导航:首页 > 方法技巧 > 一种数学理论方法要如何推广

一种数学理论方法要如何推广

发布时间:2022-06-30 05:08:08

⑴ 遍历理论的定理推广

继伯克霍夫和冯·诺伊曼的开创性工作之后,许多数学家对个体及平均遍历定理作了种种推广。它包括:把平均遍历定理推广到更一般的巴拿赫空间和更一般的变换;把关于点变换的平均遍历定理推广到关于马尔可夫过程的平均遍历定理;把关于离散半群φk的个体及平均遍历定理推广到更一般的单参数半群φt甚至多参数的情形,等等。由许多数学研究者得到的遍历定理的各种提法有:极大遍历定理,一致遍历定理,受控遍历定理,局部遍历定理,阿贝尔遍历定理和次可加遍历定理等等。保测变换的谱理论研究,则是遍历理论与泛函分析相关联的重要课题。
上面提到的遍历理论的研究工作,都假定事先有了一定的测度。在数学研究中还可以提这样一类问题:给定拓扑空间Χ上的连续变换φ,是否存在Χ上的概率测度μ使其成为保测变换?这样的测度是否唯一?这又引起了关于不变测度的研究。数学上已经证明:对于紧致的可度量化的空间Χ的连续变换φ,不变测度必定存在。如果这种不变测度μ是唯一的,那么φ关于该测度就必定是遍历的,这时称变换φ具有唯一遍历性。
1958年Α.Η.柯尔莫哥洛夫在保测变换的研究中引进了测度熵的概念。测度熵反映了变换紊乱的程度,其物理背景正是热力学中的熵。测度熵的引进是继伯克霍夫和冯·诺伊曼工作之后保测变换研究中的又一重大进展。测度熵作为不变量为研究保测变换的同构问题提供了重要的工具。这一工具最初的效果是辨明了一些过去长期无法区分的系统的不同构。1970年D.奥恩斯坦获得了正面肯定同构的重要成果,他证明了具有相同测度熵的伯努利移位是同构的。类比于测度熵,R.L.阿德勒、A.G.康海姆和M.H.麦克安德鲁等人1965年在动力系统理论的研究中引入了拓扑熵的概念。

⑵ 高考《高考数学核心题型与解题技巧》应如何推广

这个很好办,你注册一个百家号,实名认证,然后就可以把你编写的教材制作课件,最好是视频,上传到百家号上,这样就可以推广了。等你的级别到了一定程度,就可以开设专栏进行销售了。望采纳

