‘壹’ 数据挖掘中的Hotspot关联规则
提到关联规则算法,一般会想到Apriori或者FP,一般很少有想到HotSpot的,这个算法不知道是应用少还是我查资料的手段太low了,在网上只找到很少的内容,这篇http://wiki.pentaho.com/display/DATAMINING/HotSpot+Segmentation-Profiling ,大概分析了一点,其他好像就没怎么看到了。比较好用的算法类软件,如weka,其里面已经包含了这个算法,在Associate--> HotSpot里面即可看到,运行算法界面一般如下:
其中,红色方框里面为设置的参数,如下:
-c last ,表示目标所在的目标所在的列,last表示最后一列,也是是数值,表示第几列;
-V first, 表示目标列的某个状态值下标值(这里可以看出目标列应该是离散型),first表示第0个,可以是数值型;
-S 0.13,最小支持度,里面会乘以样本总数得到一个数值型的支持度;
-M 2 , 最大分指数;
-I 0.01 , 在weka里面解释为Minimum improvement in target value,不知道是否传统的置信度一样;
相关说明:本篇相关代码参考weka里面的HotSpot算法的具体实现,本篇只分析离散型数据,代码可以在(http://download.csdn.net/detail/fansy1990/8488971)下载。
1. 数据:
@attribute age {young, pre-presbyopic, presbyopic}
@attribute spectacle-prescrip {myope, hypermetrope}
@attribute astigmatism {no, yes}
@attribute tear-prod-rate {reced, normal}
@attribute contact-lenses {soft, hard, none}
young,myope,no,reced,none
young,myope,no,normal,soft
young,myope,yes,reced,none
。。。
presbyopic,hypermetrope,yes,normal,none
这个数据格式是参考weka里面的,加入最前面的5行是因为需要把各个属性进行编码,所以提前拿到属性的各个状态,方便后续操作;
2. 单个节点定义:
public class HSNode {
private int splitAttrIndex; // 属性的下标
private int attrStateIndex; // 属性state的下标
private int allCount ; // 当前数据集的个数
private int stateCount ; // 属性的state的个数
private double support; // 属性的支持度
private List<HSNode> chidren;
public HSNode(){}}
splitAttrIndex 即对应属性astigmatism的下标(应该是第2个,从0开始);attrStateIndex 则对应这个属性的下标,即no的下标(这里应该是0);allCount即12,stateCount即5,support 对应41.57%(即5/12的值);children即其孩子节点;(这里的下标即是从文件的前面几行编码得到的,比如属性age为第一个属性,编码为0,young为其第一个状态,编码为0);
3. 算法伪代码,(文字描述,太不专业了,如果要看,就将就看?)
1. 创建根节点;
2. 创建孩子节点;
2.1 针对所有数据,计算每列的每个属性的’支持度‘support,
if support>= MINSUPPORT
把该列的当前属性加入潜在的孩子节点列表;
end
2.2 针对潜在孩子节点列表遍历
if (!当前节点产生的规则序in全局规则序列)
把当前节点加入孩子节点列表;
把当前节点产生的规则加入全局规则中;
end
2.3 遍历孩子节点列表
针对当前节点,返回到2,进行递归;
4. 代码关键步骤具体实现:
4.1 数据读取及初始化:
1) 读取文件的前面几行,初始化两个变量,attributes和attributeStates ,分别对应所有的属性和属性的各个状态;
while ((tempString = reader.readLine()) != null) {
// 第一行数据是标题
if(tempString.indexOf(HSUtils.FILEFORMAT)==0){
String attr = tempString.substring(HSUtils.FILEFORMAT.length()
, tempString.indexOf("{")).trim();
String[] attrStates =tempString.substring(tempString.indexOf("{")+1,
tempString.indexOf("}")).split(",");
for(int i=0;i<attrStates.length;i++){
attrStates[i]=attrStates[i].trim();
}
attrList.add( attr);
line++;
this.attributeStates.put(attr, attrStates);
continue;
}
if(flag){
this.attributes= new String[line];
attrList.toArray(this.attributes);// 复制值到数组中
flag=false;
}
String[] tempStrings = tempString.split(splitter);
lists.add(strArr2IntArr(tempStrings));
}
