导航:首页 > 方法技巧 > 数学中如何使用配方法

数学中如何使用配方法

发布时间:2022-06-12 07:10:35

1. 数学怎么配方

配方只适用于等式方程,配方就是把等式通过左右两边同时加或减去一个数,使这个等式的左边的式子变成完全平方式的展开式,再因式分解就可以解方程了,也就是说配方法这个方法是根据完全平方公式:(a+或-b)平方=a平方+或-2ab+b平方 得出的。

比如你说的这个式子,不是等式就不能用配方法来解,我来举个例子:

2a²-4a+2=0

a²-2a+1=0 (二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)

(a-1)²=0 (上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)

a-1=0(最后等式两边同时开平方)

a=1(得到结果)

(1)数学中如何使用配方法扩展阅读:

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2,可得:

这个表达式称为二次方程的求根公式。

2. 数学中一元二次方程配方的方法具体是什么

1、定义:配方法就是将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。

2、解一元二次方程的配方法:在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

3、 示例:【例】解方程:2x²+6x+6=4

4、分析:原方程可整理为:x²+3x+3=2,x²+2×3/2x=-1,x²+2×3/2x+(3/2)²=-1+(3/2)²,(x+3/2)²=5/4,x+3/2=±√5/2,即:x1,2=(-3±√5)/2。

3. 数学的配方法怎么配公式是什么

若x²+kx+n,则配中间项系数一半的平方。就酱。至于后边的数字,需要几就加或减几

4. 用配方法怎么做配方法的公式是什么

x²-2x-8=0

x²-2x+1-1-8=0

x²-2x+1-9=0

(x-1)²=9

x-1=±3

解得

x1=4 x2=-2

5. 数学中配方法是指什么

配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式a2±2ab+b2=(a±b)2,把公式中的a看做未知数x,并用x代替,则有x2±2xb+b2=(x±b)2。

6. 配方法的公式是什么

配方法是根据完全平方公式:(a+/-b)²=a²+/-2ab+b²得出的。

配方只适用于等式方程,就是把等式通过左右两边同时加或减去一个数,使这个等式的左边的式子变成完全平方式的展开式,再因式分解就可以解方程了。

举例:

2a²-4a+2=0

a²-2a+1=0(二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)

(a-1)²=0(上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)

a-1=0(最后等式两边同时开平方)

a=1(得到结果)

(6)数学中如何使用配方法扩展阅读

配方法的应用

1、用于比较大小:

在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。

2、用于求待定字母的值:

配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。

3、用于求最值:

“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。

4、用于证明:

“配方法”在代数证明中有着广泛的应用,学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用。

7. 数学里的配方法怎么用

若x²+kx+n,则配中间项系数一半的平方.
举例说明 x²+4x+16
首先,配中间项系数一半的平方也就是2²=4.
原式=x²+4x+4+(16-4)=(x+2)²+12

8. 初中数学配方法

配方法是解一元二次方程的一种解法,也即是把一个一元二次方程配成完全平方的形式,再开方即可。对于一个二次项是1的方程,配方的时候先把常数项移到方程右边,然后方程两边加上一次项系数一半的平方,最后把左边写成完全平方,正确解出方程就可以了,如果二次项系数不是1,先把二次项系数化成1,然后和二次项是1的配方是一样的,认真做题就可以了。

9. 数学中的“配方法”怎么配方

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2,可得:

这个表达式称为二次方程的求根公式。

解方程

在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

10. 初三数学的配方法怎么算

用配方法解一元二次方程的步骤:

①把原方程化为ax²+bx+c=0(a≠0)的形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.

2x²−4x=1(配方法)

解:2x²−4x=1

阅读全文

与数学中如何使用配方法相关的资料

热点内容
鉴定母牛发情常用哪些方法 浏览:9
学生党下横叉的快速方法 浏览:504
绿萝生虫子怎么办最快的方法 浏览:514
女性最佳取环方法 浏览:363
手机信号最强的方法 浏览:802
图片粘贴排版方法视频 浏览:373
抗疫和防疫的方法和技巧手抄报 浏览:75
小学生如何能快速答卷的方法 浏览:76
当体温升高时常用哪些方法降温 浏览:38
车窗抛物方法视频教程 浏览:604
盐水去头屑的最佳方法 浏览:227
冬季开花花卉怎么养正确方法图文 浏览:957
如何制作腐植酸的方法 浏览:47
体育信息的研究方法 浏览:320
口袋最简单的方法怎么折呢 浏览:18
压力表的常见问题和解决方法 浏览:153
肾上腺素的释放水平检测方法 浏览:281
仪表总耗气量的计算方法有哪些 浏览:923
每天百分比计算方法 浏览:178
98乘以99分之8的简便方法 浏览:492