⑶ 如何在教学中加强数学思想方法的渗透

问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。不管是数学概念的建立,数学规律的发现,还是数学问题的解决,乃至整个数学大厦的构建,核心问题在于数学思想方法的培养和建立。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此,在数学教学中,不仅要重视知识形成过程,还要十分重视挖掘在数学知识的发生、形成和发展过程中所蕴藏的数学思想方法。 一、在备课中,有意识地体现数学思想方法 教师要进行数学思想方法的教学,首先要有意识地从教学目的的确定、教学过程的实施,教学效果的落实等各个方面来体现,使每节课的教学、教育目的获得和谐的统一。通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。因而,在备课时就必须把数学思想方法的教学从钻研教材中加以挖掘。例如,在备《二元一次方程组》(北师大版八年级上册第七章)这一章时,就要挖掘方程思想、建模思想、化未知为己知、化二元为一元的化归思想方法。 二、以教材知识为载体,在教学中渗透数学思想方法 数学教材是按数学内容的逻辑体系与认识理论的教学体系相结合的办法来安排的。受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现。然而,数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在教学中,深入挖掘隐含在教材里的数学思想方法,精心设计课堂教学过程,展示数学思维过程,这样才有助于学生了解其中数学思想方法的产生、应用和发展的过程;理解数学思想方法的特征,应用的条件,掌握数学思想方法的实质。例如立体几何教学中许多内容都体现了一个重要思想方法把空间里的问题转化为平面上的问题,在教学过程中,就要善于引导学生从具体问题中提炼出这一具有普遍指导作用的思想方法。并进一步上升为降维的思想方法,再总结出更一般的更高层次的思想转化与化归。 不同的教学内容,可根据其特点,选配不同的数学思想方法进行教学:一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等;在知识的结论、公式、法则等规律的推导阶段,强调和灌输思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等;在知识的总结阶段或新、旧知识结合部分,选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分组讨论思想体现了局部与整体的相互转化。 三、在掌握重点、突破难点中,有意识地运用数学思想方法 数学教学中的重点,往往就是需要有意识地运用或揭示数学思想方法之处。数学教学中的难点,往往与数学思想方法的更新交替、综合运用、跳跃性较大有关。因此,教师要掌握重点,突破难点,更要有意识地运用数学思想方法组织教学。例如,二次根式的加减运算是一个教学难点,为了突破难点,就要运用类比思想、整体思想、化归转换思想方法寻找解决问题途径,采用类比整式的加减运算的手段,构造出具体形象的数学模型,从而进行猜想、推理、研究,实现从未知到已知的转化。 四、在展现数学知识的形成与应用过程中,提炼数学思想方法 数学知识发生的过程也是其思想方法产生的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取问题情境建立模型解释、应用与拓展的模式,通过对相关问题情境的研究为有效切入点,对知识发生过程的展示,使学生的思维和经验全部投入到接受问题、分析问题和感悟思想方法的挑战之中,并在此过程领会如数感、符号感、空间观念、统计观念、应用意识和推理能力等数学思想方法。例如在讲授《探索勾股定理》(北师大版八年级上册第一章第一节)时,将概念、结论性知识的教学设计成再发现、再创造的教学:先让学生在方格纸上计算面积的方法理解勾股定理,再用拼图的方法验证其内容,让学生经历观察、归纳、猜想和验证的数学发现过程,使学生在动脑、动手的过程中领悟、体验、提炼数学思想方法数形结合思想(将三角形三边的平方与正方形面积联系起来,再比较同一正方形面积的几种不同的代数表示,得到勾股定理)。在展现数学知识的形成与应用过程中,着重过程(不要过早下结论),引导学生积极参与数学定理、性质、法则、公式等结论的探索、发现、推导过程,弄清每个结论的因果关系。经过分析、综合、比较、抽象、概括等思维的逻辑加工,完整地体现这一生动过程,不失时机地引导学生(不要包办代替),揭示数学思想方法本质特征。 五、通过范例教学,挖掘数学思想方法 有意识地组织学生进行必要的解题训练,设计具有探索性的、能从中抽象一般和特殊规律的范例进行教学,在对其分析和思考的过程中展示数学思想和具有代表性的数学方法。针对数学思维活动过程中展示出来的数学思想方法不失时机地进行提问与讨论、启发、引导学生领悟出思想方法。一方面通过解题和反思活动,从具体数学问题和范例中总结、归纳解题方法,挖掘隐含在教学内容中的数学思想;另一方面在解题过程中,充分发挥数学思想方法对发现解题途径的定向、联想和转化功能,举一反三,触类旁通。让学生养成反思的习惯,着名数学教育家弗赖母登塔尔指出:反思是数学活动的核心和动力。对于例子、习题,不要就题论题,反思⑴解法是怎样想出来的?关键是哪一步?自己为什么没想出来?⑵能找到更好的解题途径吗?这个方法能推广吗?⑶通过解决这个题,我们应该学什么?这种反思能较好地概括思维本质,从而上升到数学思想方法上来。 任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,也非讲几节专题课所能奏效的,它需要有目的、有意识地培养,需要经历渗透、反复、逐级递进、螺旋上升、不断深化的过程。数学教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,寓数学思想方法于平时的教学中,并有意识地运用一些数学思想方法去解决问题,学生对数学思想方法的认识一定会日趋成熟,一定可以使学生的数学学习提高到一个新的层次、新的高度,也会使数学教学脱离题海之苦,使其更富有朝气和创造性。(转)