2) 后面就是把下面的数据转为数值型数组了,strArr2IntArr 函数如下:
/**
* String 数组转为int数组
* @param sArr
* @return
* @throws Exception
*/
private int[] strArr2IntArr(String[] sArr) throws Exception{
int[] iArr = new int[sArr.length];
for(int i=0;i<sArr.length;i++){
iArr[i]= getAttrCode(sArr[i],i);
}
return iArr;
}
/**
* 获得第attrIndex属性的attrState的编码
* @param attrState
* @param attrIndex
* @return
* @throws Exception
*/
private int getAttrCode(String attrState,int attrIndex) throws Exception{
String[] attrStates = attributeStates.get(attributes[attrIndex]);
for(int i=0;i<attrStates.length;i++){
if(attrState.equals(attrStates[i])){
return i;
}
}
throw new Exception("编码错误!");
// return -1; // 如果运行到这里应该会报错
}
这里数据读取主要是把离散型的字符串类型数据转换为数值型数据,编码规则如下:
属性age的状态: [young-->0,pre-presbyopic-->1,presbyopic-->2,]
属性spectacle-prescrip的状态: [myope-->0,hypermetrope-->1,]
属性astigmatism的状态: [no-->0,yes-->1,]
属性tear-prod-rate的状态: [reced-->0,normal-->1,]
属性contact-lenses的状态: [soft-->0,hard-->1,none-->2,]
4.2 初始化根节点
// 读取文件并赋值
List<int[]> intData = readFileAndInitial(HSUtils.FILEPATH,HSUtils.SPLITTER);;
int splitAttributeIndex = attributes.length-1;// 下标需减1
int stateIndex = HSUtils.LABELSTATE;
int numInstances = intData.size();// 数据总个数
int[] labelStateCount = attrStateCount(intData,attributes.length-1);
HSUtils.setMinSupportCount(numInstances);
double targetValue=1.0*labelStateCount[HSUtils.LABELSTATE]/numInstances;
// 创建根节点
HSNode root = new HSNode(splitAttributeIndex,stateIndex,labelStateCount[stateIndex],numInstances);
double[] splitVals=new double[attributes.length];
byte[] tests = new byte[attributes.length];
root.setChidren(constructChildrenNodes(intData,targetValue,splitVals,tests));
labelStateCount即目标属性的各个状态的个数,比如这里目标状态为soft,一共有5个值,一共有24个样本,所以其支持度为5/25=20.82%;
constructChildrenNodes函数为创建所有子节点,接收的参数有:intData:所有的数据(经过编码的);targetValue:当前节点支持度;splitVals和tests数组主要用于针对节点产生规则;
4.3 创建孩子节点:
1) 计算潜在孩子节点:
private List<HSNode> constructChildrenNodes(List<int[]> intData,double targetValue,
double[] splitVals,
byte[] tests) {
// 设置孩子节点
// // 获取子数据集
//
// 针对每个属性的每个state值计算其支持度(需要符合置信度)
PriorityQueue<AttrStateSup> pq = new PriorityQueue<AttrStateSup>();
for(int i=0;i<attributes.length-1;i++){// 最后一个属性不用计算(为Label)
evaluateAttr(pq,intData,i,targetValue);
}
这里的evaluateAttr主要是判断每个属性的各个状态是否符合要求,是则加入pq
/**
* 是否把第attrIndex属性的state作为备选节点加入pq
* @param pq
* @param intData
* @param attrIndex
* @param targetValue
* @param stateIndex
* @param labelStateCount
*/
private void evaluateAttr(PriorityQueue<AttrStateSup> pq,
List<int[]> intData, int attrIndex, double targetValue) {
int[] counts = attrStateCount(intData,attrIndex);
