⑴ 如何制取氧化锌
1、由碳酸锌煅烧而得。 ZnCO3=ZnO+CO2↑
2、由氢氧化锌煅烧分解而得。
3、由粗氧化锌冶炼成锌,再经高温空气氧化而成。
4、由熔融锌氧化而得。
5、采用的方法有经锌锭为原料的间接法(也称法国法),以锌矿石为原料的直接法(也称美国法)和湿法三种。
间接法。反应方程式:2Zn+O2=2ZnO
操作方法:将电解法制得的锌锭加热至600~700℃熔融后,置于耐高温坩埚内,使之1250~1300℃高温下熔融气化,导入热空气进行氧化,生成的氧化锌经冷却、旋风分离,将细粒子用布袋捕集,即制得氧化锌成品。
直接法。反应方程式:
C+O2=CO2
CO2+C=2CO
ZnO+CO=Zn(蒸气)+CO2
Zn(蒸气)+CO+O2=ZnO+CO2
操作方法:将焙烧锌矿粉(或含锌物料)与无烟煤(或焦炭悄)、石灰石按1:0.5:0.05比例配制成球。在1300℃经还原冶炼,矿粉中氧化锌被还原成锌蒸气,再通入空气进行氧化,生成的氧化锌经捕集,制得氧化锌成品。
湿法。用锌灰与硫酸反应生成硫酸锌,再将其分别与碳酸钠和氨水反应,以制得的碳酸锌和氢氧化锌为原料制氧化锌。反应方程式如下:
Zn+H2SO4=ZnSO4+H2↑
ZnSO4+Na2CO3=ZnCO3↓+Na2SO4
ZnSO4+2NH3·H2O=Zn(OH)2↓+(NH4)2SO4
以碳酸锌为原料,经水洗、干燥、煅烧、粉碎制得产品氧化锌。ZnCO3→ZnO+CO2↑
以氢氧化锌为原料,经水洗沉淀、干燥、煅烧、冷却、粉碎制得产品氧化锌。Zn(OH)2→ZnO+H2O
⑵ 氧化锌实验室制法
常用
均匀沉降法:按硝酸锌浓度0.1mol/L,尿素浓度0.4mol/L配置500mL混合溶液,放入95。C的恒温水浴中,搅拌保温8h,待所得溶液冷却后,放入离心机中,用蒸馏水洗涤2—3次;再放入烘箱中干燥24~48h,烘箱温度保持在60。C左右;最后,将干燥后的样品放入马弗炉内煅烧4h,温度为450。C.
连续微波法:微波炉(Panasonic);磁力真空泵,上海西山泵业有限公司;液体流量计,苏州流量计厂;D/Max一ⅢC X 射线粉末衍射分析仪,日本理学公司;H一600一II透射电镜、S一570扫描电镜,日本日立公司;876—1型真空干燥器,上海浦东跃欣科学仪器厂;72卜分光光度计,上海第三分析仪器厂。ZnSO ·7H (),AR,上海金山区兴塔美兴化工厂;尿素,AR,中国医药(集团)上海化学试剂公司。
将ZnSO ·7H ()和尿素按一定比例配成混
合溶液,装入图1所示的装置中,在90℃ 微波辐
射下恒温反应。待反应完全后,取出沉淀。分别
用pH一9.0的氨水、无水乙醇洗涤2~3次。将
所得的固体粉末,干燥12 h。取出试样充分研磨
后,在450℃焙烧一定时间,即得纳米ZnO粉末。
微波辐照下,ZnSO ·7H O和尿素制备纳
米Zn()反应机理如下:
90℃ 时尿素发生分解:
CO(NH 2)2+H 2O= C()2+2NH 3
3Zn + + C() + 4OH + H 2()=ZnCO3 ·2Zn(OH )2 ·
H 2()
450℃ 焙烧时:
ZnCO ·2Zn(OH),·H O=3ZnO+C(),+2H PO
原位生成法:
称取一定量的ZnClz,溶于水中,滴入HC1并用玻璃棒搅
拌得无色透明溶液。在搅拌的同时滴加NaOH溶液至PH=
8 ,得到大量白色rZn(OH) 沉淀。用蒸馏水洗涤数次,得
到纯Zn(OH),。再称取一定量的PVP溶于水中,然后与zn
(OH) 混合搅拌均匀。将混合液置于高压釜内,常温下充压
至lMPa,在160oC下热压反应3h,得到产物。
还有
物理法
物理法包括机械粉碎法和深度塑性变形法。机
械粉碎法是采用特殊的机械粉碎、电火花爆炸等技
术,将普通级别的氧化锌粉碎至超细。其中张伟l_J
等人利用立式振动磨制备纳米粉体,得到了a—Alz
O3、Zn0、MgSiO3等超微粉,最细粒度达到0.1 m。
此法虽然工艺简单,但却具有能耗大,产品纯度低,
粒度分布不均匀,研磨介质的尺寸和进料的细度影
响粉碎效能等缺点。最大的不足是该法得不到1一
lOOnm的粉体,因此工业上并不常用此法;而深度
塑性变形法是使原材料在净静压作用下发生严重塑
性形变,使材料的尺寸细化到纳米量级。这种独特
的方法最初是由IslamgalievE‘]等人于1994年初发
展起来的。该法制得的氧化锌粉体纯度高、粒度可
控,但对生产设备的要求却很高。
总的说来,物理法制备纳米氧化锌存在着耗能
大,产品粒度不均匀,甚至达不到纳米级,产品纯度
不高等缺点,工业上不常采用,发展前景也不大。
2.2 化学法
化学法具有成本低,设备简单,易放大进行工业
化生产等特点。主要分为溶胶一凝胶法、醇盐水解
法、直接沉淀法、均匀沉淀法等。
2.2.1 溶胶一凝胶法
溶胶一凝胶法制备纳米粉体的工作开始于20世
纪6O年代。近年来,用此法制备纳米微粒、纳米薄
膜、纳米复合材料等的报道很多。它是以金属醇盐
Zn(OR) 为原料,在有机介质中对其进行水解、缩聚
反应,使溶液经溶胶化得到凝胶,凝胶再经干燥、煅
烧成粉体的方法[引。此法生产的产品粒度小、纯度
高、反应温度低(可以比传统方法低400-500"C),
过程易控制;颗粒分布均匀、团聚少、介电性能较好。
但成本昂贵,排放物对环境有污染,有待改善。
水解反应:Zn(OR)2+2H2 O— Zn(OH)2+
2ROH
缩聚反应:Zn(OH)2一ZnO+H2O
2.2.2 醇盐水解法
醇盐水解法是利用金属醇盐在水中快速水解,
形成氢氧化物沉淀,沉淀再经水洗、干燥、煅烧而得
到纳米粉体的方法 引。该法突出的优点是反应条件
温和,操作简单。缺点是反应中易形成不均匀成核,
且原料成本高。例如以Zn(OC2H )。为原料,发生
以下反应:
Zn(OC2H5)2+2H20一Zn(OH)2+2G H5OH
Zn(OH)2— ZnO+H2O
2.2.3 直接沉淀法
直接沉淀法是制备纳米氧化锌广泛采用的一种
方法。其原理是在包含一种或多种离子的可溶性盐
溶液中加人沉淀剂,在一定条件下生成沉淀并使其
沉淀从溶液中析出,再将阴离子除去,沉淀经热分解
最终制得纳米氧化锌。其中选用不同的沉淀剂,可
得到不同的沉淀产物。就资料报道看,常见的沉淀
剂为氨水 、碳酸氢铵 引、尿素 。 等。
以NH。·H。O作沉淀剂:
Zn。++2NH3·H20一Zn(OH)2+2NH4+
Zn(OH)2— ZnO+H2O
以碳酸氢铵作沉淀剂:
2Zn。++ 2NH4 HCo3一Zn2(OH)2 CO3+
2NH4+
Zn2(OH)2CO3— 2ZnO + CO2+ H2O
以尿素作沉淀剂:
CO(NH2)2+ 2H20一CO2+2NH3·H2O
3Zn。++CO3。一+4OH一+ H20一ZnCO3·
2Zn(OH)2 H2O
ZnCO3·2Zn(OH)2 H20一ZnO+C02+ H2O
直接沉淀法操作简单易行,对设备技术要求不
高,产物纯度高,不易引人其它杂质,成本较低。但
