⑴ 四年级简便运算的技巧和方法有哪些
四年级简便运算的技巧和方法:
1、分配法
括号里是加或减运算,与另一个数相乘,注意分配。例:45×(10+2)=45×10+45×2=450+90=540。
2、提取公因式
注意相同因数的提取,例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。适用于加法交换律和乘法交换律。例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81。
4、借来还去法
用此方法时,需要注意观察,发现规律。还要注意还 ,有借有还,再借不难。例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106。
5、乘法分配律
分配法 括号里是加或减运算,与另一个数相乘,注意分配。例:45×(10+2)=45×10+45×2=450+90=540。
⑵ 如何锻炼心算能力如何才能快速提高
锻炼心算,要想快速提高心算能力多背一些数字乘除的公式,脑子里东西越多,算数就越快心算从字面理解,是用脑子计算,其实无非是把大家常用的笔算在大脑中运转一遍,这个不需要天赋,需要的是长期的锻炼。
口算训练,口算是笔算的基础,口算不仅需要正确还需要速度。口算技能的形成,速度的提高不是一天、两天训练能做到的,而是靠持之以恒训练实现的。
估算训练,日常生活 中的很多问题,实际上都不需要非常精确的结果,这时就可以运用估算来解决。这样速度加快了,而且又不影响实际的操作,遇到这类问题尽量先估算。
速算与巧算,也就是时所说的简便运算,简便方法的正确运用,一方面能提高解题速度,另一方面还能够让解题变得简单,提高自己的自信心。
(2)算数的技巧和方法扩展阅读
心算是一个汉语词汇,读音为xīn suàn,是一种不凭借任何工具,只运用大脑进行算术的方法。主要靠超强的记忆力和清晰的思考能力。
心算也叫“口算,数学教学方法之一。
一种只凭思维及语言活动不借任何工具的计算方法。它能培养学生迅速的计算技巧,发展学生的注意、记忆和思维能力。口算熟练后有助于笔算,且便于在日常生活中应用。
快心算是目前唯一不借助任何实物进行简便运算的方法,既不用算盘,也不用手指,更不用棋盘和图。
心算------ 快心算-----真正与小学数学教材同步的教学模式。
从最基本的数概念入手一环扣一环,与小学数学同步,但教学方法简单,学生易接受。在教学中,快心算把复杂的问题简单化,把抽象的数学概念形象化。
心算,口算,笔算答题,不借助任何实物(包括不数手指)。
快心算算题是从低位算。
快心算的课程包含了很多数概念的知识,不单纯是计算。快心算的算题理念——概念比计算还重要。
快心算教学方法的编排是遵循幼儿年龄特点来制定的,情景教学与趣味教学相结合,提倡幼儿在学中玩,玩中学。
快心算教学注重幼儿在生活中对数概念的体验,然后教师把幼儿生活中对数的理解经过整合运用到教学中。
虽然名字叫快心算,但它包含了小学数学课程的所有数概念。因此快心算是幼小衔接的最佳数学课程选择。
⑶ 两位数的加减乘除有哪些小技巧
据我所知的一种技巧吧给大家分享一下,就是两位数中任何两位数与11做乘法,只要把对应的两位数错位相加就能得到索要的答案,比如11乘以20,错位从上到下首位2和尾数0直接保留,中间的2和0相加就是2,所以答案就是220.两位数里任何数和11相乘都可以通用。
⑷ 速算的方法与技巧
全脑速算
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
例如:6752 + 1629 = ?
运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。
全脑速算乘法运算部分原理:
假设A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。
两个因数的积,只要两个因数的首数是整数倍关系,都可以运用此方法法进行运算,
即A =nC时,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算
计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。
速算嬗数|=(a-c)×d+(b+d-10)×c,,
速算嬗数‖=(a+b-10)×c+(d-c)×a,
速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无以伦比。
(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。
(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。
(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。
⑸ 简便运算的技巧和方法有哪些
数学简便计算方法:
一、裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。
(3)分母上几个因数间的差是一个定值。
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。
例题
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256,可使计算简便。
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
⑹ 最好的算数方法
最好的算数方法,其实还是根据我们本身的一个竖式计算来进行计算,比较简单的可以竖式计算。比较复杂的可以尝试计算器计算。
⑺ 两位数速算方法与技巧
操作方法
01
首先两位数和两位数相乘,第一个数加上第二个数的个位数,相加的数字写在等号前面,例如13×15=,先在等号下写18,分别作为百位和十位,即180,作为草稿。
02
其次,就把两个两位数的个位数相乘,得到的两位数作为十位数和个位数,十位上的数字两次相加,就可以得到正确答案,例如15×13=,5×3得15,15+180得到195。
03
然后,个位数相乘得一位数就简单一些,例如11×13=,即140+3=143,这样出错的概率少一些,也便于口算。
04
还有一种办法,就是凑整减零,例如11×14=,可以先算10×14得140,再加上1×14得14,两个相加得154
⑻ 速算的技巧与方法
速算方法与技巧
速算的技巧和方法一、10-20的两位数乘法及乘方速算方法:尾数相乘,被乘数加上乘数的尾数(满十进位)【例1】12X13---------156(1)尾数相乘2X
⑼ 如何学好数学的方法和技巧是什么
学好数学的方法和技巧是:
一、学好数学的方法
1、数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。
2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3、数学公式一定要记熟,并且还要会推导,能举一反三。
4、数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。
5、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
6、数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
7、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
8、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
9、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
二、学好数学的技巧
1、数学要通过做题掌握理论
数学虽然有不少公式、定理需要同学们去背诵跟记忆,但不是死记硬背就能会的,需要学会数学思维,理清数学思路,用数学思维方式去做题,在做题的过程中自然就能把理论知识掌握了。
做题是一个不断巩固知识的过程,也是对数学理论重新认识的过程,不做题根本不能知道哪里不会。当然,数学光靠做题还不够,还要多总结错题,这样才能提高数学成绩。
2、学好数学的方法是多做题
这种做题虽然可以理解为题海战术,但是不不等同于搞题海战术,因为数学不做题就想学会、想提高分数几乎是不可能的事情,但一味的多做题而不反思总结的话,也是有弊端的。数学最忌讳的就是眼高手低,看似会做了,可一到自己动手做题目,就卡壳了。