导航:首页 > 方法技巧 > 初中解题方法及技巧

初中解题方法及技巧

发布时间:2022-07-02 04:52:50

Ⅰ 初中物理答题技巧

初中物理光的反射定律是重要的知识点之一,通过光的反射定律了解生活中常见的物理现象,根据光的反射定律作光路图和光的反射实验题是初中物理光的反射两大应用题型。初中物理光的反射知识点一览:初中物理光的反射概念和分类;初中物理光的反射定律极其四大特性和作光路图步骤,光的反射练习题。
一、初中物理光的反射概念
光的反射定律概念:光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。对人类来说,光的最大规模的反射现象,发生在月球上。人们知道,月球本身是不发光的,它只是反射太阳的光。因此光的反射无处不在并发生在人们身边。
二、初中物理光的反射分类
1)镜面反射:平行光线射到光滑表面上时反射光线也是平行的,这种反射叫做镜面反射。
2)漫反射:平行光线射到凹凸不平的表面上,反射光线射向各个方向,这种反射叫做漫反射。
3)镜面反射与漫反射物理现象:表面平滑的物体,易形成光的镜面反射,形成刺目的强光,反而看不清楚物体。通常情况下可以辨别物体之形状和存在,是由于光的漫射之故。日落后暂时能看见物体,乃是因为空气中尘埃引起光的漫射之故。无论是镜面反射或漫反射,都需遵守反射定律。
三、初中物理光的反射定律(重点):
1.反射角等于入射角,且入射光线与平面的夹角等于反射光线与平面的夹角。
2.反射光线与入射光线居于法线两侧且都在同一个平面内。
3.在光的反射现象中,光路是可逆的。 四、根据光的反射定律作光路图(常考知识点):
先找出入射点,过入射点作垂直于界面的法线,则反射光线与入射光线的夹角的角平分线即为法线。若是确定某一条入射光线所对应的反射光线,则由入射光线、法线确定入射角的大小及反射光线所在的平面,再根据光的反射定律中反射光线位于法线的另一侧,反射角等于入射角的特点,确定反射光线。
五、初中物理光的反射的四大特性(难点):
1.共面 法线是反射光线与入射光线的角平分线所在的直线。
2.异侧 入射光线与反射面的夹角和入射角的和为90°
3.等角 反射角等于入射角。反射角随入射角的增大而增大,减小而减小。
4.可逆 光路是可逆的
六、初中物理光的反射练习题(包含实验题):
1、初中物理光的反射选择题
1.电视机遥控器可以发射一种不可见光,叫做红外线,用它来传递信息,实现对电视机的遥控。不把遥控器对准电视机的控制窗口,按一下按钮,有时也可以控制电视机,这是利用( ) A.光的直线传播 B.光沿曲线传播 C.光的反射 D.光的可逆性
2.光污染已成为21世纪人们关注的问题。据测定,室内洁白、平滑的墙壁能将照射在墙壁上的太阳光的80%反射,长时间在这样刺眼的环境中看书学习会感到很不舒服。如果将墙壁做成凹凸不平的面,其作用之一可以使照射到墙壁上的太阳光变成散射光,达到保护视力的目的,这是利用了光的( ) A.直线传播 B.漫反射 C.镜面反射 D.反射
3.如图1所示,一束光线射向平面镜,那么这束光线的入射角和反射角的大小分别为( ) A.40° 40° B.40° 50° C.50° 40° D.50° 50° 4.下列说法中不正确的是( )
A.光线垂直照射在平面镜上,入射角是90°
B.漫反射也遵守反射定律
C.反射光线跟入射光线的夹角为120°,则入射角为60°
D.太阳发出的光传到地球约需500s,则太阳到地球的距离约为1.5×108km
5.小聪同学通过某种途径看到了小明同学的眼睛,则小明同学( ) A.一定能看到小聪同学的眼睛 B.一定不能看到小聪同学的眼睛 C.可能看不到小聪同学的眼睛 D.一定能看到小聪同学的全身 2、初中物理光的反射应用题
1.(初中物理光的反射作图题)钱包掉到沙发下.没有手电筒,小明借助平面镜反射灯光找到了钱包.图中已标示了反射与入射光线,请在图中标出平面镜,并画出法线。
2.(初中物理光的反射实验题)如图所示,是陈涛同学探究光反射规律的实验.他进行了下面的操作:
(1)如图1甲,让一束光贴着纸板沿某一个角度射到0点,经平面镜的反射,沿另一个方向射出,改变光束的入射方向,使∠i减小,这时∠r跟着减小,使∠ i增大,∠r跟着增大,∠r总是_______∠i,说明__________
(2)如图1乙,把半面纸板NOF向前折或向后折,这时,在NOF上看不到________-,说明
3、初中物理光的反射实验题________。 参考答案: 1、选择题:1.C 2.B 3.D 4.A 5.A
2、应用题:1.(如图所示)
2.(1)影子的形成:光沿直线传播;(2)水中倒影:光的反射 七、生活中的光的反射物理现象:
1、我们每天都照的镜子。
2、路口放置的凸面镜。
3、汽车的观后镜。
4、我们能看见物体,物体反射了光进入我们的眼睛。 5、太阳能加热器(太阳灶)
6、潜望镜。
7、反射式的望远镜。
上海市中考物理和化学合卷,物理分值为90分。光的折射对比光的直线传播和光的反射来说,则有难度。同学们需要掌握光的折射作图题和实验题相关知识点。昂立新课程针对初中各个科开设如下课程:
以上特色课程与初中学科教材匹配,授课形式分为面授和网课,面授课程班型设置不同,有1对1,1对3,15人班,30人班等形式,上海市各区授课时间也不同,具体课程详情请拨打官网热线4008-770-970咨询。