是,此方法的缺点是洗涤沉淀中的阴离子较困难,且
生成的产品粒子粒径分布较宽。因此工业上不常
用。
2.2.4 均匀沉淀法
均匀沉淀法是利用某一化学反应使溶液中的构
晶微粒从溶液中缓慢地、均匀地释放出来。所加入
的沉淀剂并不直接与被沉淀组分发生反应,而是通
过化学反应使其在整个溶液中均匀缓慢地析出。常
用的均匀沉淀剂有尿素(CO(NHz)z)和六亚甲基四
胺(C6 H 。N。)。所得粉末粒径一般为8—6Onm。其
中卫志贤 加 等人以尿素和硝酸锌为原料制备氧化
锌。他们得出的结论是:温度是影响产品粒径的最
敏感因素。温度低,尿素水解慢,溶液中氢氧化锌的
过饱和比低,粒径大;温度过高,尿素产生缩合反应
生成缩二脲等,氢氧化锌过饱和比低,溶液粘稠,不
易干燥,最终产品颗粒较大。另外,反应物的浓度及
尿素与硝酸锌的配比也影响溶液中氢氧化锌的过饱
和比。浓度越高,在相同的温度下,氢氧化锌的过饱
和比越大。但是过高的浓度和尿素与硝酸锌的比
值,使产品的洗涤、干燥变得困难,反应时间过长,也
将造成后期溶液过饱和比降低,粒径变大。因此他
们得到的最佳工艺条件为:反应温度~130~C、反应
时间150min、尿素与硝酸锌的配比2.5—4.0:1(摩
尔比)。
由此可看出,均匀沉淀法得到的微粒粒径分布
较窄,分散性好,工业化前景佳,是制备纳米氧化锌
的理想方法。
2.2.5 水热法
水热法最初是用来研究地球矿物成因的一种手
段,它是通过高压釜中适合水热条件下的化学反应
实现从原子、分子级的微粒构筑和晶体生长。该法
是将双水醋酸锌溶解在二乙烯乙二醇中,加热并不
断搅拌以此得到氧化锌,再经过在室温下冷却,用离
心机将水分离最终得到氧化锌粉末[]。此法制备的
粉体晶粒发育完整,粒径小且分布均匀,团聚程度
小,在烧结过程中活性高。但缺点是设备要求耐高
压,能量消耗也很大,因此不利于工业化生产。
2.2.6 微乳液法
微乳液通常是由表面活性剂、助表面活性剂(通
常为醇类)、油(通常为碳氢化合物)和水(或电解质
水溶液)组成的透明的、各向同性的热力学稳定体
系。微乳液中,微小的“水池”(water poo1)被表面
活性剂和助表面活性剂所组成的单分子层界面所包
围而形成微乳颗粒,其大小可控制在几个至几十纳
米之间。微小的“水池”尺度小且彼此分离,因而不
构成水相,这种特殊的微环境已被证明是多种化学
反应的理想介质 ]。徐甲强[n 等人在硝酸锌溶液
中加入环己烷、正丁醇、ABS搅拌,再加入双氧水,
并用氨水作为沉淀剂,最终合成了颗粒小(19nm)、
气体灵敏度高和工作温度低的氧化锌。微乳液法制
备的纳米氧化锌,粒径分布均匀,但是团聚现象严
重 H]。这是由于微乳液法制得的纳米材料粒径太
小,比表面大,表面效应较严重所致。
⑶ 各项分析水样的采集要求及方法
(一)取样体积
1)水质简分析:其项目有pH、游离CO2、氯离子、硫酸根、重碳酸根、碳酸根、氢氧根、钾离子、钠离子、钙离子、镁离子、总硬度、总碱度、暂时硬度、永久硬度、负硬度、总矿化度,采样体积为0.5~1L。
2)水质全分析:其项目除含简分析项目外,另增加铵离子、全铁(二价铁离子和三价铁离子)、亚硝酸根、硝酸根、氟离子、磷酸根、可溶性二氧化硅、耗氧量。采样体积为2~4L。
3)除简、全分析外,其他项目则按各项取样要求取样。
(二)现场检测的项目
对于水中极易发生变化的项目,如pH、游离CO2、亚硝酸根、氧化还原电位(Eh)等有特殊要求时应在现场进行测定。
对于碳酸和重碳酸型矿泉水中的游离CO2,重碳酸根、p H、钙、镁、铁(二价和三价)等,只有在现场测定,才能保证提供正确的结果。
(三)各项分析水样的采取与保存要求
各类分析水样采好后,必须立即在瓶上贴好标签,再用纱布、石蜡(或火漆)密严封好。各个样品的标签上要立即填上编号、取样地点,时间、岩性、深度、水温、气温、浊度、水源种类,化学处理方法以及分析要求(测定项目)等。
1)比较稳定组分水样的采取:检测水中钾、钠、钙、镁、氯根、碳酸根、硫酸根、重碳酸根、氢氧根、硝酸根、氟、溴、硼、铬(六价)、砷、钼、总碱度,暂时碱度、负硬度、永久硬度、固形物、灼烧残渣、灼烧减量及可溶性硅酸(小于100mg/L)等,应用硬质玻璃瓶或聚乙烯塑料瓶采取水样2~4L。以石蜡或火漆密封瓶口,阴凉存放。尽快送到实验室,最多不得超过10天,实验室收到样品后,必须在10天内分析完毕。
2)测定碘、耗氧量(COD)水样的采取:测定碘和耗氧量的水样,应用硬质玻璃瓶或聚乙烯塑料瓶采取0.4L,以石蜡封好瓶口,立即送检,最多不得超过三天,实验室收到样品后,必须在两天内分析完毕,
3)侵蚀性CO2水样的采取:水中侵蚀性CO2的检测,应在取水质简分析或全分析样品的同时,另取一瓶250m L的水样,加入2g经过纯制的碳酸钙粉末(或大理石粉末),瓶内应留有10~20m L容积的空间,密封送检。若水样仅需侵蚀性CO2数据时,应在相同的条件下,另取一小瓶不加大理石粉的水样,检测原样中的碱度。
4)测定硫化物水样的采取:在500mL的玻璃瓶中,先加入10mL20%醋酸锌和1mL1mol氢氧化钠溶液,然后往瓶中装满水样,盖好瓶盖,反复振摇数次,再以石蜡密封瓶口,并贴好标签,注明加入乙酸锌溶液的体积,送检。
5)测定溶解氧水样的采取:溶解氧的测定,最好利用测氧仪,在现场进行测定,若无此条件时,在取样前先准备一个已知体积的200~300mL的玻璃瓶,先用欲取水样洗涤2~3次后,将虹吸管直接通入瓶底取样,待水样从瓶口溢出片刻,再慢慢将虹吸管从瓶中抽出,用移液管加入1mL碱性碘化钾溶液(如水的硬度大于7mmol/L时,可再多加2mL),然后加入3mL氯化锰溶液,但应注意:加碱性碘化钾和氯化锰溶液时,移液管要插入瓶底再放出溶液,迅速塞好瓶塞(不留空间),摇匀后密封,记下加入试剂的总体积及水温。如水样中含有大量有机物及还原性物质(如硫化氢、亚硫酸根以及大于1mg/L的亚硝酸根离子等)时,需另用一玻璃瓶采取水样,加入0.5mL溴水(或高锰酸钾溶液)塞好瓶口,摇匀,放置24小时,然后加入0.5mL水杨酸溶液,以除去过量的氧化剂,摇动15分钟后,再按上述手续进行。
6)测定逸出气体样品的采取:逸出气体试样的采取,可利用排水集气原理。选一具有两孔橡皮塞的500mL的玻璃容器,在橡皮孔中,插入一长一短两支玻璃管,在瓶外部分,各套上橡皮管和弹夹,在插入瓶底的一支玻璃管上再接上一个玻璃漏斗。取样时,打开两个弹簧夹,将容器内注满水(应留一点空间)后,把它倒立全部浸没于水中,将漏斗口对准逸出气泡,待气体充满容器后,夹好弹簧夹,取出水面,密封、送检。
⑷ 怎样鉴别硫酸锌,碳酸钠,硝酸纳,亚硫酸钠
鉴别硫酸锌,碳酸钠,硝酸纳,亚硫酸钠:
原理:利用酸碱盐之间的反应,根据实验现象来区分。
步骤一:往四种物质中加入稀盐酸,有气体生成的是:碳酸钠,亚硫酸钠。
1.生成的气体无色无味的是:碳酸钠。
化学方程式:Na2CO3+2HCl==2NaCl+CO2↑+H2O
2.生成的气体是有刺激性气味的是:亚硫酸钠。
