色管,用水稀释至刻度,摇匀,待上机测定。

c.硝酸分解法(适用于硫化矿物)。称取10~50mg试样,置于小烧杯中,加入5~10mLHNO3,盖上表面皿,于低温电热板加热至沸腾。继续加热至试样逐渐形成白色钼酸沉淀。去盖,继续加热至仅余约0.5mL溶液,加少量水加热,转入10mL比色管,用水稀释至刻度,摇匀。放置澄清后取上清液上机沉淀。

(2)上机测定

选用常规的ICP-MS工作参数继续测定。

测定同位素为185Re,内标为193Ir。以高纯水为低点、铼标准溶液为高点进行仪器校准,然后测定试样溶液。内标溶液在测定空白溶液、标准溶液和试样溶液时由三通导入ICP仪器。

注意事项

1)半熔法在焙烧过程中铼可能有少量挥发损失,结果略偏低,含量很低时可能偏低约10%。

2)半熔法处理试样不可选用187Re作为测定同位素,因为含铼试样中往往含有由铼衰变产生的放射性187Os,会对187Re的测定形成干扰。另两种处理方法因锇已被分离,不存在此问题。

3)用丙酮萃取铼的问题。丙酮与水混溶,当氢氧化钠浓度大于2mol/L时,丙酮与碱溶液分成两相。5mol/LNaOH时分相界面清晰。在碱性介质中大部分金属氢氧化物沉淀而得到分离。试样基体中的Mo、Fe、Ni、Cu、As等元素基本不被萃取。在当前所有Re的溶剂萃取方法中丙酮萃取方法较为简单快速并具有广泛的适用性。只需做一次萃取,不用反萃步骤,就可以把铼从辉钼矿、橄榄岩、玄武岩、黑色页岩、油页岩、黄铁矿、黄铜矿、铬铁矿、毒砂等基体中快速分离。

参 考 文 献

邓桂春,滕洪辉,刘国杰,等 . 2004. 铼的分离与分析研究进展 [J]. 稀有金属,28 ( 4) : 771 -776

邓桂春,臧树良,王永春,等 . 2000. 乙基紫萃取光度法测定铜烟灰中的铼 [J]. 分析化学,28( 8) : 1051

刘峙嵘 . 1997. 高铼酸盐 - 氨氯吡咪盐酸盐萃取光度法测定铼 [J]. 四川有色金属,( 2) : 65 -66

王靖芳,冯彦琳,李慧妍 . 1995. N,N - 二 ( 1 - 甲基庚) 乙酰胺萃取铼的研究 [J]. 稀有金属,19( 3) : 228

王清芳,罗锦超,冯彦琳,等 . 2001. N7301 萃取铼的研究 [J]. 有色金属 ( 冶炼部分) ,29

王顺昌,齐守智 . 2001. 铼的资源、用途和市场 [J]. 世界有色金属,( 2) : 12 -14

王献科,李玉萍,李莉芬 . 2000. 液膜分离富集测定铼 [J]. 中国钼业,24 ( 4) : 38 -41

王小琳,刘亦农,熊宗华 . 1995. 酮类试剂萃取分离铼的研究 [J]. 化学试剂,17 ( 3) : 143 -145

杨子超,王秀山,李运涛,等 . 1988. 氯化三烷基苄基铵萃取分离铼钼的研究 [J]. 西北大学学报,18( 3) : 46 -49

周迎春,刘兴江,冯世红,等 . 2003. 活性炭吸附法分离铼钼的研究 [J]. 表面技术,32 ( 4) : 31

周稚仙,杨俊英 . 1987. 苯并 -15 - 冠 -5 萃取分离铼的研究 [J]. 化学试剂,9 ( 1) : 50

⑼ 循环水中钼酸根离子的检测方法

低含量的都是用比色法,高含量的使用重量法。

阅读全文

与钼测定方法快速相关的资料

热点内容
如何做贺卡很简单的方法 浏览:866
羊绒衫缩绒剂使用方法视频教程 浏览:512
配电箱控制柜的安装方法 浏览:2
吸尘器抽真空使用方法 浏览:65
做人流方法什么好 浏览:974
说话与沟通的方法有哪些 浏览:624
招聘谈钱技巧和方法 浏览:8
怎么补色最快的方法 浏览:380
痛风解决方法有哪些 浏览:363
门牌调换最佳方法 浏览:21
什么方法快速消红 浏览:665
如何运用文学批评方法 浏览:497
小米手机5s输入法在哪里设置方法 浏览:442
通信网络优化的常用方法 浏览:774
数据分析包含哪些方法 浏览:614
88打六折怎么计算方法 浏览:338
藏香的使用方法 浏览:711
41的竖式计算方法 浏览:945
如何快速选择有效的治疗方法 浏览:920
centos安装软件的方法 浏览:289