❶ 求文档: 反函数的定义及性质总结 site:90house.cn
一、反函数的概念
高中数学对函数的研究是以映射的观点来进行的,回顾前面研究映射时我们定义了一个特殊映射.一一映射.
若将某映射f:的对应关系调转,只有一一映射能够保证调转后的对应仍是映射,称这一映射
f-1:为原映射的逆映射.
若将前述一一映射限制在数集到数集上,就可以得到我们这里研究的反函数.
定义:
如果确定函数y=f(x),x∈A的映射f:A→B(f:y=f(x), x∈A)是从A到B上的一一映射,则它的逆映射f-1:B→A(f-1:y→x=f-1(y), y∈B).
所确定的函数y=f-1(x), x∈B称为y=f(x),x∈A的反函数.
二、反函数的性质
1.由定义和f(x)存在反函数的充要条件是它的映射为一一映射.
如f(x)=x2(x∈R)无反函数(非一一),g(x)=x2+1(x≤0)有反函数,因为它是到[1,+∞)上的一一映射.
2.f(x),x∈A和f-1(x), x∈B互为反函数.
3.原函数的定义域是其反函数的值域,原函数的值域是其反函数的定义域.
4.单调函数具有反函数,因为单调一一映射有反函数.
可见函数在区间上具单调性是它有反函数的充分不必要条件.
如函数y=(x≠0), 其反函数与自身相同,但它在(-∞,0)∪(0,+∞)上不具单调性.
5.若b=f(a), 则 a=f-1(b),即(a, b)在函数图象上,则(b, a)在其反函数图像上;反之也对.利用这一点可以把反函数上点的问题转化为研究函数上的点的问题.
6.x∈A, f-1[f(x)]=x; x∈B, f[f-1(x)]=x.
7.原函数与反函数图象关于y=x对称.
8.单调函数的反函数与原函数具有相同的单调性.
奇函数如果有反函数,则其反函数也是奇函数.需要认识到,奇函数不一定有反函数.
如:y=x3-x, 当y=0时x=0, ±1,
这不是一一映射,因此不具有反函数.但偶函数是不是一定没有反函数?如y=f(x),x∈{0}, y∈{0},其图象就是原点.它是偶函数,也具有反函数(即自身).
本文出自:www.90house.cn原文链接:http://www.90house.cn/shuxue/shi/1227.html
❷ 高中数学:反函数到底是个什么东西
主要是要求理解反函数和原函数之间的关系,特别是要理解指数函数和对数函数之间、三角函数和反三角函数之间的关系。
❸ 求反函数详细解释
求反函数的过程为:
先把x看作未知数(y看作常数),解方程,用y表示x;
习惯上改写(x与y互换),从而定义域及值域互换。
详情如图所示:
供参考,请笑纳。
❹ 反函数的定义及性质
反函数定义:
一般地,对于函数y=f(x),设它的定义域为D,值域为A,如果对A中任意一个值y,在D中总有唯一确定的x值与它对应,且满足y=f(x),这样得到的x关于y的函数叫做y=f(x)的反函数,记作x=f-1(y),通常为了与习惯一致,我们对调函数x=f-1(y)中的字母x,y,把它改写成y=f-1(x)。
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性;
(7)定义域、值域相反对应法则互逆(三反);
(4)反函数的认识方法和技巧扩展阅读
反函数求解步骤:
①求出原函数的值域,即求出反函数的定义域
②由y=f(x)反解出x=f-1(y),即把x用y表示出来
③将x,y互换的:y=f-1(x),并写出反函数的定义域
例题:求f(x)=ex-1的反函数f-1(x)的解析式
解:
∵f(x)=ex-1,可知f(x)的值域为(-1,+∞)
已知y=ex-1
可得ex=y+1,即得:x=ln(y+1)
∴f-1(x)=ln(x+1),且x∈(-1,+∞)
❺ 写出一个函数的反函数有什么技巧
把x与y互换,求y‘=f(x'),互换过程中注意定义域,譬如,根号里面大于等于0,分母不为零。满足了就可以了。
❻ 如何求反函数,有什么快捷方式和技巧吗
反函数其实就是把X和Y 换位置 写成“X=” 然后X写成Y,Y写成X 。如果有范围区间那么原来X的范围是现在Y 的范围 用现在Y 的范围求X的范围
❼ 求反函数的思路与解题技巧
求反函数的一般思路,希望对你有帮助。
一、反函数的解题方法有很多种,其中最常用的一种方法是通过y来求x,但是要注意定义域和值域的取值范围。
二、反函数总是相对原函数而言的,原函数如果单调,反函数也单调(当然并不是单调性完全相同),原函数定义域就是反函数的值域,原函数的值域就是反函数的定义域。其他还有周期性,对称性,都要针对原函数来考虑。
三、反函数其实就是把X和Y
换位置
写成“X=”
然后X写成Y,Y写成X
。如果有范围区间那么原来X的范围是现在Y
的范围
用现在Y
的范围求X的范围。
四、方法:画图
利用对称性来解决。
❽ 反函数的题怎么算有什么技巧吗
