① 矿床变化与保存的研究方法
成矿作用过程是比较复杂的,再加上成矿后变化就更为复杂,前一作用过程的产物又被后来的多次作用过程所改造、叠加或破坏。只能根据现在保存下来的混杂的地质作用产物来推断其初始组成与结构,并推断其演变过程。因此,应用科学的思维方法和精密的探测、分析、测试技术来研究矿床变化和改造。常用的方法有:
(一)矿化区地质填图(大、中比例尺)
是研究矿床变化保存的基本方法。通过周密的地质观测、制图和相关的测试、鉴定工作,可以查明矿体、矿床、矿田内与矿化有关地质体的空间展布、相互关联和时间序次,包括穿插、包裹、蚀变、剥蚀、掩盖、错动等反映原生与次生、早成与后成的各种信息。制图比例尺可根据研究对象的尺度而有所不同。也可根据需要进行专门制图,如水文地质制图、构造地球化学制图以及各种精细的地表露头和坑内地质素描等。
(二)构造解析法
构造活动是控制矿床变化改造的基本因素之一。按构造与成矿的时间关系可大体划分为成矿前构造、成矿期构造和成矿后构造。成矿前、成矿期构造在成矿后的持续活动常使矿体产状和结构复杂化,而新生的成矿后构造对矿床的破坏和改造最为直接和显着(翟裕生等,1993,1997)。
(三)矿物学和蚀变岩石学研究
矿床的变化和改造集中地表现在原生矿物和岩石的改造(结构的、构造的、化学成分的)。详细地对比研究原生矿物、岩石和次生矿物、岩石(包括蚀变岩石)的组构和成分的差异,及其所占有的空间和发生的时间,十分有助于判断矿床发生变化的类型和强度,并有可能做出定量的分析。也可探索并识别出矿床被改造程度的次生标型矿物(组合),作为一种实际的判别标志。
(四)地球化学方法
运用地质和地球化学方法,可以从水系沉积物、土壤和岩石的元素地球化学测量结果(异常图)中,区分开矿化原生异常场和成矿后次生异常场。再结合含矿区域和矿床的地质构造条件分析,去追溯矿床或矿集区中成矿元素及伴生元素的后生迁移路径、迁移距离和分带情况,从而提供有关矿床变化、改造的有用信息。运用生物地球化学方法还可查明生物有机质对矿床中有用物质的改造和再迁移作用。
(五)地球物理方法
地球物理勘查获得的丰富信息不仅用于找寻矿床,还可用于研究矿床中矿体、围岩等物理性质的变化。譬如,具强磁性含矿侵入体中局部弱磁异常可能是岩体的被蚀变部分,或是后来弱磁性岩墙的侵入部位。含多量硫化物的斑岩体有较强的电异常,但硫化物氧化为褐铁矿后,则电异常显着减弱。这些情况说明,结合地质情况,充分利用物探信息,也是研究矿床变化的一种手段。
(六)地理学和气象学的方法
这对研究地表矿床的风化剥蚀过程是很有必要的。不同的地理空间和地貌景观如经纬度、海拔高度、高山、丘陵、平原、洼地、河流、湖泊、海岸等各有不同的风化剥蚀强度,而气象因素如气温、气压、湿度、降雨量、风力及风向、冰冻、积雪等又直接左右表生风化作用进行。这些因素都控制着矿床露头的变化改造作用。
(七)矿床形成年代、改造年代和变化时段的测定
运用同位素定年方法,结合地质分析,可从时间维去认识矿床变化改造的地质年龄、经历的时间、变化的速率等,帮助了解矿床变化的阶段性及每个阶段的变化特征。目前,在矿床成矿年龄方面已积累了大量的测定数据,还需密切结合地质体时-空关系来慎重比较和厘定,而关于矿床改造年龄方面研究刚刚起步,需要积累资料和经验。
(八)模拟实验
现有的成岩成矿实验大都是模拟矿床形成过程的物理化学作用及控制参量(高温高压、常温常压及其他),而很少注意到对矿床改造破坏过程的实验研究。应该有重点地开展这类研究,以便获得规律性认识;还可为研究矿床表生变化中有害元素分散对生态环境的损害作用提供可借鉴的资料。
② 矿床学的研究内容
可概括为研究矿床的特征及形成条件、形成作用与过程时空分布及其控制因素。前阐明矿床的成因,后者查明矿床的分布规律。矿床学正是围绕着这些问题的提出和解决不断发展起来的。
研究一个矿床的工作内容大体包括以下方面:1.区域地质特征,矿床在区域地质构造分区中的位置,该地区的沉积作用、岩浆作用,构造发展和成矿的有利背景。2.矿区地质特征,区内的岩石、构造类型和特点,矿床的产出及分布。3.矿体的产状和形态及其空间位置的控制,矿体内外矿化特征变化的查明。4.矿石的类型,矿石的组成和组构,有用组分的存在形式,影响矿石质量的因素。5.综合研究,矿床成因和类型的确定,矿床的评价。
③ 矿床学主要研究的基本任务和主要内容是什么
矿床学是研究在地壳中形成条件、成因和分布规律的科学。
矿床学以矿床为研究对象,其基本任务是:
第一,正确认识各类矿床的地质特征、形成条件和形成过程,查明矿串成因。