⑷ 数学建模中关于 论文中的模型推广该写些什么内容

一般需要写论文用到的边缘方法的理论。

例如图论用到Dijkstra或者Floyd算法,统计使用遗传算法、灰度预测等。类似这些方法的理论基础,因为不便在模型建立与求解中大篇幅展开,可以在模型准备中做简要说明。

模型准备这一部分的作用是使论文层次分明,起到由浅入深的效果。类似于模型假设和符号说明,对正文起铺垫作用。

思考方法:

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。

也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。

以上内容参考:网络-数学建模

⑸ 从各方面对勾股定理推广

从中国古代经典之作《九章算术》可以看得出,中国数学文化起源于人的实际需要,比如丈量土地、测量容积等。它以社会生活与生产实际为研究对象,以解决实际问题为目标,围绕建立算法与提高计算技术而展开,强调在观察、实验基础上进行分析、归纳得出结果,寓理于算,把数学建立在少数不证自明、形象直观的原理上。这种算法化的数学文化传统,深受儒家文化的影响,在历史的发展过程中变化是微弱的、渐变的,然而当前中国数学教育的内容与方法却西化了,在教育形式上运用了西方的数学教育模式,在文化心理上却不自觉地运用着中国传统的数学文化观,导致现实数学教育中出现了许多困惑的问题,比如如何处理培养思维与指导实践的关系,是追求数学的直观、 实用还是它的理性思辨?是学习逻辑演绎还是注重算法和模型化方法教学?这些问题困挠着我们 的教师,影响着我们的数学教育。笔者试从中、西 方“勾股定理”诞生与发展的文化背景,寻找解决问题的办法,探讨如何处理文化传统与数学教育现代化的关系。

1 勾股定理文化背景及其对现代教学的影响

勾股定理是中国几何的根源。中华数学的精髓,诸如开方术、方程术、天元术等技艺的诞生与发展,寻根探源,都与勾股定理有着密切关系。勾股形与比率算法相结合,经推演变化已构成各种各样的测量法(如刘徽的“重差术”)。古代数学家常以勾股形代替一般三角形进行研究,从而可以避开角的性质的研讨和不触及平行的烦琐理论,使几何体系简洁明了,问题的解法更加精致。从中国勾股定理的诞生与发展来看,中国古代数学文化传统明显有重视应用、注重理论联系实际、数形结合,以算为主、善于把问题分门别类建立一套套算法体系的特征。然而中国的传统文化注重“经世致用”,思维方式具有“重实际而黜玄想”的务实精神,以及述而不作的研究方法,使得勾股定理从诞生开始一直没有超越直观经验和具体运算,而发展成一套完整的演绎推理,它始终作为一种技艺在传播与应用,走的是为了解决实际问题的模式化发展道路。这种技艺应用的价值取向至今仍影响着我们对数学的认识,影响着我们的数学教学。

在西方,从毕达哥拉斯学派发现了“与有理数不可通约的无理数”开始,勾股定理作为欧氏空间的度量标尺,经过演绎推理,为几何公理体系的完善和发展写下了新的篇章。欧几里得在证明勾股定理同时,结合图形分析,以演绎推理的方法获得了一系列的定理和推论。此后,西方数学家从数的角度将勾股定理推广到求不定方程的正整数解,引出了着名的费马猜想、鲍恩猜想、埃斯柯特猜想;从形的角度又把它推广到平面图形面积关系、立体图形的表面积关系的探讨。如此无穷延伸,在追求严谨的逻辑体系和数学美的过程中推动了现代数学的发展.这种崇尚理性、注重演绎推理的数学传统有着深厚的文化背景,从西方的基督教文化来看,它认为上帝是按数学来构造世界。这一观点足以表明数学教育在西方文化中的宗教和哲学价值取向的理性地位,这对我们今天学习数学,理解现代数学体系结构的形成有着重要的启示作用。