boolean ok = false;
// only consider attribute values that result in subsets that meet/exceed min support
for (int i = 0; i < counts.length; i++) {
if (counts[i] >= HSUtils.getMinSupportCount()) {
ok = true;
break;
}
}
if(ok){
double subsetMatrix =0.0;
for(int stateIndex=0;stateIndex<counts.length;
stateIndex++){
subsetMatrix =attrStateCount(intData,attrIndex,stateIndex,attributes.length-1,HSUtils.LABELSTATE);
if(counts[stateIndex]>=HSUtils.getMinSupportCount()&&subsetMatrix>=HSUtils.getMinSupportCount()){
double merit = 1.0*subsetMatrix / counts[stateIndex]; //
double delta = merit - targetValue;
if(delta/targetValue>=HSUtils.MINCONFIDENCE){
pq.add(new AttrStateSup(attrIndex,stateIndex,counts[stateIndex],(int)subsetMatrix));
}
}
}
}// ok
}
这里首先针对当前数据集计算属性下标为attrIndex的各个状态的计数到counts[]数组中;如果各个状态的所有计数都小于最小支持度,则该属性都不作为备选加入pq中;否则继续判断:计算目标属性的设定状态(比如soft)和当前属性的状态(young)共同出现的次数(第一次应该是2),赋值给subsetMatrix(那么该值就是2);判断subsetMatrix是否>=最小支持度,如果是在按照上面的代码进行计算,最后还有个判断是用到置信度的(暂译为置信度),如果满足则把其加入到pq中,即备选子节点列表;
2)生成全局规则,并添加孩子节点
List<HSNode> children = new ArrayList<HSNode>();
List<HotSpotHashKey> keyList = new ArrayList<HotSpotHashKey>();
while(pq.size()>0&&children.size()<HSUtils.MAXBRANCH){
AttrStateSup attrStateSup = pq.poll();
// 再次进行过滤
double[] newSplitVals = splitVals.clone();
byte[] newTests = tests.clone();
newSplitVals[attrStateSup.getAttrIndex()]=attrStateSup.getStateIndex()+1;
newTests[attrStateSup.getAttrIndex()] =(byte)2;
HotSpotHashKey key = new HotSpotHashKey(newSplitVals, newTests);
if (!HSUtils.m_ruleLookup.containsKey(key)) {
// insert it into the hash table
HSUtils.m_ruleLookup.put(key, ""); // 需要先增加规则,然后才处理子节点
HSNode child_i= new HSNode(attrStateSup.getAttrIndex(),attrStateSup.getStateIndex(),
attrStateSup.getStateCount(),attrStateSup.getAllCount());
keyList.add(key);
children.add(child_i);
} else {
System.out.println("The potential ,but not included :"+attrStateSup);
}
}
这里的全局规则使用HotSpotHashKey生成,具体规则的含义没有理解(可能和算法原理有关,都找不到一篇相关的paper!)
添加一个节点后,就会添加相应的规则,这样可以避免孩子节点的孩子有相同的规则被重复添加;
3) 针对每个孩子节点,处理其节点的孩子
// 处理子节点
for(int i=0;i<children.size();i++){
HSNode child = children.get(i);
child.setChidren(constructChildrenNodes(getSubData(intData,child.getSplitAttrIndex(),
child.getAttrStateIndex()),child.getSupport(),keyList.get(i).getM_splitValues(),
keyList.get(i).getM_testTypes()));
}
这里使用递归进行调用,方便处理。需注意节点规则的生成使用的两个数组newSplitValues 和newTests需要往下传递,所以在每个孩子节点生成规则的时候把其加入到一个keyList,这样在遍历孩子节点,处理其节点的孩子时,可以找到对应的规则传递数组;
这里的getSubData即是找到当前数据集中和给定的属性下标即属性状态一样的数据返回,如下:
/**
* 获取和splitAttributeIndex相同下标的属性以及stateIndex的所有数据