Ⅱ 初中地理选择题的答题方法和技巧

学无定法,贵在得法。做地理选择题的的前提是掌握基础知识,学以致用,以下方法抛砖引玉,仅供参考。
1、直选法
把记住的知识再现出来,主要考查记忆的准确性。做题时要审清题干、题支,判断与所记内容是否完全一致,切忌似是而非、只看大概,或只看前一两个选项。
2、排除法
罗列地理事物或现象较多时,可将选项与题干条件对照,将错误选项排除(1-3项),缩小范围,重点分析剩余选项。
3、优选法
题目提供的四个选项如果都符合题干要求,但题干中又有“最”、“主导”、“主要”、等字样,就应该采取选优法进行取舍。
4、图解法

利用图册、及课本示意图辅助解答选择题。

在地理分布、运动规律,空间想象等方面,可根据题干所提供的条件迅速查找图册及课本中的有关示意图,直观地表现解题条件或将条件具体化。

Ⅲ 求求初中数学解题技巧及公式总汇

(一)整数和小数的应用 搜索1 简单应用题 (1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。 (2) 解题步骤: a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。 b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。 C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。 2 复合应用题 (1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。 (2)含有三个已知条件的两步计算的应用题。 求比两个数的和多(少)几个数的应用题。 比较两数差与倍数关系的应用题。 (3)含有两个已知条件的两步计算的应用题。 已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。 已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。 (4)解答连乘连除应用题。 (5)解答三步计算的应用题。 (6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。d答案:根据计算的结果,先口答,逐步过渡到笔答。 ( 3 ) 解答加法应用题: a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。 b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。 (4 ) 解答减法应用题: a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。 -b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。 c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。 (5 ) 解答乘法应用题: a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。 b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。 ( 6) 解答除法应用题: a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。 b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。 C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。 d已知一个数的几倍是多少,求这个数的应用题。 (7)常见的数量关系: 总价= 单价×数量 路程= 速度×时间 工作总量=工作时间×工效 总产量=单产量×数量 3典型应用题 具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。 (1)平均数问题:平均数是等分除法的发展。 解题关键:在于确定总数量和与之相对应的总份数。 算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。 加权平均数:已知两个以上若干份的平均数,求总平均数是多少。 数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。 差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。 数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。 例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。 分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。 根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。 根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。 一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。” 两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。” 正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。 反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。 解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。数量关系式:单一量×份数=总数量(正归一) 总数量÷单一量=份数(反归一) 例一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天? 分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天) (3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。 特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。 数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。 例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米? 分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米) (4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。 解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。 解题规律:(和+差)÷2 = 大数 大数-差=小数 (和-差)÷2=小数 和-小数= 大数 例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人? 分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人) (5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。 解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。 解题规律:和÷倍数和=标准数 标准数×倍数=另一个数 例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆? 分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。 列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆) (6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。 解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。 例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米? 分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。 (7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。 解题关键及规律: 同时同地相背而行:路程=速度和×时间。 同时相向而行:相遇时间=速度和×时间 同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。 例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙? 分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。 已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时) (8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。 船速:船在静水中航行的速度。 水速:水流动的速度。 