2 现代勾股定理教学设计

中、西方在不同的文化背景下所诞生的勾股定理及其发展道路,给我们的启发是在继承传统文化精髓的同时必须改变传统数学价值观,才能学好西方数学公理化体系,走上数学教育现代化的道路。为此,我们必须设计出符合自身文化传统习惯的课堂教学模式。以勾股定理教学为例,笔者认为可以从以下几个环节进行教学设计。

2.1 从文化传统习惯入手,利用现代化教学手段进行数学实验

请学生自己画出几个直角三角形,利用直尺测量三条边长,并记录数据,计算边长的平方值,分析它们的关系,引导学生通过计算发现勾股定理。测量和计算是我们民族文化传统的特长,是古人发现问题、解决问题常用的思路,也是我们学生很熟悉的学习方法。从几个学生构造的特殊例子出发,利用测量工具进行估算,寻找规律,提出猜想,符合我们的文化传统习惯,符合从特殊到一般的思维规律,容易发挥学生的主体积极性。

利用几何画板软件设计任一直角三角形,自动测量三边边长,验证学生的发现与猜想(图1)。

几何画板软件就其本身设计来说,是一种模式化的算法体系,用它来精确测量三角形的边长,展示直角三角形的任意性,是传统文化精髓与现代文明的新结合。它不仅是一种测量工具的改善,更是一个数学教育现代化的平台。此例所展示的直角三角形的任意性,是传统教学手段无法实现的一个梦想。而几何画板软件可以让学生操作计算机来构造数学对象,在观察动态的图形变化中,直观体验了任意性的含义,深人理解任意性在数学中所起的作用。同时计算机提供快速反馈测量结果,进行验证猜想的能力,使学生有更多的时间从事于更高层次的数学思维活动。这一典型实例足以表明计算机技术可以为文化传统与数学教育现代化的结合提供了好的教学平台。

2.2 比较赵爽证法和欧几里得证法,挖掘传统文化内涵

勾股定理的证明有着丰富无比的文化内涵,可以给学生许多启发,其中赵爽的弦图证法和欧几里得证法最为典型。赵爽弦图证法极富创意,他在《勾股圆方图注》中用几何方法严格证明了勾股定理,可以反映出我国几何研究不仅在应用方面有过辉煌成就,而且在理论方面也曾有一席之地。

赵爽的弦图证法:如图2(见人教版三年制初中《几何》第二册第106页第4题),其中每个直角三角形称为“朱实”,中间的一个正方形叫“中黄实”,以弦为边的正方形ABEF叫“弦实”。四个朱实加上一个黄实就等于一个弦实,即 ,化简后得 。

他充分运用了直角三角形易于移补的特点,给出了简洁、直观的证法,其相应的几何思想是图形经移、补、凑、合而面积不变,这种思想后来发展为李冶的“演段术”,不仅反映了我国传统文化中追求直观、实用的倾向,而且其展示的割补原理和数形结合的思想让我们看到我们传统文化的精髓,对我们继承和发扬传统文化起着潜移默化的熏陶作用。我们要安排足够的时间,让学生动手进行拼、凑、补等实践活动,深人理解割补原理,体会中国传统文化中寓理于算的风格。

而欧几里得证法给我们展示的是西方数学文化传统的另一侧面,即严谨的逻辑和理性的推理。具体的欧几里得证法如下:

在直角三角形ABC各边上向外作正方形(图3),结连CD、FB。

因为AC=AF, AB=AD,∠FAB=∠CAD,所以 。

作CL‖ AD。

因为 ,



所以 .

同理可证 .

所以 ,即 .