化学方程式:Na2SO3+2HCl==2NaCl+SO2↑+H2O
步骤二:往剩下的两种物质中加入硝酸钡,有白色沉淀生成的是:硫酸锌,没有沉淀生成的是:硝酸钠。
生成白色沉淀的是:硫酸锌。
化学方程式:ZnSO4+Ba(NO3)2=Zn(NO3)2+BaSO4↓
⑸ 如何配制标准锌试剂溶液
硼酸盐缓冲溶pH 8.8―9 取氢氧化钠8.32g溶于水,加氯化钾37.3g,硼酸31g,溶解后,用水稀至1000ml。
锌标准溶液配制方法同极谱法,逐级稀释配成1ml含10吨锌的标准溶液。
在铅锌矿加工,铅锌矿生产线中标准曲线的绘制:取含0、20、40、60.....100ug锌的标准摇臼夜,分另U置于50mi比色管中,加入0.25g硫酸铵,用水稀释至20mi,摇动至硫酸铵溶解后,加入抗坏血酸钠盐溶液2mi,摇匀放置10分钟,在分光光度计上,用lcm比色皿,于波长620nm处测量吸光度,并绘制标准曲线。
分析手续:称取0.1000―0.5000g试样,置于250mi烧杯中,加入氢氟酸4―5滴,硝酸10mi,氯酸钾0.3加热至试样完全溶解,加入盐酸1―2ml,继续加热蒸发至剩1―2ml。取下,加氯化铵2―3g,搅匀,加氨水20ml和水毫升(如有镍存在,再加入1%丁二肟溶液2ml),煮沸2分钟。取下,冷至室温,加入过氧化氢4滴,摇匀,放置3―5分钟,加铜试剂5ml,摇匀。移入预先盛有10ml氨水的100ml容量瓶中,用水稀释至刻度,摇匀,干过滤。
吸取干过滤后的滤液5―10ml,置于1,00ml烧杯中,加热至无氨味,取下稍冷。加硫酸2―3ml,加热冒烟。取下,再加硫酸―硝酸(1:1)数滴,高氯酸1―2滴,加热蒸发至近干。取下冷却,加入5ml水,温热使盐类溶解。加甲基橙指示剂1滴,用1mol/L氢氧化钠溶液中和至刚呈现黄色。将溶液移入50ml比色管中,加抗坏血酸钠盐溶液2ml,以下按标准系列配制手续进行显色和比色.
⑹ 试论土壤中氮、磷、钾的测定原理与方法
第五章 土壤全氮的测定(凯氏蒸馏法)
5.1 方法提要 样品在加速剂的参与下,用浓硫酸消煮时,各种含氮有机化合物,经过复杂的高温分解反应,转化为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,计算土壤全氮含量(不包括硝态氮)。
包括硝态和亚硝态氮的全氮测定,在样品消煮前,需先用高锰酸钾将样品中的亚硝态氮氧化为硝态氮后,再用还原铁粉使全部硝态氮还原,转化成铵态氮。
5.2 适用范围 本方法适用于各类土壤全氮含量的测定。
5.3 主要仪器设备
5.3.1 消化管(与消煮炉、定氮仪配套),容积250mL。
5.3.2 定氮仪。
5.3.3 可控温铝锭消煮炉(升温不低于400℃)。
5.3.4 半微量滴定管,10mL。
5.3.5 分析天平(精确到0.0001g)。
5.4 试剂
5.4.1 硫酸 [ρ(H2SO4)=1.84g•mL-1];
5.4.2 硫酸标准溶液 [c(1/2H2SO4)=0.01mol•L-1]或盐酸标准溶液[c(HCl)=0.01mol•L-1]:配制及标定参见附录1。
5.4.3 氢氧化钠溶液 [ρ(NaOH)=400g•L-1 ]:称取400g氢氧化钠溶于水中,稀释至1L。
5.4.4 硼酸—指示剂混合液。
硼酸溶液 [ρ(H3BO3)=20g•L-1]:称取硼酸20.00g溶于水中,稀释至1L。
混合指示剂:称取0.5g溴甲酚绿和0.1g甲基红于专用玻璃研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL。使用前,每升硼酸溶液中加5mL混合指示剂,并用稀酸或稀碱调节至红紫色(PH约4.5)。此液放置时间不宜过长,如在使用过程中PH有变化,需随时用稀酸或稀碱调节。
5.4.5 加速剂:称取100g硫酸钾,10g硫酸铜(CuSO4•5H2O),1g硒粉于研钵中研细,必须充分混合均匀。
5.4.6 高锰酸钾溶液[ρ(KMnO4)=50g•L-1 ]:称取25g高锰酸钾溶于500mL水,贮于棕色
瓶中。
5.4.7 硫酸溶液(1:1)。
5.4.8 还原铁粉:磨细通过0.149mm孔径筛。
5.4.9 辛醇。
5.5 分析步骤
5.5.1 称样:称取通过0.25mm(60号筛)孔径筛的风干试样0.3g(含氮约1mg,精确到0.0001g)。
5.5.2 土样消煮:①不包括硝态和亚硝态氮的消煮:将试样送入干燥的消化管底部,加入2.0加速剂,加水约2mL湿润试样,再加8mL浓硫酸,摇匀。将消化管置于控温消煮炉上,用小火加热,约200℃,待管内反应缓和时(约10~15min),加强火力至375℃。待消煮液和土粒全部变为灰白稍带绿色后,再继续消煮1h,冷却,待蒸馏。在消煮试样的同时,做两份空的试验,空白试验除不加土壤外,其他操作和试样一样。
②包括硝态氮和亚硝态氮的消煮:将试样送入干燥的消化管底部,加1mL高锰酸钾溶液,轻轻摇动消化管,缓缓加入2mL 1:1硫酸溶液,不断转动消化管,放置5 min后,再加入1滴辛醇。通过长颈漏斗0.5g (±0.01g) 还原铁粉送入消化管底部,瓶口盖上弯颈漏斗,转动消化管,使铁粉与酸接触,待剧烈反应停止时(约5min),将消化管置于控温消煮炉上缓缓加热45 min(管内土液应保持微沸,以不引起大量水分丢失为宜)。停止加热,待消化管冷却后,加2.0g加速剂和8 mL浓硫酸,摇匀。按“不包括硝态和亚硝态氮的消煮”的步骤,消煮至试液完全变成黄绿色,再继续消煮1 h,冷却,蒸馏。在消煮试样的同时,做两份空白试验。
5.5.3 氨的蒸馏和滴定:蒸馏前先按仪器使用说明书检查定氮仪,并空蒸0.5 h洗净管道。待消煮液冷却后,向消化管内加入约60 mL水和35 mL 400 g•L-1氢氧化钠溶液,摇匀,置于定氮仪上。于三角瓶中加入25 mL 20 g•L-1 硼酸—指示剂混合液,将三角瓶置于定氮仪冷凝器的承接管下,管口插入硼酸溶液中,以免吸收不完全。蒸馏5 min,用少量的水洗涤冷凝管的末端,洗液收入三角瓶内。每测完1个样后用空试管装清水清洗约2min。
用0.01 mol•L-1硫酸(或0.01 mol•L-1盐酸)标准溶液滴定馏出液,由蓝绿色至刚变为红紫色。记录所用酸标准溶液的体积。空白测定所用酸标准溶液的体积,一般不得超过0.4 mL。
5.6 结果计算
土壤全氮(N),g •kg-1 = [c•(V-V0) ×0.014/m] ×1000
V0——滴定空白时所用酸标准溶液的体积,mL;
c——酸标准溶液的浓度,mol•L-1;
0.014——氮原子的毫摩尔质量;
m——风干试样质量,g;
1000——换算成每千克含量。
平行测定结果用算术均值表示,保留小数点后两位。
5.7 精密度 平行测定结果允许相差:
土壤含氮量(g •kg-1) 允许绝对相差(g •kg-1)
>1 ≤0.05
1~0.6 ≤0.04
<0.6 ≤0.03
5.8 注释