* @param intData
* @param splitAttributeIndex
* @param stateIndex
* @return
*/
private List<int[]> getSubData(List<int[]> intData,
int splitAttributeIndex, int stateIndex) {
List<int[]> subData = new ArrayList<int[]>();
for(int[] d:intData){
if(d[splitAttributeIndex]==stateIndex){
subData.add(d);
}
}
return subData;
}
4.4 打印规则树
/**
* 打印规则树
* @param node
* @param level
*/
public void printHSNode(HSNode node,int level){
printLevelTab(level);
System.out.print(node+"\n");
List<HSNode> children= node.getChidren();
for(HSNode child:children){
printHSNode(child,level+1);
}
}
private void printLevelTab(int level) {
for(int i=0;i<level;i++){
System.out.print("|\t");
}
}
这里可以看到针对当前节点,使用直接打印的方式,因为这里覆写了toString方法,所以可以这样,其toString 方法如下:
/**
* 格式化输出
*/
public String toString(){
return HSUtils.getAttr(this.splitAttrIndex)+"="+HSUtils.getAttrState(splitAttrIndex, attrStateIndex)
+" ("+HSUtils.formatPercent(this.support)+" ["+this.stateCount+"/"+this.allCount+"])";
}
4.5 算法调用:
package fz.hotspot;
import fz.hotspot.dataobject.HSNode;
public class HotSpotTest {
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
String file = "D:/jars/weka-src/data/contact-lenses.txt";
int labelStateIndex = 0; // 目标属性所在下标
int maxBranches=2; // 最大分支数目
double minSupport =0.13; // 最小支持度
double minConfidence=0.01;// 最小置信度(在weka中使用的是minImprovement)
HotSpot hs = new HotSpot();
HSNode root = hs.run(file,labelStateIndex,maxBranches,minSupport,minConfidence);
System.out.println("\n规则树如下:\n");
hs.printHSNode(root,0);
}
}
打印的规则树如下:
contact-lenses=soft (20.83% [5/24])
| astigmatism=no (41.67% [5/12])
| | tear-prod-rate=normal (83.33% [5/6])
| | | spectacle-prescrip=hypermetrope (100.00% [3/3])
| | spectacle-prescrip=hypermetrope (50.00% [3/6])
| tear-prod-rate=normal (41.67% [5/12])
| | spectacle-prescrip=hypermetrope (50.00% [3/6])
可以看到和weka给出的是一致的。
最近在看《暗时间》,上面提到说有想法最好写下来,这样不仅可以加深自己的理解,同时在写的过程中,比如一些表达之类的 也可以加强(身为程序员,这方面的能力确实欠缺),同时也可以让别人检验到自己的思维盲点。
文中相关算法理解,仅代表自己观点。
分享,成长,快乐
脚踏实地,专注
转载请注明blog地址:http://blog.csdn.net/fansy1990
文章最后发布于: 2015-03-10
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/fansy1990/article/details/44177523
展开全文
‘贰’ 简述一种关联规则挖掘算法基本过程。《数据挖掘》作业题追分100
Apriori算法是一种发现频繁项集的基本算法。算法使用频繁项集性质的先验知识。Apriori算法使用一种称为逐层搜索的迭代方法,其中K项集用于探索(k+1)项集。首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记为L1.然后,使用L1找出频繁2项集的集合L2,使用L2找到L3,如此下去,直到不能再找到频繁k项集。
Apriori算法的主要步骤如下:
(1)扫描事务数据库中的每个事务,产生候选1.项集的集合Cl;
(2)根据最小支持度min_sup,由候选l-项集的集合Cl产生频繁1一项集的集合Ll;
(3)对k=l;
(4)由Lk执行连接和剪枝操作,产生候选(k+1).项集的集合Ck+l-
(5)根据最小支持度min_sup,由候选(k+1)一项集的集合Ck+l产生频繁(k+1)-项
集的集合Lk+1.