比较赵爽证法和欧几里得证法可知,赵爽证法是建立在一种不证自明、形象直观的原理上,即“出人相补”原理。他的证明过程可以借助实物进行操作,使现实问题数学化,最终达到对数学定理的意义建构。而欧几里得证法则完全脱离实物的支撑,给我们展示的是对数学美和数学理性的追求。它在更高层次上使学生的思维得到锻炼。对这种证法的介绍,可以采用数学“再创造”原理,分析它的探索过程,使证明思路逐渐显露出来,最终完成对公理化演绎体系结构的深刻理解。

综上所述,我们可以从文化传统习惯人手,使用现代教育手段来继承和发扬传统文化,挖掘传统文化内涵,实现数学教育现代化。

⑹ 浅谈如何在指数函数教学中推广数学概念

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程

⑺ 怎样加强数学理论学习

数学方法与数学思想是数学教学中、数学教育研究中经常遇到的两个重要概念,那么,究竟什么是数学方法,什么数学思想?两者之间又有什么关系呢?
1 关于数学方法
目前对数学方法的几种说法:①数学方法是人们从事数学活动时使用的方法。②数学方法不仅指数学的研究方法(包括思想方法),而且也应当包括数学的学习方法和教学方法。③科学方法论中所谓的“数学方法”主要是指应用数学去解决实际问题。
所谓方法是指“关于解决思想、说话、行动等问题的门路、程序等”,简言之,方法是解决问题的门路、程序等。毫无疑问,数学方法应是解决数学问题的门路程序,或是解决数学问题的方法,然而这只是数学方法概念外延的一个方面,由于用数学去解决实际问题也需要有一定的门路与程序,所以教学方法这一概念外延的另一个方面是用数学去解决实际问题的方法。用数学去解决实际问题关键是对实际问题建立相应数学模型,因此,也可称这样的数学方法为数学模型法。
2 关于数学思想
数学思想这一概念是一个新概念,流行只不过是近10年左右的事,由于时间短,人们对这一概念的认识还很肤浅,甚至很多人只是将其当做一个“原始概念”对待,并没有真正说出什么是数学思想,而只是当“已知”用了。
目前对数学思想有以下几种说法:①一名优秀的数学教师要善于发现课本知识内容背后所隐含的“软件”部分――数学思想。②中小学数学中反映的基本数学思想包括“集合、关系、数学结构、同构、代数运算”等。③数学思想是人们对数学科学研究的本质及规律的深刻认识。
数学思想是数学的存在,反映在人的头脑中,经过思维活动后产生的结果。显而易见,数学思想作为思维结果,没有文字对它进行描述,它完全靠数学工作者对客观存在的数学认真思维活动后挖掘出来,数学思想是数学内容与数学方法等的升华与结晶,应特别指出,一旦形成了数学思想,其意义便远远超出了数学学科。数学思想对其他学科相关问题同样有指导意义。
现在已被大家认可并经常用到的数学思想很多,如化归的数学思想,即将一个不易解决的问题转化归纳为易解决或已解决的问题来解决的思想,数学中用化归思想解决问题的例子有很多,如:当一元一次方程解法已知后,我们便可将二元一次方程组通过加减消元或代入消元将其归结为一元一次方程来求得解;当矩形面积会求后,我们便可以用割补法将平行四边形化为与之等积的矩形,从而求得平行四边形的面积……化归思想是数学家与其他科学家在思维方式上的最大区别之一。另外,分析与综合、类比等数学思想也早都被大家承认并运用。
另外,数学思想还有以下教育功能:①数学思想让人终身受益。一位着名数学家在谈自己学习数学的心得时这样说过:“有许多具体的教学知识学过之后是可以忘掉的,但是那些知识所表现的数学思想是永远不能忘掉的,而且会使你受用一生。”作为社会中的人,在接受教学教育的全过程中,要学习许许多多的数学知识,这不是因为他将来真要用那些硬件知识去解决具体的数学问题,而是因为他们无一例外地需要吸取数学知识中蕴含的数学思想,这些数学思想在科学思想方法方面给人以启迪,同时也培养了人们的科学态度与科学习惯,目的明确、思维清晰、行为准确是各行各业的社会人都不可缺少的。②数学思想激励学习者的科学创造精神。每一种数学思想都是撼人心灵的智力奋斗的结晶,它的形成过程,充满了无数人的创造性思维,标志着一个继承历史并突破历史的跃进,体现了一个源于实践又高于实践的升华,数学思想内蕴含的科学创造精神,创造者拼搏不已的奋斗精神定会激励学习者的科学热情,并鼓舞他们带着创造精神去从事各种事业。③数学思想促使学习者推广高新科学技术。数学知识中蕴含的数学思想,会使学习者获得并迅速理解,或领悟各项高新科学技术的内容及内容产生的背景及使用前途,从而在推广和运用高新技术潮流中占据上风。
3 数学方法与数学思想的关系
综上所述,数学方法与数学思想是两个完全不同的概念,它们既有区别又有联系。区别在于:数学方法是解决数学问题的方法,或用数学去解决实际问题的方法,而数学思想是数学反映在人的头脑中经思维后产生的结果。数学方法需要人们去探究,而数学思想需要人们去挖掘。联系在于:数学方法是数学思想产生的基础,数学思想是数学方法的深层表现形式。
4 中学数学教学改革的关键是应重视数学思想的教学
中学数学教学改革面临诸多问题。“讲什么”是首当其冲的问题,再像以前那样按部就班地仅讲书本上知识已不能适应素质教育的要求。要使中学数学课讲得深刻,就必须注重数学思想的教学,要使学生在学习数学知识的同时学到深邃的科学思维思想,就必须注重数学思想的教学,这已从前面关于数学思想的论述中看得十分清楚。中学数学教师充分认识数学思想的教育功能,在讲清、讲活数学知识、数学方法的同时讲清数学思想。只有注重了教学思想的教学,我们的数学教学才会进入一个更高的层次,我们的学生才不仅仅学到了硬件――数学知识,还学到了软件――数学思想,学到了解决处理问题的能力,更广义地说,学到如何做人的根本思想。