第二,查明矿床在时间上和空间上的烟花特征,认识矿床在地壳中的分布规律,以便预测在各种地质环境中,可以期望找到何种矿产和矿床类型。
④ 主要研究方法
研究金属矿床成矿时代的常用方法有三种,一是矿石铅同位素年代学方法,二是蚀变矿物的同位素测年方法,三是据赋矿围岩、控矿构造及与矿化有关岩脉的时代间接推断矿脉形成时代。本书主要应用这三种不同的年代学方法确定矿床成矿时代,同时注意不同方法所得年龄的对比分析与相互验证。近年来发展起来的铼-锇同位素年代学方法能直接测定辉钼矿等矿石矿物的形成时代,然而这种方法在我国目前尚处在试用阶段,在燕山地区尚未全面展开该项测年工作。
一、普通铅同位素的演化模式与年龄计算公式
矿石铅同位素年代学方法是直接测定成矿时代的重要研究方法,被广泛用于世界各地的金属矿床。目前常用的铅同位素演化模式包括单阶段模式如Holms-Houtermans模式,二阶段模式如正常铅混合模式、瞬间增长模式与连续增长模式,多阶段模式如简单的三阶段铅混合模式等。但这些模式都存在严格的应用条件。单阶段模式只适合于封闭体系、无后期铅混染的少数几个整合矿床;简单的二、三阶段模式要求体系相对封闭,各阶段异常铅只能来自于单一的且铀、钍、铅同位素比值均一的源区,还要求体系在各阶段的铅同位素均匀分布。这些模式在一般的造山带与地盾、地台区,都能有效地用于确定矿床成矿时代。然而,燕山陆内造山带具有十分复杂的地质过程,矿质具有两种以上的复杂来源;成矿体系多属开放体系,铀-钍-铅同位素混合过程也颇为复杂,存在多种不同的情况;上述几个特殊的铅同位素模式不足以概括本区常见的开放体系铅的混合过程,以至于使本区已积累的近百组铅同位素资料长期以来得不到充分利用,求不出有地质意义的成矿时代。为此,笔者首先从理论上分析常见开放体系铅同位素混合过程,建立开放体系铅同位素演化模式,推导其年龄计算公式。这些模式在燕山地区成岩成矿时期的研究中,取得了良好的应用效果。
1.基本假设
(1)同一来源的206Pb、207Pb、208Pb、204Pb以相同的概率进入同一样品。不同铅同位素化学性质的相似性,使这一假设在各种地质过程中都能成立。
(2)同一时代地质体的N(238U)/N(204Pb)(即μ值)与N(235U)/N(204Pb)(v值)可以变化;铀的丢失与加入常造成这种结果。
(3)当铅混合时,铅同位素可来源于两种以上不同的铅源,包括正常铅铅源与放射成因异常铅铅源;同一铅源对不同样品的贡献可以不一样,即同一体系不同样品的铅同位素来自于任一源区的概率可以不一样。
(4)体系中的铅可以来自于一个至数个放射性成因铅源,将N(238U)/N(204Pb)=μi的源区叫μi源。
(5)铀、铅及其同位素在地幔中均匀分布。
(6)铅在最后一阶段混合后,保持其同位素比值,直至现代。
2.二阶段铅混合的系统模式
设样品来自于t1时形成正常铅的概率为α1,来自于T至t2时期形成的放射成因铅的概率为α2。t2混合时,设有m个μi源,样品中混合铅来自于μi源的概率为βi。t2混合之后,样品铅同位素组成可表示为:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
式中:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
a0、b0为T=4550Ma时地球的初始铅同位素组成;α1+α2=1,
模式Ⅰ当α1=1,α2=0时,由(3.1.1)、(3.1.2)式知,二阶段铅退化为单阶段铅。这时为正常铅,样品点在N(207Pb)/N(204Pb)—N(206Pb)/N(204Pb)坐标图中分布于一点。据(3.1.3)、(3.1.4)式得:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
由(3.1.5)式与(3.1.3)、(3.1.4)式可计算成岩或成矿年龄t1与源区μ,v值。该模式相当于H-H模式(G.福尔,1983)。
模式Ⅱ0<αi<1,i=1,2;β1=1,βj=0(2≤j≤m),μ1=μ;这时(3.1.1),(3.1.2)式可简化为:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
令
由(3.1.6)、(3.1.7)式得:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
当αi对不同样品取值不一样时,样品点呈线性分布,直线斜率为R,如图3-1所示。样品点分布于增长曲线的弦上,等时线与增长曲线的两交点对应时代t1与t2相当于两次普通铅的形成时代。该模式相当于前述已有的正常铅与正常铅混合二阶段模式。当已知t1与t2之一时,可据R求出另一时代。