(6)若L⋯≠①,则k.k+1,跳往步骤(4);否则,跳往步骤(7);
(7)根据最小置信度min_conf,由频繁项集产生强关联规则,结束。
‘叁’ 如何在sql2005中做一个销售的关联规则实验
您好,您这样:
1、在微软提供的Adventure Works示例中,已经为我们创建好了Data
Warehouse库,在2012版中默认对应的名称是AdventureWorksDW2012。
2、在第一篇的演示中,我们用过一个视图:vAssocSeqLineItems。
这个视图里面记录了订单号和商品名称等信息。通过这个视图,嵌套另外一个视图,我们生成了关联规则挖掘模型进行预测分析。
在上一篇中,挖掘工具中还需要提供商品价格信息,明显这个视图无法满足工具的要求,所以我们根据数据仓库的结构重新定义样本数据。
3、在数据仓库中,选择两张表,事实表FactInternetSales和维度表DimProct,在事实表中我们取订单编号,然后连接到维度表中取产品名称和价格信息。建立如下查询:
SELECT
f.[SalesOrderNumber] AS [OrderNumber]
,Coalesce(p.[ModelName],
p.[EnglishProctName]) AS [Model]
,f.ExtendedAmount AS Amount
FROM [dbo].[FactInternetSales] f
INNER JOIN [dbo].[DimProct] p ON
f.[ProctKey] = p.[ProctKey]
这个查询会连接事实表和维度表生成符合工具要求格式的数据,也就说订单编号,商品名和价格。
接下来,需要在Excel中把上面SQL语句的查询结果导入进来。下面的操作会演示如何导入一条SQL语句的结果到Excel中。当然在Excel中导入的方法很多,下面只介绍一种:
打开Excel,点击Ribbon菜单下的Data,From Other Sources->From SQL Server。
4、在新弹出的数据连接工具中,指定分析服务器所在的Server。点击下一步,留意Connect to specific
table,由于我们这里用的是一个查询而不是已经存在的一张表活着一个视图,所以需要把这里勾选掉。然后选择AdventureWorksDW2012
数据仓库,点下一步。
5、确认连接文件后点击Finish,接下来的界面中会让你选择指定数据库下的一张表,这里随便选择一个。然后点OK。在然后出现的Import Data界面中,选择属性Properties,出现连接属性界面。
6、在连接属性界面中,点击Definition,Command type更改成SQL,Command text里输入刚才建立的SQL查询,然后点击OK。
‘肆’ 在线急求apriori算法,要求能实现关联规则
摘 要
随着信息时代的发展,信息量呈几何级数增长,人们发现从这些海量信息中获取有用的信息越来越困难,要找出信息背后隐藏的规律更是不可想象。数据挖掘就是从大量数据中获取有用信息的一门新技术,关联规则挖掘是数据挖掘方法中的一种。本文详细论述了基于Apriori算法的关联规则挖掘系统的设计开发过程。系统基于经典的Apriori算法,对事务数据库进行了位图矩阵转换,大大提高了搜索效率,并能分别挖掘频繁项集和关联规则。
论文组织如下:首先介绍了数据挖掘的产生、定义和应用;接着阐述了关联规则挖掘的基本概念;然后对系统的需求进行了分析,并提出设计方案;紧接着是系统的具体实现;最后对系统进行了测试,将系统用于挖掘中药方剂库中的药对药组,验证了系统的正确性和实用性。
关键词:数据挖掘;关联规则;Apriori算法
需求分析和设计方案
4.1需求分析
由于事务数据库一般只具有对大量数据的存取、检索功能,对于用户的一般性的使用可以满足,然而,正是由于数据库中存放了大量的数据,不同的数据项,以及多个数据项之间还存在有大量的隐含的、未知的、有意义的数据关系,这些关系对于用户有着及其重要的作用,所以数据挖掘便在此情况下产生了。而关联规则挖掘是数据挖掘中一个重要规则,Apriori算法又是关联挖掘的一个经典算法,它能发现大量数据中项集之间有趣的关联和相关联系。随着大量数据不停地收集和存储,许多业界人士对于从他们的数据库中挖掘关联规则越来越感兴趣。从大量商务事务记录中发现有趣的关联关系,可以帮助许多商务决策的制定,如分类设计、交叉购物和促销分析。
1引言
随着数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。激增的数据背后隐藏着许多重要的信息,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。目前的数据库系统可以高效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。缺乏找出数据背后隐藏的知识的手段,导致了“数据爆炸但知识贫乏”的现象。于是数据挖掘技术应运而生,并显示出强大的生命力。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它使人类分析问题和发现知识能力得到了延伸。
2数据挖掘概述
2.1数据挖掘的产生
