Ⅰ 配方法解一元二次方程的一般步骤是什么
用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(1)如何用配方法解一元二次方程偶数扩展阅读:
配方法的其他运用:求最值。示例说明如下:
已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。
分析:将y用含x的式子来表示,再代入(x+y)求值。
解:x²+3x+y-3=0<=>y=3-3x-x²。
代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。
由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。
Ⅱ 配方法解一元二次方程步骤是什么
配方法:将一元二次方程配成(x+m)^2=n的形式,再利用直接开平方法求解的方法。
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(2)如何用配方法解一元二次方程偶数扩展阅读:
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;
③未知数项的最高次数是2。
Ⅲ 一元二次方程配方法怎么配方
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
(3)如何用配方法解一元二次方程偶数扩展阅读:
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)²=x²+ 2xy+y²的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y²= (b/2a)²。
例分解因式:x²-4x-12
解:x²-4x-12=x²-4x+4-4-12
=(x-2)²-16
=(x -6)(x+2)
求抛物线的顶点坐标
【例】求抛物线y=3x²+6x-3的顶点坐标。
解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6
所以这条抛物线的顶点坐标为(-1,-6)
Ⅳ 怎么用配方法解一元二次方程我不太会配方法,
配方法数学一元二次方程中的一种解法(其他两种为公式法和分解法)具体过程如下:1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)2.将二次项系数化为13.将常数项移到等号右侧4.等号左右两边同时加上一次项系数一半的平方5.将等号左边的代数式写成完全平方形式6.左右同时开平方7.整理即可得到原方程的根例:解方程2x^2+4=6x1.2x^2-6x+4=02.x^2-3x+2=03.x^2-3x=-24.x^2-3x+2.25=0.25
(+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)5.(x-1.5)^2=0.25
(a^2+2b+1=0
即
(a+1)^2=0)6.x-1.5=±0.57.x1=2x2=1
[编辑本段]二次函数配方法技巧:y=ax^2-bx+c
转换为
y=a(x+h)^2+k=a(x+b/2a)^2+(c-b^2/4a)
Ⅳ 配方法解一元二次方程
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
(5)如何用配方法解一元二次方程偶数扩展阅读
配方法的其他运用:求最值。示例说明如下:
已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。
分析:将y用含x的式子来表示,再代入(x+y)求值。
解:x²+3x+y-3=0<=>y=3-3x-x²。
代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。
由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。
Ⅵ 该如何使用配方法解一元二次方程
配方法其实是基于直接开方法,利用开方和的完全平方公式特性来解。完全平方公式是将一个两项系数的式子的平方变成三项,进行因式分解。用字母表示为:(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。用配方法解一元二次方程的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次顶系数化为1;
(3)等式两边同时加上一次项系数一半的平方;
(4)运用直接开平方法求得方程的根。
(6)如何用配方法解一元二次方程偶数扩展阅读:
当二次项系数不为一时,用配方法解一元二次方程的一般步骤:
1、化二次项系数为1。
2、移常数项到方程右边。
3、方程两边同时加上一次项系数一半的平方。
4、化方程左边为完全平方式。
5、(若方程右边为非负数)利用直接开平方法解得方程的根。
Ⅶ 初一一元二次方程的解法
一、直接开平方法:依据的是平方根的意义,步骤是:①将方程转化为x=p或(mx+n)=p的形式;②分三种情况降次求解:①当p>0时;②当p=0时;③当p<0时,方程无实数根。需要注意的是:直接开平方法只适用于部分的一元二次方程,它适用的方程能转化为x=p或(mx+n)=p的形式,其中p为常数,当p≥0时,开方时要取“正、负。
根据上述讲解可以总结出,直接开平方法和因式分解法适合解特殊的一元二次方程,例如缺少一次项的可以用开平方法,缺少常数项的或者形如x
+ (p+q)x + pq
=0的形式适用因式分解。公式法和配方法可解任意的一元二次方程,对于含有括号的一元二次方程,不要急于去括号,可根据方程的形式选用就因式分解或者开平方法。在在没有规定解法时,解一元二次方程可以按:直接开平方法→因式分解法→公式法→配方法的顺序选择解法。若二次项系数为1,一次项系数为偶数,用配方法较简单。
Ⅷ 到底什么是配方法,一元二次方程用配方法怎样解
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
例: 解方程:3
(变形:方程左边分解因式,右边合并同类项;)
x+4/3=± 5/3(开方:根据平方根的意义,方程两边开平方;)
x+4/3=5/3 或 x+4/3=-5/3( 求解:解一元一次方程;)
所以x1=1/3, x2=-3 ( 定解:写出原方程的解)
(8)如何用配方法解一元二次方程偶数扩展阅读
1、配方法解一元二次方程的口诀:一除二移三配四开方。
2、配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方。
3、配方法的理论依据是完全平方公式。
配方法的应用
1、用于比较大小
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。
2、用于求待定字母的值
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。
3、用于求最值
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。
4、用于证明
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
Ⅸ 一元二次方程的配方法怎么配方
1.转化:
将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项:
常数项移到等式右边
3.系数化1:
二次项系数化为1
4.配方:
等号左右两边同时加上一次项系数一半的平方
5.求解:
用直接开平方法求解
整理
(即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x
1.
2x^2-6x+4=0
2.
x^2-3x+2=0
3.
x^2-3x=-2
4.
x^2-3x+2.25=0.25
(+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5.
(x-1.5)^2=0.25
(a^2+2b+1=0
即
(a+1)^2=0)
6.
x-1.5=±0.5
7.
x1=2
x2=1
(一元二次方程通常有两个解,X1
X2)
编辑本段二次函数配方法技巧
y=ax&sup要的一项,往往在解决方程,不等式,函数中需用,下面详细说明:
首先,明确的是配方法就是将关于两个数(或代数式,但这两一定是平方式),写成(a+b)平方的形式或(a-b)平方的形式:
将(a+b)平方的展开得
(a+b)^2=a^2+2ab+b^2
所以要配成(a+b)平方的形式就必须要有a^2,2ab,b^2
则选定你要配的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),就进行添加和去增,例如:
原式为a^2+
b^2
解:
a^2+
b^2
=
a^2+
b^2
+2ab-2ab
=
(
a^2+
b^2
+2ab)-2ab
=
(a+b)^2-2ab
再例:
原式为a^2+
2b^2
解:
a^2+2b^2
=
a^2+
b^2
+
b^2
+2ab-2ab
=
(
a^2+
b^2
+2ab)-2ab+
b^2
=
(a+b)^2-2ab+
b^2
这就是配方法了,
附注:a或b前若有系数,则看成a或b的一部分,
例如:4a^2看成(2a)^2
9b^2看成(a^29b^2)
Ⅹ 配方法解一元二次方程的步骤是什么
解题步骤:(1)二次项系数:化为1;
(2)移项:把方程x2+bx+c=0的常数项c移到方程另一侧,得方程x2+bx=-c;
(3)配方:方程两边同加上一次项系数一半的平方,方程左边成为完全平方式;
(4)开方:方程两边同时开平方,目的是为了降次,得到一元一次方程。
(5)得解:解一元一次方程,得出原方程的解。