①因试样烘干过程中可能使全氮量发生变化,因此土壤全氮用风干样品测定。如果需要提供烘干基含量,可测定土壤水分进行折算。折算公式为:
土壤全氮(烘干基),g •kg-1 =土壤全氮(风干基),g •kg-1×100/[100-ω(H2O)]
式中:ω(H2O)——风干土水分含量,%。
②试样的粒径,这里采用0.25mm孔径筛,但如果含氮量高,称量<0.5g时,则应通过0.149mm孔径筛。
③一般土壤中硝态氮含量不超过全氮含量的1%,故可忽然不计。如硝态氮含量高,则要用高锰酸钾和铁粉预处理,硝态氮的回收率在90%以上。
④某些还原铁粉会有大量氮,在试剂选择上应注意。
⑤消煮的温度应控制在360~400℃范围内,此时,消煮的土液保持微沸,硫酸蒸汽在消化管上部1/3处冷凝流回。超过400℃土液将剧烈沸腾,硫酸蒸汽达到消化管顶部甚至溢出,将引起硫酸铵的热分解而导致氮素损失。
⑥蒸馏时间一般为5 min,但由于仪器型号及蒸馏电流设置不同,应首先作试验确定,即用纳氏试剂逐分钟检查蒸馏液中是否含有铵。
第六章 碱解氮的测定(碱解扩散法)
6.1 方法原理 在扩散皿中,用1.0mol/LNaOH水解土壤,使易水解态氮(潜在有效氮)碱解转化为NH3,NH3 扩散后为H3BO3 所吸收。H3BO3 吸收液中的NH3 再用标准酸滴定,由此计算土壤中碱解氮的含量。
6.2 主要仪器
扩散皿、半微量滴定管、恒温箱。
6.3 试剂
6.3.1 1.0mol/LNaOH 溶液。称取NaOH (化学纯)40.OGg溶于水,冷却后稀释至1L。
6.3.2 20 g••L-1 H3BO3---指示剂溶液。同5.4.4。
6.3.3 0.005mo 1/L(1/2H2SO4)标准溶液。量取H2SO4(化学纯)2.83mL,加蒸馏水稀释至5000mL,然后用标准碱或硼酸标定之,此为0.0200mo1/L(1/2H2SO4)标准溶液,再将此标准液准确地稀释4倍,即得0.0050mo1/L(1/2H2SO4)标准液(注1)。
6.3.4 碱性胶液。取阿拉伯胶40.0g 和水50mL在烧杯中热温至70—80 ℃ 搅拌促溶,约1h后放冷。加入甘油20mL和饱和K2CO3水溶液20mL,搅拌、放冷。离心除去泡沫和不溶物,清液贮于具塞玻瓶中备用。
6.3.5 FeSO4•7H2O粉末。将FeSO4•7H2O(化学纯)磨细,装入密闭瓶中,存于阴凉处。
6.3.6 Ag2SO4饱和溶液。存于避光处。
6.4 操作步骤(注2)
称取通过18号筛(1mm)风干土样2.00g,置于洁净的扩散皿外室,轻轻旋转扩散皿,使土样均匀地铺平。
取H3BO3—指示剂溶液2mL放于扩散皿内室,然后在扩散皿外室边缘涂碱性胶液,盖上毛玻璃(注3),旋转数次,使皿边与毛玻璃完全黏合。再渐渐转开毛玻璃一边,使扩散皿外室露出一条狭缝,迅速加入1 mol/L NaOH溶液10.0mL,立即盖严,轻轻旋转扩散皿,让碱溶液盖住所有土壤。再用橡皮筋圈紧,使毛玻璃固定。随后小心平放在40±1℃恒温箱中,碱解扩散24±0.5h后取出(可以观察到内室应为蓝色)内室吸收液中的NH3用0.005或0.01mol/L(1/2H2SO4)标准液滴定(注4)。
在样品测定的同时进行空白试验,校正试剂和滴定误差。
6.5 结果计算
碱解氮(N)含量(mg/kg)=[ c(V-VO)×14.0] ×10³/m
式中:C¬¬——0.005mol/L (1/2H2SO4)标准溶液的浓度(mol•L-1);
V——样品滴定时用去0.005mol•L-1(1/2H2SO4)标准液体积(mL);
V0——空白试验滴定时用去0.005mol••L-1(1/2H2SO4)标准液体积(mL);
14.0——氮原子的摩尔质量(g/mol-l);M—样品质量(g);
10³——换算系数。
两次平行测定结果允许绝对相差为5mg•kg-1。
6.6 注释
注1:如要配非常准确的0.005mol•L-1/2H2SO4 标准液,则可以吸取—定量的NH4+-N标准溶液,在样品测定的同时,用相同条件的扩散法标定。例如,吸取5.00mg•kg-1NH4+-N标准溶液(含NH4+—N 0.250mg)放入扩散皿外室,碱化后扩散释放的NH3经H3BO3吸收后,如滴定用去配好的稀标准H2SO4 液3.51mL,则标准H2SO4的农度为:
c(1/2H2SO4) = [0.00025/(3.51×0.014)]= 0.00508mol/L
注2:如果要将土壤中NO3-—N 包括在内,测定时需加FeSO4.7H2 O粉,并以Ag2SO4为催化剂,使NO3-—N还原为NH3。而FeSO4 本身要消耗部分NaOH,所以测定时所用NaOH溶液的浓度须提高。例如2g土加1.07mol•L-1 NaOH 10mL 、FeSO4.7H2O 0.2g 和饱和Ag2SO4溶液0.1mL进行碱解还原。
注3:由于胶液的碱性很强,在涂胶液和洗涤扩散时,必须特别细心,慎防污染内室,造成错误。
注4:滴定时要用小玻璃棒小心搅动吸收液,切不可摇动扩散皿。
第七章 M3法土壤有效磷、速效钾的测定
7.1 方法原理 M3浸提剂中的0.2mol/L HOAc—0.25 mol/L NH4NO3形成了pH2.5的强缓冲体系,并可浸提出交换性K、Ca、Mg、Fe、Mn、Cu、Zn等阳离子;0.015 mol/L NH4F—0.013 mol/L HNO3可调控P从Ca、Al、Fe无机磷源中的解吸;0.001mol/L EDTA可浸出螯合态Cu、Zn、Mn 、Fe等,因此,M3浸提剂可同时提取土壤中有效的磷、钾、钙、镁、铁、锰、铜、锌、硼等多种营养元素。
7.2 试剂与仪器
7.2.1 试剂
7.2.1.1 硝酸铵
7.2.1.2 氟化铵
7.2.1.3 冰乙酸
7.2.1.4 硝酸
7.2.1.5 乙二胺四乙酸
7.2.1.6 酒石酸锑钾
7.2.1.7 钼酸铵
7.2.1.8 硫酸
7.2.1.9 抗坏血酸
7.2.1.10 磷酸二氢钾
7.2.1.11 M3贮备液[c(NH4F)=3.75 mol/L+ c(EDTA)=0.25 mol/L]:称取氟化铵(分析纯)138.9g溶于约600mL去离子水中,摇动,再加入乙二胺四乙酸(EDTA)73.1g,溶解后用去超纯水定容至1000mL,充分混匀后贮存于塑料瓶中(在冰箱内可长期使用),可供5000个样次使用,如工作量不大,可按比例减少贮备液数量。
7.2.1.12 M3浸提剂:用1000mL或2000mL量筒量取2000mL去离子水,加入5000mL塑料桶中,称取硝酸铵100.0g,使之溶解,加入20.0mL M3贮备液,再加入冰乙酸(即17.4 mol/L)57.5 mL和浓HNO3 (HNO3,68%~70%,分析纯)4.1mL,用量筒加水稀释至5000mL,充分混合均匀,此液pH应为2.5±0.1(贮存于塑料瓶中备用,可供100个样次使用)。
7.2.1.13 钼锑抗试剂:称取酒石酸锑钾[K(SbO)C4H4O6•1/2H2O,分析纯]0.5g溶于100mL