顺水速度:船顺流航行的速度。 逆水速度:船逆流航行的速度。 顺速=船速+水速 逆速=船速-水速 解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。 解题规律:船行速度=(顺水速度+ 逆流速度)÷2 流水速度=(顺流速度逆流速度)÷2 路程=顺流速度× 顺流航行所需时间 路程=逆流速度×逆流航行所需时间 例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米? 分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。 (9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。 解题关键:要弄清每一步变化与未知数的关系。 解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。 根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。 解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。 例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人? 分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人) 一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。 (10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。 解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。 解题规律:沿线段植树 棵树=段数+1 棵树=总路程÷株距+1 株距=总路程÷(棵树-1) 总路程=株距×(棵树-1) 沿周长植树 棵树=总路程÷株距 株距=总路程÷棵树 总路程=株距×棵树 例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。 分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。 解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。 解题规律:总差额÷每人差额=人数 总差额的求法可以分为以下四种情况: 第一次多余,第二次不足,总差额=多余+ 不足 第一次正好,第二次多余或不足 ,总差额=多余或不足 第一次多余,第二次也多余,总差额=大多余-小多余 第一次不足,第二次也不足, 总差额= 大不足-小不足 例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔? 分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。 (12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。 解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。 例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍? 分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21-( 48-21 )÷( 4-1 ) =12 (年) (13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。 解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数 兔子只数=(总腿数-2×总头数)÷2 如果假设全是兔子,可以有下面的式子: 鸡的只数=(4×总头数-总腿数)÷2 兔的头数=总头数-鸡的只数 例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只? 兔子只数 ( 170-2 × 50 )÷ 2 =35 (只) 鸡的只数 50-35=15 (只) (二)分数和百分数的应用 1 分数加减法应用题: 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。 2分数乘法应用题: 是指已知一个数,求它的几分之几是多少的应用题。 特征:已知单位“1”的量和分率,求与分率所对应的实际数量。 解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。 3 分数除法应用题: 求一个数是另一个数的几分之几(或百分之几)是多少。 特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。 解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。 甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。 已知一个数的几分之几(或百分之几 ) ,求这个数。 特征:已知一个实际数量和它相对应的分率,求单位“1”的量。 解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际 数量。 4 出勤率 发芽率=发芽种子数/试验种子数×100% 小麦的出粉率= 面粉的重量/小麦的重量×100% 产品的合格率=合格的产品数/产品总数×100% 职工的出勤率=实际出勤人数/应出勤人数×100% 5 工程问题: 是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。 解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。 数量关系式: 工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率 工作总量÷工作效率和=合作时间 6 纳税 纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。 缴纳的税款叫应纳税款。 应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。 * 利息 存入银行的钱叫做本金。 取款时银行多支付的钱叫做利息。 利息与本金的比值叫做利率。 利息=本金×利率×时间

Ⅳ 初中数学考试方法与技巧总结

攻略一:概念记清,基础夯实。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是"不定项选择题"就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的四本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要"埋下头去做题,抬起头来想题",在做题中关注思路、方法、技巧,要"苦做"更要"巧做".考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。在做题中要注重发现题与题之间的内在联系,绝不能"傻做".在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到"触类旁通"的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。

Ⅳ 初中数学做题技巧

掌握了中学数学这9种常用解题方法,中考数学考试就游刃有余了。

1、配方法:就是把一个解析式利用恒等式变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法:就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分租分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法:是数学种一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数成元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元法去代替原式子的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a!=0)根的判别式不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一个根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。

6、构造法:在解题时,常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法:是一种间接证明法,先提出一个与命题的结论相反的假设,然后从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法与穷举反证法。

8、等(面或体)积法:平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用 面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置辅助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:平移;旋转;对称。