模式Ⅲ-1当i=1,2时,0<αi<1,0<βj<1(1≤j≤m),βj及
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
(3.1.8)式中,
模式Ⅲ-20<αi<1,i=1,2;0≤βj<1,1≤j≤m;α1对不同样品皆非恒定值,βj对不同样品非定值;这时,若
图3-1模式Ⅱ图解
Fig.3-1Lead-isotope evolution of modelⅡ
图3-2模式Ⅲ-1图解
Fig.3-2Lead-isotope evlution of modelⅢ-1
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
令
由于
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
这时,样品点呈线性分布,据直线斜率能求出t1与t2之一。
令
模式Ⅲ-3当0<αi<1,0≤βj<1(i=1,2,1≤j≤m),βj、αj对不同样品皆非常数时,若样品的α1值仅取几个定值之一,当样品点足够多时,样品点呈图3-4所示分布状态,即分布于一组平行直线上。据直线斜率能求出t1或t2,斜率R可表示为:
图3-3模式Ⅲ-2图解
Fig.3-3The first lead-isotope evolution of model Ⅲ-2
图3-4模式Ⅲ-3图解之一
Fig.3-4The first lead-isotope evolution of model Ⅲ-3
当
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
当
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
若αi对不同样品都不一样时,样品点呈星散状分布(图3-5),这时无法求出t1或t2的真实值。
图3-5模式Ⅲ-3图解之二
Fig.3-5The second lead-isotope evolution of model Ⅲ-3
3.三阶段铅混合的系统模式
设一阶段铅的分离时代为t1,二阶段铅的混合时代为t2,三阶段铅的混合时代为
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
(3.1.12)、(3.1.13)式为一般情况下三阶段铅混合时的定量关系式。不同条件下,三阶段混合铅具有不同特征,对应于不同的铅演化图,下面分别予以讨论。
(1)ε1=1,εi=0,2≤i≤n+1,这时三阶段铅退化为二阶段铅。
(2)0<ε1<1;εi=0,2≤i≤n;0<εn+1<1,这时(3.1.12)、(3.1.13)式可写成:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
模式Ⅳ当β1=1,βj=0,2≤j≤m时,(3.1.14)与(3.1.15)式可写成:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
若放射性铅与普通铅在T到t2期间有相同的演化过程和成分,即
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
这时相当于G.福尔提出的简单三阶段模式;且样品点或呈线性分布(图3-6),或分布于一点。据等时线斜率R能求出t2与t3之一:
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
模式Ⅴ-1当所有样品的ε1、Xt2、Yt2取相同值时,则ε1·Xt2、ε1·Yt2为常量。若βj对所有样品取相同值,0≤βj≤1,1≤j≤m;这时三阶段样品铅同位素构成一点。据(3.1.14)、(3.1.15)式,有
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
只有当ε1及Xt2、Yt2都已知时,才能求出t3;一般情况下,若上述三参数未知,则无法计算出真实年龄t3。
模式Ⅴ-2当ε1及Xt2、Yt2为常量,而不同样品βj不同时,1≤j≤m,若
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
这时,样品点呈线性分布(图3-7),直线斜率一般较大。据R能求出t3。
图3-6混合铅模式Ⅳ图解