一、 师:什么是反函数呢?让我们一起来思考这样一个问题:在函数 中,如果当作因变量,把y当作自变量,能否构成一个函数呢?生:可以构成一个函数.师:为什么是个函数呢?生:在y允许取值范围内的任一值,按照法则 → 都有唯一的x与之相应.师;根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数 是存在反函数的.这个反函数的解析式是怎样的呢?生:应该是. 师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x表示自变量,用字母y表示因变量,故这个函数的解析式又可以写成 这样改动之后,带来这样一个问题,即 和 是不是同一函数呢?生:是.师:能具体解释一下吗?生:从函数三要素的角度看, 和 具有相同的定义域和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数.师:既然是相同的,我们就把 称作函数 的反函数,同样,函数y=x-1 2有没有反函呢?生:有.就是 .师:对.也就是说函数 与函数 是互为反函数的.那么,是不是所有函数都会有反函数呢?生:不是所有函数都有反函数.师:能举个例子说明吗?生:如函数 ,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1则x=±1,因此不能构成函数,说明它没反函数.师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.缺图1通过对几个具体函数的研究,了解了什么是反函数,把前面对函数y=2x+1的反函数的研究过程一般化,概括起来就可以得到反函数的定义.由于这个定义比较长,所以我们一起阅读书上相关内容.(板书:(1)反函数的定义)(要求学生打开书第60页第二自然段,请一名同学朗读这一段内容.)为帮助学生理解定义中的描述,教师可以再以一上具体函数为例解释y=f(x)和x=j(y)之间的关系,同时应指出定义中"如果"二字的含义表示不是所有函数都有反函数.) 对于反函数有了初步的了解之后,下面进一步对这个特殊的函数概念作点深入研究.(板书:(2)对概念的理解.)师:反函数的“反”字应当是相对原来给出的函数而言的,那么它们之间有什么关呢?不妨以刚才的两个函数y=2x+1和 为例加以研究.生:对应法则不同.师:能否说得再具体点,怎么不同?生:这两个函数的对应法则中,x与y的位置换位.(研究两函数间的关系应从函数三要素角度入手研究,老师可适当引导学生向三要素靠拢.)师:还有什么联系吗?生:当 的定义域和值域分别是y=2x+1的值域和定义域.师:根据刚才我们的讨论,可以发现反函数的三要素是由原来函数决定的,当给出的函数确定下来后,其反函数的三要素也就确定下来了,可以简记为“三定”.把这种确定关系具体化,也就是反函数的“反”字体现在什么地方呢?生:反函数的定义域就是原来函数的值域;反函数的值域就是原来函数的定义域;反函数的对应法则就是把原来函数对应法则中x与y的位置互换.师:由此我们可以看到反函数的“反”实际体现为“三反”.在这“三反”中,起决定作用的就是x与y的反置,正是由于它们位置的改变,才把相应取值反置,从而引起另外两“反”.(板书:a.“三定”,b.“三反”)师:从函数概念的角度来看,我们明确了原来函数与其反函数间的关系,当然还可以从其它方面入手进行研究,如:一个函数有没有反函数?若有反函数,它的性质如何?与原来函数的性质有什么关系?通过前面几个例子可以发现,上述问题中,原来函数的性质起着决定性作用,而且反函数的性质也与原来函数的性质相关.由于函数和反函数有如此密切的关系,它已成为进一步研究函数的重要方面 .当我们研究某个函数性质时,如果这个函数有反函数,就可以在两者中择其简而研究之,这就增加了函数的研究方法.师:对反函数概念作了较全面认识之后,自然提出这样一个问题:如果一个函数存在反函数,如何去求这个函数的反函数呢?一起看这样二个题目.例1 求 的反函数.生:(板书)解 由 , 得 所以,所求反函数为 (在表述上不规范之处,先暂时不追究,待例2解完之后再一起讲评.)例2 求 的反函数.生:(板书)解 由y= 得 又 所以 故 .师:下面请同学对两个例题的表述作个评价.生:例2所求的反函数是错误的,应为 (x≥2)师:这和黑板上所得的函数有什么不同吗?生:两个函数的定义域分别是x≥1和x≥2,所以是不同的两个函数.师:为什么是 (x≥2)呢?生:因为反函数的定义域应是原来给出函数f(x)的值域,而f(x)的值域应为y≥2,故所求反函数应为 (x≥2).师:说得很好.根据我们对反函数的认识,反函数的定义域就是原来给出函数的值域.所以,要求出反函数的定义域,就必须先求出原来函数的值域.那么例2的求解过程应当怎样调整呢?生:由 得 ,又x≥1,所以 .因为 的值域为 ,所以 (x≥2).师:通过刚才的讨论,我们发现并解决了例2反函数的存在问题,同时也注意到求反函数必须明确指出其定义域,以保证结论的正确性.