Ⅵ 初中政治答题技巧。

初中政治合集网络网盘下载

链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234 提取码:1234

简介:初中政治优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

Ⅶ 初中语文解题方法与技巧

初中语文解题方法与技巧,六要素: 人物、时间、地点、事件的起因、经过和结果。

2.人称: 第一人称(真实可信)、第二人称(更加亲切)和第三人称(更加广泛)。

3.线索:①人线(人物的见闻感受或者事迹)②物线(某一有特意义的物品)③情线(作者或作品中主要人物的思想感情变化)④事线(中心事件)⑤时间线⑥地点线

4.顺序:顺叙、倒叙、插叙、补叙、分叙(平叙)。

5.划分:按事件的发展过程、空间转换、内容变化、人物、场景变化、感情变化、表达方式的变换来划分。

6.表达方式:叙述、描写(肖像,语言,动作,心理,环境等或正面,侧面、细节)、议论、抒情、说明等 。

7.语言的特点:形象,生动,具体。

8.表现手法:描写、衬托、渲染、对比、伏笔、铺垫、象征、比喻、以小见大、欲扬先抑、借景抒情、卒章显志、托物言志等。

v 如何找线索?

①文章的标题②各段反复出现的事物③文中议论抒情的语句④作者的思想感情(变化)⑤某一人物的见闻感受作用:文章内容井然有序地组合在一起,人物的思想性格,事情的来龙去脉。

v 记叙顺序?

1.顺叙:即按照事情的发生、发展和结局的顺序写(时间先后)。作用:使文章脉络清楚,有头有尾,给人鲜明的印象。

2.倒叙:把后发生的事情写在前面,然后再按顺序进行叙述。作用:避免平铺直叙,增强文章的生动性,使文章引人入胜。

3.插叙:在叙述过程中,由于内容的需要,中断原来情节的叙述,插入有关的情节或事件,然后再继续原来的叙述。(比如:回忆往事)作用:补充、衬托出文章的中心内容(人物或事件),丰富了情节,深化了主题。

v 人物的描写方法?

1、肖像(外貌)描写[包括神态描写](描写人物容貌、衣着、神情、姿态等):交代了人物的××身份、××地位、××处境、经历以及××心理状态、××思想性格等情况。

2、语言(对话)描写

3、行动(动作)描写:形象生动地表现出人物的××心理(心情),并反映了人物的××性格特征或××精神品质。有时还推动了情节的发展。

4、心理描写:形象生动地反映出人物的××思想,揭示了人物的××性格或者××品质。

v 修辞手法

常用的修辞方法有:比喻、拟人、夸张、排比、对偶、引用、设问、反问、反复、对比、借代、反语。

1.比喻:比喻就是"打比方"。即抓住两种不同性质的事物的相似点,用一事物来喻另一事物。比喻的三种类型:明喻、暗喻和借喻。作用:化平淡为生动;化深奥为浅显;化抽象为具体;化冗长为简洁。用在记叙、说明、描写中,能使事物生动、形象、具体,给人以鲜明的印象;用在议论文中,能使抽象道理变得具体,使深奥的道理变得浅显易懂。最常用的还是生动形象。

2.拟人:把物当作人来写,赋予物以人的言行或思想感情,用描写人的词来描写物。作用:使具体事物人格化,语言生动形象。

3.夸张:对事物的性质、特征等故意地夸张或缩小。作用:揭示事物本质,烘托气氛,加强渲染力,引起联想效果。
4.排比:把结构相同或相似、语气一致、意思相关联的三个以上的句子或成分排列在一起。作用:增强语言气势,加强表达效果,强调内容,加重感情。用来说理,可把道理阐述得更严密、更透彻;用来抒情,可把感情抒发得淋漓尽致。

5.借代:借代不直接说出所要表述的人或事物,而用与其相关的事物来代替。作用:能起到突出形象,使之具体、生动的效果。

6.夸张:夸张指为追求某种表达效果,对原有事物进行合乎情理的着意扩大或缩小。作用:烘托气氛,增强联想,给人启示。可以引起丰富的想象,更好地突出事物的特征,引起读者的强烈共鸣