去离子水,配制成0.5%的溶液。另称取钼酸铵[(NH4)6 Mo7O24•4H2O,分析纯]10.0g溶于450mL水中,慢慢地加入153 mL浓H2SO4(分析纯),边加边搅动。再将100mL 0.5%酒石酸锑钾溶液加入钼酸铵溶液中,最后加水至1000mL,充分摇匀,贮存于棕色瓶中,此为钼锑贮备液。
临用前(当天)称取抗坏血酸(即维生素C,分析纯)1.5g溶于100mL钼锑贮备液中,混匀,此为钼锑抗试剂,有效期24h,如保存于冰箱中则有效期较长。上述试剂中H2SO4的浓度为5.5 mol/L(1/2 H2SO4),钼酸铵为1%,酒石酸锑钾为0.05%,抗坏血酸为1.5%。
7.2.1.14 磷工作溶液[(P)=5mg/L]:称取105℃烘干2h的磷酸二氢钾(KH2PO4,分析纯)0.2195g,置于400mL去离子水中,加入浓H2SO45mL(防长霉菌,可使溶液长期保存),转入1000mL容量瓶中,用水定容。此溶液为50 mg/L P标准溶液。准确吸取此贮备溶液25.00mL,稀释至250mL,即为5 mg/L P标准溶液(此稀溶液不宜久存)。
7.2.1.15 K贮备液[(K)=100mg/L]:准确称取氯化钾KCl,105~110℃干燥2h,分析纯)01907g,溶于去离子水中,定容至1000 mL,摇匀后待用。
7.2.2 仪器
7.2.2.1 分光光度计。
7.2.2.2 火焰光度计。
7.2.2.3 恒温振荡机(温度控制25±℃)。
7.2.2.4 原子吸收分光光度计。
7.3 浸提步骤
用量样器量取5.00 mL风干土壤(过2mm尼龙筛),同时称量并记录其质量,于100mL塑料瓶中,加入50.0mL M3浸提剂,盖严后于往复振荡机(振荡强度为180r/min)上振荡5 min。然后用干滤纸过滤,收集滤液于50mL塑料瓶中。整个浸提过程应在恒温条件下进行,温度控制在25±1℃。
另一种方法是:选用搅拌方法代替振荡提的方法:用量样器量取5.00mL风干土壤(过2mm尼龙筛),同时称量并记录其质量,用加液器加入50.0mL M3浸提剂,用搅拌器搅拌5 min。然后用干滤纸过滤,收集滤液于50mL塑料瓶中。整个浸提过程应在恒温条件下进行,温度控制在25±1℃。
7.4 浸出液中有效养分的定量
7.4.1 M3有效磷的测定
准确吸取2.00~10.00mL土壤浸出液(依肥力水平而异)于50mL容量瓶中,加水至约
30mL,加入5.00mL钼锑抗试剂显色,定容摇匀。显色30 min后,在880nm处比色。如冬季气温较低时,注意保持显色时温度在150C以上,最好在恒温室内湿色,以加快显色速度。测定的同时做空白校正。
工作曲线:准确吸取5mg/L P标准溶液0、1.00、2.00、 4.00 、6.00 、8.00mL,分别放入50 mL容量瓶中,加水至约30 mL,加入5.00 mL钼锑抗试剂显色,定容摇匀。显色30min后,在880nm处比出色。
结果计算:
土壤M3-P,mg/L(或mg/kg)=[ρ(P)×V×D]/ [V0或(M)]
式中:
ρ——待测液中P浓度,μg/mL;
V——显色液体积,50mL;
D——分取倍数,浸出液体积/吸取滤液体积;
V0(或M)——土样体积,mL或土样质量,g。
7.4.2 M3速效钾的测定
M3浸出液中钾可直接用火焰光度计测定。
工作曲线:准确吸取100 mg/L K标准贮备液0、1.00、2.50、5.00、10.00、15.00、20.00mL,分别放入50 mL容量瓶中,用M3浸提剂定容,摇匀,即得0、2.00、5.00、10.00、20.00、30.00、40.00μg/mL K标准系列溶液。
结果计算:
土壤M3-K,mg/L(或mg/kg)=[ρ(K)×V]/[V0(或M)]
式中:ρ(K)——待测液中K浓度,μg/mL;
V——浸提剂体积,mL;
V0(或M)——土样体积,mL或土样质量,g。
7.5 注释
7.5.1 为了避免F—以CaF2形态沉淀的再吸附,应将浸提液剂的 pH控制在2.9 以下。配制Mehlich3浸提剂时应尽量准确,这样可不必每次都测定pH。因为溶液中的F容易对玻璃电极或复合电极造成损坏。
7.5.2 玻璃皿不会造成污染,但橡皮塞尤期是新塞子会严重引起Zn的污染,建议最好使用塑料瓶盛试液。如果同时测定大量与微量元素,玻、塑器皿最好事先在0.2% A1Cl3 •6H2O
或8%~10% HC1溶液中浸泡过夜,洗净后备用,以防微量元素的污染。
7.5.3 M3法的土壤浸出液常带颜色,有粉红色、淡黄色或橙黄色,深浅不一,因土而异。粉红色可能与Mn含量高或浸提出的某些有机物有关,黄色可能与Fe含量高或有机物质有关。溶液颜色可加入活性C脱色,但会对Zn造成污染,故以不加活性C为宜。
7.5.4 注意浸提温度的控制。冬季气温较低时,可采取一些保温措施。
7.5.5 比色液中NH4+ 和EDTA浓度时对P比色均有干扰,NH4+ 多时生成蓝色沉淀,EDTA多时不显色或生成白色沉淀(EDTA酸)。试验表时,在一般钼锑搞比色法的条件下NH4+ 不得大于0.01 mol/L)。
7.5.6 研究发现,若在工作曲线中分别加入一定量的M3浸提剂,显色后很快会在较高P浓度的各地出现沉淀,从而影响测定结果的准确性.故选用空白校正的方法消答试剂的误差,即:根据未知样品所吸取浸出的体积,相应地做空白测定(不加显色剂),再从未知样品的结果中扣除空白值。
7.5.7 若浸出液中钾的浓度超出测定范围,应用M3浸提剂稀释后再测定。
7.5.8 使用AAS法测定有效Ca, Mg时,浸出液需要用M3浸提剂适当稀释1~20倍后方可测定,可根据具体情况确定稀释倍数。
7.5.9 如果条件具备,可直接用电感耦合等离子发射光谱仪(ICP—AES)进行测定,而不需要稀释;而且在同一浸出液中可同时测定P、K、Na、Ca、Mg、Fe、 Mn、CU、Zn、B等多种元素。
7.5.10 使用AAS法测定有效微量元素Fe、Mn、CU、Zn时,浸出液需要M3浸提剂适当稀释后方可测定。一般测Fe时,可稀释1~10倍;测Mn时,可稀释2~10倍;测CU、Zn一般不需要稀释。可根据具体情况确定稀释倍数。
⑺ 任务铁矿石分析方法的选择
任务描述
在岩石矿物分析工作中,元素及其化合物的掩蔽、分离和测定都是以它们的分析化学性质为基础的。所以,讨论和研究它们的分析化学性质是极其必要的。本任务对铁的化学性质、铁矿石的分解方法、铁的分析方法选用等进行了阐述。通过本任务的学习,知道铁的化学性质,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法,学会基于被测试样中铁含量的高低以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。
任务分析
一、铁在自然界的存在