随着信息时代的发展,信息量呈几何级数增长,然而用于对这些数据进行分析处理的工具却很少,人们拥有了海量的数据的同时却苦于信息的缺乏。而激增的数据背后隐藏着许多重要的信息,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。目前的数据库系统可以高效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段,导致了“数据爆炸但知识贫乏”的现象。信息爆炸是一把双刃剑:巨量的信息既是最重要的财富,又是最危险的杀手。巨量信息也导致决策与理解危机。面对“人人被数据淹没,人们却饥饿于知识”的挑战,数据挖掘和知识发现技术应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。
数据挖掘是信息技术自然演化的结果。演化过程的见证是数据库业界开发以下功能:数据收集和数据库创建,数据管理(包括数据存储和检索,数据库事务处理),以及数据分析与理解(涉及数据仓库和数据挖掘)。例如,数据收集和数据库创建机制的早期开发已成为稍后数据存储和检索、查询和事务处理有效机制开发的必备基础。随着提供查询和事务处理的大量数据库系统广泛付诸实践,数据分析和理解自然成为下一个目标。
2.2数据挖掘的定义
数据挖掘是从大量数据中提取或“挖掘”知识。具体来说,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
人们把原始数据看作是形成知识的源泉,就像从矿石中采矿一样。原始数据有结构化的,如关系数据库中的数据,也有半结构化的,如文本、图形、图像数据,甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门很广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的学者和工程技术人员。
数据挖掘使用复杂的统计分析和建模技术来揭示企业数据库中隐藏的模式与关系——而这些模式是有可能被普通的方法所忽略的。数据挖掘从数据的分析入手、帮助决策,能从数据中寻找有价值的规律的技术。同时它也代表一个分析过程,我们具体化为方法学。实际上,数据库中的知识发现是一门交叉性学科,涉及到机器学习、模式识别、统计学、智能数据库、知识获取、数据可视化、高性能计算、专家系统等多个领域。从数据库中发现出来的知识可以用在信息管理、过程控制、科学研究、决策支持等许多方面。
特别要指出的是,数据挖掘技术从一开始就是面向应用的。它不仅是面向特定数据库的简单检索查询调用,而且要对这些数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指导实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。
许多人把数据挖掘视为另一个常用的术语数据库中的知识发现或KDD (knowledge discovery in databases)的同义词。而另一些人只是把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程如图1所示,由以下步骤组成:
1) 数据清理(消除噪声或不一致数据)
2) 数据集成(多种数据源可以组合在一起)
3) 数据选择(从数据库中检索与分析任务相关的数据)
4) 数据变换(数据变换或统一成适合挖掘的形式,如通过汇总或聚集操作)
5) 数据挖掘(基本步骤,使用智能方法提取数据模式)
6) 模式评估(根据某种兴趣度度量,识别出真正有 趣的模式)
7) 知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)
‘伍’ sas如何做关联规则
聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchical clustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。(3)多维等级分析(multidimensional scaling analysis,MDS)是一种在二维Euclidean “距离”中显示实验样本相关的大约程度。(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。聚类方法有两个显着的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。最终,将需要经验可信度通过序列比较来指导聚类解释。第二个局限由线性相关产生。上述的所有聚类方法分析的仅是简单的一对一的关系。因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。
从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。
从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。
聚类分析还可以作为其他数据挖掘任务(如分类、关联规则)的预处理步骤。
数据挖掘领域主要研究面向大型数据库、数据仓库的高效实用的聚类分析算法。
‘陆’ 关联规则中Apriori算法的一个小问题
Apriori算法可以归为3个步骤,连接、剪枝和支持度计数。其实没省略,你看Apriori的定义就知道,两个k项集连接要求前k-1项相同才能连接。所以你说的{1,3}和{2,3}不能连接,只有{2,3}和{2,5}可以连接生成{2,3,5}.