7.对偶:它是一对字数相等,词性相对,结构相同,意义相关的短语或句子。作用:形式上音节整齐匀称、节奏感强,具有音律美;内容上凝练集中,概括力强。

8.反复:为了强调某个意思,某种感情,有意重复某个词语或句子。反复的种类:连续反复和间隔反复。连续反复中间无其他词语间隔。间隔反复中间有其他的词语。
9.设问:为了引起别人的注意,故意先提出问题,然后自己回答。作用:提醒人们思考,有的为了突出某些内容。
10.反问:无疑无问,用疑问形式表达确定的意思,用肯定形式反问表否定,用否定形式反问表肯定。
11.引用:引用现成的话来提高语言表达效果,分直接引用和间接引用两种。
12.借代:用相关的事物代替所要表达的事物。借代种类:特征代事物、具体代抽象、部分代替整体。
13.反语:用与本意相反的词语或句子表达本意,以按说反话的方式加强表达效果。有的讽刺揭露,有的表示亲密友好的感情。

v 关于记叙文和文学作品阅读题的解答主要从两方面着手:

一是概括文章的内容,抓住以下几个要点:

(1)把握记叙文的要素,以写事为主的应明确写什么事,写人为主的应明确写什么样的人。

(2)把握关键性语句,揣摩作者为什么,这些都是解题技巧,非常的不错了。

Ⅷ 初中语文现代文阅读部分的解题技巧(在线等,急)

初中语文合集网络网盘下载

链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234 提取码:1234

简介:初中语文优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校(人教、新东方)合集。适合各阶段学生日常辅导,中考冲刺,技能提升的学习。

Ⅸ 初中数学考试要掌握哪些答题的技巧

懂得对于难易题目的取舍
初中数学考试的时候,显然一张试卷上对于题目的设置,都会有难易的配比,在答题的时候,就要注意下掌握好对于难以题目的取舍。一般情况下试题上的难易分布,是按照前面简单,到后面就逐渐加深难度的,因此你就要注意先做前面的,不要急着去看后面的题目,说不定你看到后面的难题,一下子就被震慑住了,以至于前面的题目都不能好好作答。

答题的步骤一定要规范化
现在的初中数学考试对于前面的选择题,多数都是采用计算机阅卷了,因此对于这些题目,你重要的就是掌握正确率。而对于一些主观题,则要注意下答题的规范化,要确保你的所有答案都有得分的机会是不可能的,但是在分步解答的时候,更好是做到规范,这样即使本身没有答对,你也可以得到分步解答的分数。

答题的自己务必确保清晰
有不少的学生都会有这样的问题,在写字方面根本就不重视,尤其是考虑到只是初中数学考试,可能不会要求写多好的汉字,但是你还是要注意确保下自己足够清晰。假设一下,如果你是阅卷老师,根本就看不清楚试卷上写的什么东西,你会不会给分?要知道,你的字迹只有更清晰才能够确保阅卷老师避免误判。

以上是关于初中数学考试要掌握哪些答题的技巧的介绍,希望在应对数学考试的时候能够给你带去一些提醒作用。上海快乐学习提醒,在平时的练习中都应该注意总结一些有效的答题技巧,只要好好运用相信在考试的过程中肯定会发挥其作用旳。

阅读全文

与初中解题方法及技巧相关的资料

热点内容
藏红花的食用方法及用量 浏览:73
深圳房产的计算方法 浏览:478
怎么验算有余数除法的方法 浏览:986
能量杯使用方法 浏览:210
cvd常用制膜方法 浏览:411
如何读书写作的方法和技巧 浏览:648
治疗湿尤方法 浏览:290
英语快速说话方法 浏览:610
机构退休金计算方法 浏览:365
小楷正确拿笔方法 浏览:475
专卖店茅台盒子酒鉴别真伪的方法 浏览:460
宾得k50使用方法 浏览:228
让磁铁自由旋转的方法有哪些视频 浏览:404
雷克萨斯山地车安装方法 浏览:264
饮用水高氟水最佳解决方法 浏览:500
常用的安全风险分析评估方法有作业条件危险 浏览:346
手机游戏投屏到电视盒子方法 浏览:672
油锯使用方法图解 浏览:356
苹果6s手机桌面设置在哪里设置方法 浏览:633
沼气池冒泡有什么方法整治 浏览:681