除此之外,还有什么问题吗?生:为什么没有在例1中求原来所给函数的值域呢?师:请同学们针对这个问题讨论一下.生:因为原来所给的函数的值域是y≠0,这和所求出的反函数的定义域是x≠0为结论是一致的,所以没有出错.师:此题出现的这种结论的一致性,应当说是一种偶然,而不是必然.因此,在求反函数的过程中,必须要求出原来所给函数的值域,并且在最后结果中注明反函数的定义域.那么,例1的规范书写过程应如何调整呢?生:(板书)解 由 ,所以,所求反函数为师:通过刚才对两个具体例子的讨论,能否总结一下求用解析式表达的函数的反函数的基本步骤呢?(板书:2.求反函数的步骤)生:首先从解析式中解出x,其次求出所给函数的值域,最后再改写为习惯的表示形式.师:把这几步用简单的几个字来概括一下:1. 反解:即把解析式看作x的方程,求出反函数的解析式;2. 互换:既求出所给函数的值域并把它改换为反函数的定义域;3. 改写:将函数写成 的形式.(板书:1.反解 2.互换 3.改写.)师:下面通过几个练习来看看同学们是否真正理解这三个基本步骤.三 、巩固练习练习 求下列函数的反函数1. (由一个学生在黑板上完成.)解 由 x=3 2y-2.又f(x)=23x+3,x∈(-∞,3)的值域为 f(x)∈(-∞,4), 所以f-1(x)=32x-2,x∈(-∞,4).2.y=x2-x+1(x≥12)(由一个学生在黑板上完成,两题同时进行,其余学生在笔记本上完成,教师巡视.)解 由 y=x2-x+1,得 x2-x+1-y=0,所以 x=1±4y-32,又 y=x2-x+1(x≥12)的值域为{y|y≥34},所以,f-1(x)1±4x-32(x≥34).(待全体学生完成之后,结合黑板上学生的表述及其它学生解答中出现的问题进行讲评.)师:先看黑板上同学的表述有没有问题,请加以纠正.(一学生在黑板上加以改正)由y=x2-x+1,得 x2-x+1-y=0,所以x=1±4y-32 又x≥12,所以 x=1+4y-32 又y=x2-x+1(x≥12)的值域为{y|y≥34},故所求反函数为y=1+4x-32 (x≥34). 师:经过改正,两个题目在表述上已经没有问题了.下面结合其它同学求解中出现的一些问题,谈几点注意.(1) 求反函数的过程中必有一步是求出原来所给函数的值域.求值域的方法有很多,如果所给函数是常见函数如一次函数、二次函数等,不妨从“形”的角度求值域会比较方便直观.(2) 解关于x的一元二次方程有两个根,必须根据题目所给条件对x进行取舍,保留符合条件的唯一解.(3) 这两个题目在反函数符号的使用上是有区别的,题目给出f(x)这个符号,则反函数可以用f-1(x)来表示,否则只能用文字叙述的形式.四、小结1.反函数是函数中一个重要的概念,它是从研究两个函数关系的角度产生的,因此认识它应从三要素角度进行研究.2.一个函数有没有反函数是由原来给出函数的性质决定的,且反函数的性质也是由原来给出的函数性质决定的.3.求反函数实际上就是办两件事,一是解一个关于自变量x的方程,二是求 一个函数的值域. 五、作业 课本习题P65习题六第3题(1),(3),第4题.课堂教学设计说明反函数这节课是一节概念课,因此这节课的成败关键是反函数概念的建立.反函数是函数中一个特殊现象,对这个概念的研究是对函数概念和函数性质在认识上的深化和得高,所以学生对这个知识的学习是有一定的知识基础和认识基础的,故应以学生的主体参与为主线,且是在教师主导作用下的思维与参与.学生的思维是从问题开始的,因此本节课的起点应是一个有较大思维空间的问题,所以在设计时选择从一个具体函数入手提供研究反函数的原则,让学生在这个原则之下自己选择研究方法,进行探讨,在研究过程中,针对学生出现的障碍,适时、适当加以点拨,将学生思维引向正轨.反函数概念的建立的关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识.在教学设计中,教师采用从具体的例子出发,用学生最熟悉的知识,最明显的事例,帮助学生找到研究方法的角度,再逐步概括抽象出反函数意义,这样也便于分散难点,突出重点.对一个概念的理解往往要通过某种具体的操作来体现,操作的灵活熟练程度也能体现出对概念理解的深度.因此这节课对反函数概念的理解最终是落在求反函数技能的形成和训练上,在设计中教师采用让学生尝试、调整、概括、小结,最终形成求反函数基本步骤.在实践中,鼓励学生大胆尝试,不怕失败,在知识的学习过程中,教训有时比经验更深刻.在这节课的教学设计中,从始至终都尽量让学生能够主动思考问题,提出问题,分析问题并解决问题,在积极活跃的思维过程中,不断提高学生的数学能力和数学素养.
❾ 通俗点讲什么叫反函数
要通俗一点呀,呃,这样定义吧。如果两个函数,互相关于y=x这条直线对称,那么它们互为反函数。例如y=lnx和y=e∧x。这两个函数有个重要特征,那就是定义域和值域互换。