Fig.3-6Lead-isotope evolution of model Ⅳ
图3-7模式Ⅴ-2图解
Fig.3-7Lead-isotope evolution of model V-2
模式Ⅵ当所有样品点的Xt2、Yt2恒定时,若0≤βj≤1,1≤j≤m,βj非常数;而Xt2
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
令
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
这时,样品点呈线性分布,分布特征类似于模式Ⅲ-2,如图3-8所示。
模式Ⅶ当Xt2、Yt2恒定,ε1、β,对不同样品取不同值时,若
图3-8模式Ⅵ图解
Fig.3-8Lead-isotope evolution of model Ⅵ
(3)当不同样品的Xt2、Yt2不同,0≤εi<1,1≤i≤n+1时,有下列模式:
模式Ⅷ若Xt2、Yt2呈线性分布,不同样品点εi相同(1≤i≤n),0≤βj<1(1≤j≤m);则有几种可能性:
模式Ⅷ-1若βj恒定,1≤j≤m,则(3.1.12)、(3.1.13)式可写成:
图3-9模式Ⅶ图解
Fig.3-9Lead-isotope evolution of model Ⅶ
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
令
由于βi为常量,对所有1≤j≤m都成立,所以
图3-10模式Ⅷ-1图解
Fig.3-10Lead-isotope evolution of modelⅧ-1
模式Ⅷ-2若
图3-11模式Ⅷ-2图解
Fig.3-11Lead-isotope evolution of modelⅧ-2
模式Ⅸ若(Xt2,Yt2)呈线性分布,不同样品εj值相同,βj值不同,
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
这时样品点沿两组斜率较大的平行直线分布。当样品点足够多而能求出r1,与r2时,则可据此求出t1、t2或t3。
模式X若(Xt2,Yt2)呈线性分布,但εi,βj对不同样品不取恒定值时,则据(3.1.12)、(3.1.13)式,样品点呈星散状分布,或呈线性沿两组平行直线分布。后一种分布状状只有当εi对不同样品点仅取几组确定值时才能出现,据平行直线的斜率能求出t3,斜率r2为:
当
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
当
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
模式Ⅺ当(Xt2,Yt2)不呈线性分布,而呈星散状分布时,则三阶段铅样品点仍呈星散状分布,这时无法求出t3与t2的真实值。
模式Ⅻ当(Xt2,Yt2)分布于数条平行直线上,而βj、εj恒定时,由(3.1.12)、(3.1.13)式可得出样品点的(Xt3,Yt3)仍呈线性分布,斜率与二阶段等时线相同(图3-12);据斜率r1可求出t1或t2,详见模式Ⅲ-3,但无法求出t3。
模式ⅩⅢ当(Xt2,Yt2)呈线性分布于数条平行直线上(其斜率为r1),若ε1恒定,βj对不同样品取值不尽相同,则由(3.1.12)、(3.1.13)式可导出:当样品点足够多时,样品点分布于一个菱形区域内,类似于图3-11所示的三阶段铅样品点的分布状态;据两组直线斜率r1、r2能求出t1、t2或t3,r2表达式为:
当
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
当
燕山陆内造山带金-多金属成矿作用与构造-成矿关系
以上从理论上分析了开放体系多种情况下铅同位素的演化模式。可以看出,混合铅样品点呈同一或类似分布状态时,可对应一个至数个不同的地质过程。因此在应用铅同位素研究地质问题时,应尽量取足够多的样品;在样品点足够多的前提下,结合其它地质与地球化学资料进行综合分析,以便合理地解释铅同位素的演化,求出成岩、成矿时代。这些模式在燕山地区成岩成矿时期研究中,取得了较好的应用效果。
图3-12模式Ⅻ图解
Fig.3-12Lead-isotope evolution of modelⅫ
二、其它研究方法简介
1.据矿石蚀变矿物的K-Ar法、Rb-Sr等时线法、裂变径迹法确定成矿时代
上一章已述,燕山地区大部分类型的矿化都伴有强烈的蚀变,蚀变阶段性与矿化阶段性存在良好对应关系,两者形成时间相近。因此,蚀变矿物的同位素年龄能代表成矿时代。