铁在自然界(地壳)分布很广,也是最常用的金属,约占地壳质量的5.1%,居元素分布序列中的第四位,仅次于氧、硅和铝。它的最大用途是用于炼钢;也大量用来制造铸铁和煅铁。铁和其化合物还用作磁铁、染料(墨水、蓝晒图纸、胭脂颜料)和磨料(红铁粉)。但由于铁很容易与其他元素化合而成各种铁矿物(化合物)存在,所以地壳中很少有天然纯铁存在。我们所说的铁矿石是指在现代技术条件下能冶炼出铁来而又经济的铁矿物。
铁矿石从主要成分上划分至少可以分为:赤铁矿,主要有效成分Fe2O3;褐铁矿,主要有效成分mFe2O3·nH2O;磁铁矿,主要有效成分Fe3O4;菱(黄)铁矿,主要有效成分FeCO3(Fe2S3);纯铁矿,主要有效成分单质铁;以及上述矿藏的混生矿或与其他黑色金属的伴生矿。铁精矿中铁的含量(品位)大小直接决定着铁的产量,所以生产中特别注重铁矿石的含量。铁精矿中铁含量的大小的主要测定方法有EDTA配位滴定法、重铬酸钾容量法。铁矿石中全铁含量的测定,目前国内外主要采用重铬酸钾容量法。
二、铁的分析化学性质
(一)铁的化学性质简述
铁(Fe),原子序数26,相对原子质量55.847,铁的密度为7.9g/cm3,铁有多种同素异形体,如α铁、β铁、γ铁、σ铁等。铁是比较活泼的金属,在金属活动顺序表里排在氢的前面。常温时,铁在干燥的空气里不易与氧、硫、氯等非金属单质起反应,在高温时,则剧烈反应。铁在氧气中燃烧,生成Fe3O4,炽热的铁和水蒸气起反应也生成Fe3O4。铁易溶于稀的无机酸和浓盐酸中,生成二价铁盐,并放出氢气。在常温下遇浓硫酸或浓硝酸时,表面生成一层氧化物保护膜,使铁“钝化”,故可用铁制品盛装浓硫酸或浓硝酸。铁是一变价元素,常见价态为+2价和+3价。铁与盐酸、稀硫酸等反应时失去两个电子,成为+2价。与Cl2、Br2、硝酸及热浓硫酸反应,则被氧化成Fe3+。铁与氧气或水蒸气反应生成的Fe3O4,可以看成是FeO·Fe2O3,其中有1/3的Fe为+2价,另2/3为+3价。铁的+3价化合物较为稳定。铁的化合物主要有两大类:亚铁Fe(Ⅱ)和正铁Fe(Ⅲ)化合物,亚铁化合物有氧化亚铁(FeO)、氯化亚铁(FeCl2)、硫酸亚铁(FeSO4)、氢氧化亚铁[Fe(OH)2]等;正铁化合物有三氧化二铁(Fe2O3)、三氯化铁(FeCl3)、硫酸铁[Fe2(SO4)3]、氢氧化铁[Fe(OH)3]等。
Fe2+呈淡绿色,在碱性溶液中易被氧化成Fe3+。Fe3+的颜色随水解程度的增大而由黄色经橙色变到棕色。纯净的Fe3+为淡紫色。Fe2+和Fe3+均易与无机或有机配位体形成稳定的配位化合物。
(二)亚铁的氧化还原性质
在碱性溶液中亚铁极易被氧化,空气中的氧就可以将其氧化为Fe3+:
4Fe(OH)2+O2+2H2O→4Fe(OH)3
与此同时,有少量的亚铁还可发生歧化作用而形成Fe3+和Fe0。亚铁盐在中性溶液中被空气中的氧氧化时,其速度远较在酸性溶液中为快,在醇溶液中其氧化速度较在水溶液中为快;在反应过程中,pH、温度及盐类等条件对反应均有影响。反应结果往往有碱式盐生成:
4Fe2++O2+2Cl-→2FeOCl+2Fe3+
在酸性溶液中的亚铁比在碱性或中性溶液中稳定得多。氢离子浓度越大,其氧化反应越不容易进行。因此,要氧化酸性溶液中的亚铁成为Fe3+,必须采用相当强的氧化剂。许多具有强氧化性的含氧酸盐,如高锰酸盐、重铬酸盐、钒酸盐、氯酸盐、高氯酸盐等,均可在酸性环境中氧化亚铁为氧化铁。其中高锰酸盐、重铬酸盐等可配成标准溶液直接滴定亚铁。
(三)三价铁的氧化还原性质
三价铁是铁的最稳定状态。在酸性溶液中,三价铁是缓和的氧化剂,一般情况下只有较强的还原剂才能将它还原。这些还原剂有硫化氢、硫代硫酸钠、亚硫酸钠、氯化亚锡、碘化钾、亚钛盐、亚汞盐、金属锌或铝以及一些有机还原剂如盐酸羟胺、抗坏血酸、硫脲等。其中硫酸亚钛、硝酸亚汞可用来直接滴定三价铁,氯化亚锡在铁的容量法中的应用亦为大家所熟知。
(四)铁的配位性质
1.铁的无机配合物
三价铁和亚铁的硫酸盐都可与硫酸盐或硫酸铵形成复盐。其中最重要的是(NH4)2SO4·FeSO4·6H2O。此复盐的亚铁的稳定性较大,在分析中可用它来配制亚铁的标准溶液。三价铁的复盐中,铁铵钒(NH4Fe(SO4)2·12H2O)也常被用来配制三价铁的标准溶液。
铁离子和亚铁离子可分别与氟离子、氯离子形成配位数不同的多种配合物。分析中常利用[FeF6]3-配离子的形成以掩蔽Fe3+,在盐酸溶液中Fe3+与Cl-形成的配离子为黄色,可借以粗略判定溶液中Fe3+的存在。
铁离子与硫氰酸根离子形成深红色配合物。此反应可用于Fe3+的定性分析和比色法测定。
在过量磷酸根离子存在下,铁离子可形成稳定的无色配离子,在分析中可借此掩蔽Fe3+。此外,在用磷酸分解铁矿石的过程中,也利用了三价铁与磷酸根离子形成稳定配合物的反应。
2.铁的有机配合物
EDTA与三价铁的配位反应应用十分广泛。亚铁的EDTA配合物不如三价铁的EDTA配合物稳定,因此在分析中主要应用三价铁与EDTA的配位反应以掩蔽Fe3+或进行容量法测定。
邻啡罗啉与亚铁离子形成较稳定的红色配合物,反应的灵敏度很高,可用于亚铁的分光光度法测定。
其他的许多配位剂,如铜试剂、三乙醇胺、柠檬酸盐、酒石酸盐等与三价铁离子形成配合物的反应,在分离、掩蔽中都有应用。
三、铁矿石的分解方法
铁矿石的分解,通常采用酸分解和碱性熔剂熔融的方法。酸分解时,常用以下几种方法:
(1)盐酸分解:铁矿石一般能为盐酸加热分解,含铁的硅酸盐难溶于盐酸,可加少许氢氟酸或氟化铵使试样分解完全。磁铁矿溶解的速度很慢,可加几滴氯化亚锡溶液,使分解速度加快。
(2)硫酸-氢氟酸分解:试样在铂坩埚或塑料坩埚中,加1∶1 硫酸10 滴、氢氟酸4~5mL,低温加热,待冒出三氧化硫白烟后,用盐酸提取。
(3)磷酸或硫-磷混合酸分解:溶矿时需加热至水分完全蒸发并出现三氧化硫白烟后,再加热数分钟。但应注意加热时间不能过长,以防止生成焦磷酸盐。
目前采用碱性熔剂熔融分解试样较为普遍。常用的熔剂有碳酸钠、过氧化钠、氢氧化钠和氢氧化钾等在银坩埚、镍坩埚或高铝坩埚中熔融。用碳酸钠直接在铂坩埚中熔融,由于铁矿中含大量铁会损害坩埚,同时铂的存在会影响铁的测定,所以很少采用。
在实际应用中,应根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法。对于含有硫化物和有机物的铁矿石,应将试样预先在550~600℃温度下灼烧以除去硫及有机物,然后以盐酸分解,并加入少量硝酸,使试样分解完全。
四、铁的分析方法
(一)重铬酸钾容量法
(1)无汞重铬酸钾容量法:试样用硫酸-磷酸混酸溶解,加入盐酸在热沸状态下用氯化亚锡还原大部分三价铁。在冷溶液中以钨酸钠为指示剂,滴加三氯化钛还原剩余三价铁,并稍过量,在二氧化碳气体保护下,用重铬酸钾氧化过量三氯化钛,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定到终点。根据消耗的重铬酸钾标准溶液的体积计算试样中全铁百分含量。