‘柒’ 亚马逊账号关联规则有哪些
亚马逊账号关联规则中,最容易犯的错误:操作端、网络端、账户信息关联。要想不触碰亚马逊账号关联规则,要么,亚马逊卖家老老实实的一个站点就做一个账号;要么亚马逊卖家就多账号运营,所有的资料、硬件都独立,或者使用vps。但是,这两种办法各有弊端,使亚马逊卖家并不能很愉快的防止亚马逊账号关联。
为了解决亚马逊卖家的这个烦恼,让亚马逊卖家的账号运营,更方便安全,成本降低,紫鸟推出了超级浏览器,来满足亚马逊卖家,一站式解决多账号防关联问题,只需要电脑、网络就可以轻轻松松运营多个账号,就目前不完全统计,紫鸟超级浏览器已经帮助40000+个店铺解决多账号关联问题。
紫鸟超级浏览器,从哪些地方为亚马逊卖家护驾保航,进行多账号运营呢?紫鸟超级浏览器,在IP方面是严格把关的,有着数不尽的纯净IP,可供亚马逊卖家使用。是的,注意,是纯净IP,但凡,已经被亚马逊卖家用过的IP,就会被紫鸟超级浏览器这边弃用隔绝,绝不再用。
紫鸟超级浏览器操作环境是十分安全的,通过对chrome内核的研发吃透,虚拟了不同的系统环境,亚马逊卖家登录不同的账号,通过紫鸟超级浏览器的话,所处的系统环境是绝对不一样的。
‘捌’ 关联规则的分类
Apriori算法:使用候选项集找频繁项集
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
Apriori算法采用了逐层搜索的迭代的方法,算法简单明了,没有复杂的理论推导,也易于实现。但其有一些难以克服的缺点:
(1)对数据库的扫描次数过多。
(2)Apriori算法会产生大量的中间项集。
(3)采用唯一支持度。
(4)算法的适应面窄。 基于划分的算法
Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。 FP-树频集算法
针对Apriori算法的固有缺陷,J. Han等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。
‘玖’ 关联规则的应用
关联规则挖掘技术已经被广泛应用在西方金融行业企业中,它可以成功预测银行客户需求。一旦获得了这些信息,银行就可以改善自身营销。银行天天都在开发新的沟通客户的方法。各银行在自己的ATM机上就捆绑了顾客可能感兴趣的本行产品信息,供使用本行ATM机的用户了解。如果数据库中显示,某个高信用限额的客户更换了地址,这个客户很有可能新近购买了一栋更大的住宅,因此会有可能需要更高信用限额,更高端的新信用卡,或者需要一个住房改善贷款,这些产品都可以通过信用卡账单邮寄给客户。当客户打电话咨询的时候,数据库可以有力地帮助电话销售代表。销售代表的电脑屏幕上可以显示出客户的特点,同时也可以显示出顾客会对什么产品感兴趣。
再比如市场的数据,它不仅十分庞大、复杂,而且包含着许多有用信息。随着数据挖掘技术的发展以及各种数据挖掘方法的应用,从大型超市数据库中可以发现一些潜在的、有用的、有价值的信息来,从而应用于超级市场的经营。通过对所积累的销售数据的分析,可以得出各种商品的销售信息。从而更合理地制定各种商品的定货情况,对各种商品的库存进行合理地控制。另外根据各种商品销售的相关情况,可分析商品的销售关联性,从而可以进行商品的货篮分析和组合管理,以更加有利于商品销售。
同时,一些知名的电子商务站点也从强大的关联规则挖掘中的受益。这些电子购物网站使用关联规则中规则进行挖掘,然后设置用户有意要一起购买的捆绑包。也有一些购物网站使用它们设置相应的交叉销售,也就是购买某种商品的顾客会看到相关的另外一种商品的广告。
但是在我国,“数据海量,信息缺乏”是商业银行在数据大集中之后普遍所面对的尴尬。金融业实施的大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,却无法发现数据中存在的各种有用的信息,譬如对这些数据进行分析,发现其数据模式及特征,然后可能发现某个客户、消费群体或组织的金融和商业兴趣,并可观察金融市场的变化趋势。可以说,关联规则挖掘的技术在我国的研究与应用并不是很广泛深入。 由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。如考虑属性之间的类别层次关系,时态关系,多表挖掘等。围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。
‘拾’ 关联规则是什么
关联规则是形如X→Y的蕴涵式,其中, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或right-hand-side, RHS) 。其中,关联规则XY,存在支持度和信任度。
关联规则最初提出的动机是针对购物篮分析(Market Basket Analysis)问题提出的。假设分店经理想更多的了解顾客的购物习惯。特别是,想知道哪些商品顾客可能会在一次购物时同时购买;
为回答该问题,可以对商店的顾客事物零售数量进行购物篮分析。该过程通过发现顾客放入“购物篮”中的不同商品之间的关联,分析顾客的购物习惯。这种关联的发现可以帮助零售商了解哪些商品频繁的被顾客同时购买,从而帮助他们开发更好的营销策略。
关联规则研究
由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。
如考虑属性之间的类别层次关系,时态关系,多表挖掘等。围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。