蚀变矿物绢云母、白云母、钾长石等适合于K-Ar法年龄测定,白云母、绢云母的K-Ar法年龄能较好地反映同期矿化时代。
近矿蚀变矿物绢云母、白云母等的单矿物Rb-Sr等时线法年龄也能准确地反映成矿时代,是确定矿床形成时代的良好方法。
蚀变矿物的裂变径迹法年龄常较实际成矿时代偏小,其上限能大致代表成矿时间(杨应平,1985,硕士论文)。
2.据赋矿围岩时代与矿区岩脉时代间接推断成矿时代
当有充分的资料说明矿化与围岩成岩作用存在成因联系时,围岩时代能代表成矿时代下限。表3-1说明燕山地区中生代赋矿岩体时代与矿化时代的一致性。
当矿区内存在大量岩脉时,根据岩脉时代及岩脉与矿体相互穿切关系,也能较好地推断成矿时代。
表3-1岩体与其中金矿时代对比表
3.据同成矿期控矿构造的成生、活动时间推断成矿时代
任何控矿构造都属于某一个或某些构造体系,皆有一定的形成与活动时期;因此据同成矿期控矿构造的时代能定性推断部分矿床的成矿时代。古构造筛分有助于这方面的研究工作。
⑤ 研究思路、研究内容及研究方法
一、研究思路
在充分收集、消化和吸收前人资料的基础上,以现代地球科学和成矿理论为指导,并综合矿床学、岩石学、流体包裹体、同位素地质年代学、同位素地球化学、岩石地球化学等多学科知识,采用野外地质调查与室内研究相结合、宏观与微观研究相结合、岩(矿)相学与矿床地球化学相结合、矿物学研究与同位素测试相结合等综合性研究方法,对两个典型矿床开展全方位剖析,并进行对比,总结成矿规律,建立成矿模式。
二、研究内容及研究方法
在系统的野外地质调查和详细的室内研究工作基础上,以哈达门沟金矿床和金厂沟梁金矿床为研究对象,通过元素地球化学、同位素地球化学、同位素年代学和流体包裹体测试等手段,深入剖析金-钼(铜)矿床(点)的产出环境、地质特征,以确定金-钼(铜)矿床的矿床类型和成矿机理过程以及成矿流体的形成、运移和演化规律,探讨岩浆活动和金矿成矿的关系,在此基础上确定找矿方向;主要研究内容包括:
(1)全面收集前人工作成果,包括矿区地质勘查报告、研究报告、区域地质调查报告以及科研论着和文献,综合分析已有资料取得的成果和存在的问题,有针对性地开展研究工作。
(2)重点对两个典型矿床开展详细的矿床学研究,开展以路线地质观察、典型剖面测量,了解工作区内地层、构造、岩浆岩演化特征,查明它们之间的空间分布关系;重点观察研究含矿地质体及矿体的产出特征、几何形态、接触关系、岩矿石类型和热液蚀变特征。在以上野外地质调查基础上,有针对性地采集岩(矿)石标本样品。
(3)选取代表性岩矿(石)标本,磨制光(薄)片,碎样,挑选单矿物,为开展室内研究和各种地球化学测试做准备。
(4)对代表性金矿矿石样品进行流体包裹体研究,进行温度、压力、盐度和成分测定,查明成矿流体的主要物质组成,成矿的物理化学条件的变化,推断成矿流体的来源、运移和演化,揭示成矿作用过程。
(5)对代表性岩矿石样品进行稀土元素、微量元素和主量元素特征研究,揭示成矿过程中元素的迁移变化特征以及与区域岩浆活动的关系。
(6)对代表性岩矿石样品进行锶-钕-铅同位素研究,确定成岩(矿)物质来源、源区特征和演化过程,了解壳、幔物质在含矿侵入岩和金属矿体中所占比例。通过氢-氧-硫同位素的研究,对成矿流体的产物(矿石和蚀变岩及其所含矿物)进行系统分析,阐明成矿流体来源和运移过程以及成矿物质聚集机理,揭示地壳不同期次演化阶段岩浆活动与金属成矿作用的耦合关系。
(7)开展同位素年代学研究,通过锆石SHRIMP U-Pb和LA-ICP-MS U-Pb方法对岩体年龄进行约束,通过辉钼矿Re.Os,绢云母和钾长石等含钾矿物Ar-Ar年龄测定来确定成矿作用的时限。
(8)综合研究,结合本次野外观察和室内测试成果,对矿床产出的地质环境、矿体特征、矿床成因开展解剖性研究工作,探讨矿床成因和成矿机制。在此基础上,开展两个典型矿床的对比研究工作,并结合区域构造-岩浆演化,深化对华北板块北缘金矿成矿规律的认识,为区域金矿找矿勘查提供指导。
⑥ 请问研究矿床的成矿时代有哪些办法
1、可以用地球化学的方法:根据矿床中一些放射性元素的衰变规律及其半衰期反推,计算得到矿床的成矿年代;
2、可以用地质的方法:内生矿床,可以根据岩体的产状、岩体与地层的接触关系、岩浆侵入的地层判断岩浆和沉积岩层哪个先形成,从而得知岩体侵入的年代;外生矿床,也可以根据矿床赋存和接触的地层判断它形成于哪个时代。因为地层都是已知了形成时间的。通过比较时间的先后就可以得知矿床的形成时代。
⑦ 论述矿床成因的研究方法
矿床学第一章就有矿床成因的研究方法。