(2)有汞重铬酸钾容量法:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。反应方程式:
岩石矿物分析
岩石矿物分析
岩石矿物分析
经典的重铬酸钾法测定铁时,采用氯化亚锡将溶液中的Fe3+还原为Fe2+。然后用氯化汞除去过量的氯化亚锡,汞盐会造成污染,因此中国在20世纪60年代以来发展了“不用汞盐的测铁法”。
(二)EDTA配位滴定法
铁矿石经浓盐酸溶解,低温加热直至溶解完全后冷却,加水将溶液稀释至一定浓度,再加入硝酸和氨水调节溶液pH=1.8~2,以磺基水杨酸为指示剂,用EDTA标液滴定,终点由紫红色变为亮黄色。
本法与经典法对铁矿石中全铁量测试结果准确度、精密度是一致的,本法可以避免因为加入HgCl2溶液而造成环境污染,有害于人的身体健康的弊病,且本法操作比经典法简便,完全可以采用。
(三)邻啡罗啉比色法
以盐酸羟胺为还原剂,将三价铁还原为二价铁,在pH=2~9的范围内,二价铁与邻啡罗啉反应生成橙红色的配合物[Fe(Cl2H8N2)3]2+,借此进行比色测定。其反应如下:
4FeCl3+2NH2OH·HCl→4FeCl2+N2O+6HCl+H2O
Fe2++3Cl2H8N2→[Fe(Cl2H8N2)3]2+(橙红色)
这种反应对Fe2+很灵敏,形成的颜色至少可以保持15天不变。当溶液中有大量钙和磷时,反应酸度应大些,以防CaHPO4·2 H2O沉淀的形成。在显色溶液中铁的含量在0.1~6mg/mL时符合Beer定律,波长530 nm。
(四)原子吸收光谱法
利用铁空心阴极灯发出的铁的特征谱线的辐射,通过含铁试样所产生的原子蒸汽时,被蒸汽中铁元素的基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中铁元素的含量。铁的最灵敏吸收线波长为248.3nm,测定下限可达0.01mg/mL(Fe),最佳测定浓度范围为2~20mg/mL(Fe)。
(五)X射线荧光分析法
X射线荧光光谱分析法具有分析速度快、试样加工相对简单、偶然误差小及分析精度高的特点,已广泛应用于各种原材料的分析中,并逐步应用于铁矿石的分析中。但由于铁矿石成分非常复杂,主成分含量较高,变化范围大,使基体变化大,对X射线荧光分析造成不利影响,致使在用通常压片法进行铁矿石分析时,其准确度不如化学法高。采用玻璃熔片法对样品进行熔融稀释处理,可以有效地消除荧光分析中的基体效应,提高荧光分析的准确度。
X射线荧光分析法的优点之一是各元素的特征谱线数量少。测定铁通常选用的是Kα线,其波长为1.93Å(1Å=0.1nm)。
五、铁矿石的分析任务及其分析方法的选择
基于被测试样中铁含量的高低不同以及对分析结果准确度的要求不同,可采用的测定方法有很多。目前,岩石矿物试样中高含量铁的测定主要采用容量分析法。其中重铬酸钾容量法应用最广泛。此外,以氧化还原反应为基础的测定铁的容量法还有高锰酸钾法、铈量法、碘量法、硝酸亚汞法以及钛量法等。以配位反应为基础的容量法中较常采用的是EDTA法。试样中低含量铁的测定,常用的有磺基水杨酸分光光度法和邻菲罗啉分光光度法以及原子吸收分光光度法。X射线荧光分析法也已用于岩石矿物试样中铁的测定。
氯化亚锡还原-重铬酸钾容量法具有稳定、准确、简易、快速等许多优点,但由于使用了剧毒的氯化汞,严重污染环境,危害人体健康。为了避免使用汞盐,近年来常采用氯化亚锡、三氯化钛联合还原-重铬酸钾容量法。原子吸收法操作简单、快速,结果的精密度、准确度高,但铁的光谱线较复杂,例如,在铁线248.3 nm附近还有248.8 nm线;为克服光谱干扰,应选择最小的狭缝或光谱带。
邻菲罗啉能与某些金属离子形成有色配合物而干扰测定。但在乙酸-乙酸铵的缓冲溶液中,不大于铁浓度10倍的铜、锌、钴、铬及小于2mg/L的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除。
技能训练
实战训练
1.实训时按每小组5~8人分成几个小组。
2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成铁矿石委托样品从样品验收到派发样品检验单工作。
3.填写附录一中表格1和表格2。
⑻ 水质检测分析方法常用哪些分析方法
1、看:用透明度较高的玻璃杯接满一杯水,对着光线看有无悬浮在水中的细微物质?静置三小时,然后观察杯底是否有沉淀物?如果有,说明水中悬浮杂质严重超标。
2、闻:用玻璃杯距离水龙头尽量远一点接一杯水,然后用鼻子闻一闻,是否有漂白粉(氯气)的味道?如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标。
3、尝:热喝白开水,有无有漂白粉(氯气)的味道,如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标。也必须使用净水器进行终端处理。
4、观:用自来水泡茶,隔夜后观察茶水是否变黑?如果茶水变黑,说明自来水中含铁、锰严重超标,应选用装有除铁、锰滤芯的净水器进行终端处理。
5、品:品尝白开水,口感有无涩涩的感觉?如有,说明水的硬度过高。
6、查:检查家里的热水器、开水壶,内壁有无结一层黄垢?如果有,也说明水的硬度过高,(钙、镁盐含量过高),应尽早使用软化处理!注意:硬度过高的水很容易造成热水器管道结垢,因热交换不良而爆管;长期饮用硬度过高的水容易使人得各种结石。
(8)科文特亚的碱锌分析方法扩展阅读:
主要意义:
水资源是人类社会发展不可或缺并且不可替代的重要资源之一,对社会经济的发展以及人们的日常生活与生产都发挥着保障的作用。
当前人类社会中的水资源危机问题已经直接对经济的发展起到了限制的作用并且影响着人类的正常生活,所以正视水资源危机以及重视水资源问题具有紧迫性与必要性。而在对水资源质量的调查与把控中,水质分析发挥着重要的作用。
饮用水主要考虑对人体健康的影响,其水质标准除有物理指标、化学指标外,还有微生物指标;对工业用水则考虑是否影响产品质量或易于损害容器及管道。水资源是人类社会发展不可或缺并且不可替代的重要资源之一,对社会经济的发展以及人们的日常生活与生产都发挥着保障的作用。
⑼ 任务钴矿石分析方法的选择
任务描述
自然界已知含钴矿物有100多种,但具有工业价值的矿物仅十余种。钴在地壳中的含量约23×10-6,多伴生于镍、铜、铁、铅、锌等矿床中。本任务对钴的化学性质、钴矿石的分解方法、钴的分析方法选用等进行了阐述。通过本任务的学习,知道钴的化学性质,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法,学会基于被测试样中钴含量的高低不同以及对分析结果准确度的要求不同而选用适当的方法,能正确填写样品流转单。
任务分析
一、钴的性质
1.物理性质
钴(Co),原子序数是27,相对原子质量58.93,密度8.9g/cm3,熔点1495℃,沸点2930℃,具有光泽的钢灰色金属,比较硬而脆。钴是铁磁性的,在硬度、抗拉强度、机械加工性能、热力学性质、电化学行为方面,与铁和镍相类似,属于铁系元素。加热到1150℃时磁性消失。