⑻ 数学建模论文中的推广怎么

如果是A题,一般是有定解的,解决的问题一般也比较单一,这类推广比较有限,比如去年的储油罐标定,而且这个也不是非要写,可以重点评价一下模型的优缺点以及改进方向。要是B题,一般较开放,建的模型一般比较有通用性,可以重点讲一下推广,比如去年的上海世博会影响力评估,其实就是一个定量评估,当然也可以做成预测,不管是哪个都可以推广,定量评估,这类现行多以定性评价的问题,比较好的做法(个人意见)模糊综合评价,权重用层次分析法、主成分分析法,更建议主成分分析法,因为有时候各指标间的相互影响会很影响结果,而层次分析法是默认各指标间相互独立的。这类模型建好后横向你可以和其它活动,比如奥运会、世界杯之类的比较,竖向可以和上海市以往年份比较。。还可以用到其他问题的评价,比如节能减排的定量评估,还有一些资质机构的排名评估比如律师事务所等等,也就是综合排名。。你可以参考一下国赛的一等奖

⑼ 我有一个初中数学教学模式,怎样才能在全国推广呢

到各学校申请进行试讲 宣讲

⑽ 对所建立的数学模型可以进行哪些方面的推广

数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

阅读全文

与一种数学理论方法要如何推广相关的资料

热点内容
仪器分析方法在农药残留中的应用 浏览:636
错题本的制作方法和步骤 浏览:695
越南瘦身减肥方法图片 浏览:242
qq浏览器桌面小窗口怎么设置在哪里设置方法 浏览:793
花盆收拾方法视频 浏览:515
如何克服陈列困难的方法 浏览:295
天然气着火后用什么方法灭火 浏览:387
赞呗简单制作方法 浏览:194
吉利汽车近光灯安装方法 浏览:369
湖南建筑工程钢筋除锈方法有哪些 浏览:762
选文描写方法有哪些 浏览:654
天麻的食用方法视频 浏览:923
fs308剃须刀电池连接方法 浏览:741
青少年如何补肾最有效的方法 浏览:678
如何掌握正确解读观察数据的方法 浏览:579
家庭找对象最佳方法 浏览:616
静脉曲张的治疗方法手术 浏览:712
荣耀手机的来电转接在哪里设置方法 浏览:236
腾讯手机权限设置方法 浏览:805
相片制作方法图片 浏览:274