① 快速算平方根的技巧
比较小的数用二分法,大数用以下方法:
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除 256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
一般学生用不着学这个,大部分习题求的平方根都是整数,常用数,需要识记的,学生应当可以适当识记一些常用数的平方根
② 算平方最快方法
平方规律: 在算个位数是5的平方时,记住个位数与十位数不变,永远都是25,而更高的一位是1*(1+1). 可能不大明白,举个例子,15*15=225,25不变,而2是1*(1+1),25*25=625,同样25不变,6是2*(2+1),而且115*115=13225,25不变,11*(11+1)=132。
③ 开平方怎么开笔算最简单的方法
求
平方根
的方法,称为笔算开平方法,用这个方法可以求出任何正数的
算术平方根
,它的计算步骤如下:1.将
被开方数
的
整数部分
从个位起向左每隔两位划为一段,用撇号分开(
竖式
中的11'56),分成几段,表示所求平方根是几位数;2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);3.从第一段的数减去最高位上数的平方(即11-9=2),在它们的差的右边写上第二段数组成第一个
余数
(竖式中的256);4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是
4,即试商是4);5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);6.用同样的方法,继续求平方根的其他各位上的数.按照上面步骤求
,可得到下面左边的竖式:于是得到
如遇开不尽的情况,可根据所要求的精确度求出它的近似值.笔算
开平方运算
较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值.
④ 笔算开平方的最简单的方法
稍为复杂点,给你上个示例吧
⑤ 算平方的最快方法
具体如下:
1、求任意一个两位数的平方
方法:先把这个数看成 5 的倍数与一个小于 5 的数的和(或差)的形式,再用这两个数的平方和加上(或减去)这两个数的积的 2 倍。
2、求任意一个两位数的平方
方法:用这个数加上它的个位数的补数的和乘以它们的差,再用这个积加上这个补数的平方。
3、求一千零几的平方
方法:先写上这个数加上个位数的 2 倍的和,再写上一个 0,最后写上个位数的平方(个位数的平方小于 10,就在它前面补一个 0)。
注意事项:
1、平方米(㎡,英文:square meter),是面积的公制单位。在生活中平方米通常简称为“平米”或“平方”。港台地区则称为“平方公尺”。
2、平方米的单位换算:
1 ㎡(1平方米)= 100 dm²(100平方分米)=10000 cm²(10000平方厘米)=1000000 mm²(1000000平方毫米)= 0.0001公顷=0.000001km² (0.000001平方公里)= 0.01公亩=0.0002471054英亩=0.0000003861平方英里=10.763910417平方英尺=0.0015亩。
⑥ 开平方最简单的方法
开平方的方法如下:
第一步,把被开平方数的整数部分,从个位数起向左,每隔两位数划为一段,分开几段,代表所求的平方根是几根数。
第二步,按照左边第一段里面的数字,求得平方根最高位上的数。
第三步,从第一段的数,减去最高位上数的平方,在它们的差的右边,写上第二段数组成的第一个余数。
第四步,把求得的最高位数乘以二十,去试着除第一个余数,所得的最大整数就是试商。
第五步,用商的最高位数的二十倍加上这个试商,再乘以试商,假设所得的乘积和余数的关系是小于或是等于,试商就是平方根的第二位数;假设所得的乘积比余数大,那么把试商减小之后再试一次。
第六步,用一样的方法,继续求平方根其他各位上的数。算完即为开平方结束。
开平方运算也就是开平方之后所得的数的平方,也就是原数,可以说,开平方是平方的逆运算。开平方术也就是开平方立运算,最早出现于《九章算术》中的章节中。
⑦ 3位数、和5位数、及6位数如何开平方请各位大师赐教(要多举几例)
先分节,从右向左,两位一节,然后,从高到低,第一位找它的平方,第二位把第一位余数连同后面两位一起看,给第一位开方数乘20,然后。。。。。。。。。。。。
⑧ 如何快速求一个数平方的方法
1、求任意一个两位数的平方
方法:先把这个数看成 5 的倍数与一个小于 5 的数的和(或差)的形式,再用这两个数的平方和加上(或减去)这两个数的积的 2 倍。
2、求任意一个两位数的平方
方法:用这个数加上它的个位数的补数的和乘以它们的差,再用这个积加上这个补数的平方。
3、求一千零几的平方
方法:先写上这个数加上个位数的 2 倍的和,再写上一个 0,最后写上个位数的平方(个位数的平方小于 10,就在它前面补一个 0)。
4、求九百九十几的平方
方法:先写上 1000 减去这个数的补数的 2 倍的差,再写一个 0,最后写上补数的平方(补数的平方小于 10,就在它前面补一个 0)。
5、求末两位是 25 的数的平方
方法:用十位前面的数乘以在它后面添上 5 的数,在积后添上 625。
(8)如何快速开5位数的平方的方法扩展阅读:
关于的平方故事
相传印度有位外来的大臣跟国王下棋,国王输了,就答应满足他一个要求:在棋盘上放米粒。第一格放1粒,第二格放2粒,然后是4粒,8粒,16粒…直到放到64格。国王哈哈大笑,认为他很傻,以为只要这么一点米。
按照大臣的要求,放满64个格,需米 2的64次方间1粒。这个数是18446744073709551615,是二十位的数字。这些米别说倾空国库,就是整个印度,甚至全世界的米,都无法满足这个大臣的要求!
⑨ 怎样快速开方
答案 1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开; 2.求不大于左边第一节数的完全平方数,为“商”; 3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数; 4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商); 5.用商乘以20加上试商再乘以试商。如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止; 6.用同样的方法,继续求。 上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。我们可以采取下面办法,实际计算中不怕某一步算错!!!而上面方法就不行。 比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。 我们计算0.5*(350+136161/350)得到369.5 然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161 一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算469225的平方根。首先我们发现600^2<469225<700^2,我们可以挑选650作为第一次计算的数。即算 0.5*(650+469225/650)得到685.9。而685附近只有685^2末尾数字是5,因此685^2=469225 对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。 实际中这种算法也是计算机用于开方的算法 参考资料: http://..com/question/22592325.html 开立方: http://rainydream.blogchina.com/rainydream/1430924.html 说明:笔算开方现在已经不做要求,不需掌握