2.化学性质
钴的化合价为+2价和+3价。在常温下不和水作用,在潮湿的空气中也很稳定。一般情况下与氧、硫、氯等非金属不起作用,但在高温下发生氧化作用,与氧、硫、氯、溴等发生剧烈反应,生成相应化合物。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。
由电极电势看出,钴是中等活泼的金属。其化学性质与铁、镍相似。
钴可溶于稀酸中,在发烟硝酸中因生成一层氧化膜而被钝化,在浓硝酸中反应激烈,在盐酸和硫酸中反应很缓慢,钴会缓慢地被氢氟酸、氨水和氢氧化钠侵蚀。钴在碱溶液中比铁稳定,钴是两性金属。
二、钴元素在地壳中的分布、赋存状态及其钴矿石的分类
钴在地壳中含量为23×10-6,很少有较大的钴矿床,明显比铁少得多,而且钴和铁的熔点不相上下,因此注定它比铁发现得晚。1735 年,瑞典的布朗特在煅烧钴矿时得到钴。
Co(Ⅱ)的化合物有氧化钴、氢氧化钴、氯化钴、硫酸钴、碳酸钴、草酸钴等;Co(Ⅲ)的化合物有氧化高钴;钴的配合物有氨配合物([Co(NH3)6]3+、氰配合物[Co(CN)6]4-、硫氰配合物[Co(SCN)4]2-、羰基配合物[Co(CO)4]-、硝基[Co(NO3)4]2-或亚硝基配合物[Co(NO2)6]3-。
钴在矿物中与砷和硫结合,主要矿物有硫钴矿Co3S4,含钴57.99%;砷钴矿CoAS2,含钴28.20%;辉砷钴矿CoAsS,含钴35.50%;硫铜钴矿CuCo2S4,含钴38.06%;钴黄铁矿(Fe,Co )S2,含钴32.94%;方钴矿 CoAS3,含钴20.77%;钴土矿 CoMn2O5· 4H2O,含钴 18.37%;钴华 Co(AsO4)3·8H2O,含钴 9.51%;菱钴矿 CoCO3,含钴49.55%;赤矾CoSO4,含钴20.97%。
单独的钴矿床一般为砷化钴、硫化钴和钴土矿三种,前两种的工业要求大体相同。硫化矿(包括砷化矿)中的钴边界品位达0.02%、工业品位为0.03%~0.06%;钴土矿中的钴边界品位为0.30%,工业品位为0.50%。
与钴共存的元素主要为铁和镍。矿石中的铜、镍作为伴生元素回收。对于伴生的其他元素,也应查明含量及赋存状态以便考虑能否综合利用。
三、钴矿石的分解方法
钴矿试样一般可用盐酸和硝酸分解,必要时可用焦硫酸钾和碳酸钠熔融。如试样为硅酸盐时,可加氟化物或氢氟酸助溶。不被氢氟酸分解的含钴矿石,可以用过氧化钠或氢氧化钠-硝酸钾熔融。
砷钴矿试样需要用硝酸和硫酸加热到冒烟使其分解。当试样中含有大量硫或砷时,宜先灼烧除去大部分的硫或砷,然后再用盐酸或王水分解。
四、钴的分离富集方法
钴没有简便而选择性好的分离方法。目前常用的分离方法主要有氨水沉淀法、1-亚硝基-2-萘酚沉淀法、铜铁试剂沉淀法、萃取分离法、离子交换法等。
氨水沉淀法是在铵盐存在下,用氨水将溶液 pH 调至8~9,Hg2+、Be2+、Fe3+、Al3+、Cr(Ⅲ)、Bi3+、Sb3+、Sn4+、Ti4+、Zr4+、Hf4+、Th4+、Mn4+、Nb5+、Ta5+、U(Ⅵ)及稀土离子定量沉淀,Mn2+、Fe2+、Pb2+部分沉淀,Ca2+、Sr2+、Ba2+、Mg2+、Co2+、Ag+、Cu2+、Cd2+、Ni2+、Zn2+留于溶液中。
在稀盐酸溶液中,用1-亚硝基-2-萘酚沉淀钴,是较完全的,但不能用作分离方法。因铁、铜、铋、银、铬、锆、钛、钼、钒、锡和硝酸等都有干扰。铝、铍、铅、镉、锰、镍、汞、砷、锑、锌、钙、镁和磷则不干扰。用氧化锌可以沉淀铝、钛、钒、铬、铁、砷、锆、锡、钨、铀、磷和大部分铜、铝、硅。所以用1 -亚硝基-2 -萘酚沉淀钴之前,常用氧化锌分离干扰元素。但用氧化锌沉淀分离干扰元素,常须沉淀二次或三次,这样就使1-亚硝基-2-萘酚沉淀钴的方法失去优越性。
铜铁试剂在酸性溶液中,定量沉淀Fe、Ti、Zr、V(Ⅴ)、U(Ⅳ)、Sn(Ⅳ)、Nb和Ta,可与Al、Cr、Mn、Ni、Co、Zn、Mg和P分离。铜铁试剂沉淀可用四氯化碳萃取除去。因铜铁试剂不影响1-亚硝基-2-萘酚沉淀钴,故铜铁试剂分离可与1-亚硝基-2-萘酚沉淀钴结合应用。
用亚硝酸钾使钴成亚硝酸钴钾沉淀,是一较实用的分离钴的方法。虽然沉淀的溶解度较大,与大量镍的分离不完全,沉淀不能作为称量形式等都是缺点,但此方法选择性较高,能使几毫克钴与大量铁、铜、镍,铝、锑、铋、镉、铬、锰、铝、钛、锡、钨、铌、钽、钒、锌和锆等元素分离。砷的干扰可预先挥发除去。钙、锶、钡、铅可以硫酸盐形式除去。KNO2沉淀法是在乙酸溶液中,钴与KNO2形成亚硝酸钴钾(K3[Co(NO2)6] )沉淀,在酒石酸存在下,Ni、Cr、Al、Fe、Ti、Zr,Nb、Ta、W、Mo及硫化氢组元素不干扰,Ca、Sr、Ba、Pb干扰此法自Ni中分离的Co,可以硫酸盐形式沉淀除去。沉淀并不纯净,可能夹带有W、Ni、Fe等元素。
萃取分离钴的方法很多,但多数选择性不高。
用丙酮∶水∶盐酸=34∶4∶2(体积之比)混合溶液为展开剂,用纸色谱可使钴与铁、钛、铜、锰、锌、铬、镍、钒和铀等元素分离。此方法已应用于矿石分析。
1-亚硝基-2-萘酚萃取法是在pH=3~7介质中,钴与试剂形成橙红色配合物,用苯定量萃取,大量Fe3+用氟化物掩蔽,加入柠檬酸盐可防止其他金属离子水解。在配合物形成后,再提高酸度,Ni、Cu、Cr、Fe等配合物立即被破坏,而钴配合物仍稳定,从而提高萃取的选择性。方法可用于痕量钴的萃取分离。钴的硫氰酸盐二安替比林配合物可被MIBK定量萃取。Co(Ⅱ)-PAN的配合物也能被三氯甲烷萃取。
介质为HCl(3+1)的试液通过强碱性阴离子交换柱,Cu、Zn、Fe的氯阴离子被吸附于柱上,Ni、Mn、Cr流出。然后用HCl(1+2)洗脱钴,Cu、Zn、Fe仍留于柱上。
五、钴的测定方法
目前仍在用的测定钴的方法有容量法、极谱法、光度法、原子吸收光谱法和等离子体发射光谱法等。
矿石中钴的含量一般较低,经常应用比色法进行测定。钴的比色法很多,最常用的有亚硝基-R-盐(亚硝基红盐)和2-亚硝基-1-萘酚萃取比色法。其他有硫氰酸盐法、5-Cl-PADAB光度法和PAR比色法、过氧化氢-EDTA比色法等。
亚硝基-R-盐(亚硝基红盐)比色法的优点是在一般情况下不需分离铁、铜、镍等元素而直接进行测定;简便、快速,准确度也较高。采用差示比色,可测定高含量钴。2-亚硝基-1-萘酚法由于经过萃取,有较高的灵敏度,适用于铜镍矿中钴的测定。硫氰酸盐法由于铜和铁的干扰,需要掩蔽或分离,目前应用较少。过氧化氢-EDTA比色法是在pH=8的氨性溶液中,用过氧化氢将钴氧化至三价与EDTA生成紫红色配合物,借以比色测定高含量钴。10mg Fe,12mg Mn,5mg Cu或Ni,1gmgSO4及2g NaCl均不干扰钴的测定。
用三氯甲烷萃取钴与二安替比林甲烷-硫氰酸盐形成的三元配合物,使钴与大量铜、镍分离后,再用PAR比色法测定钴。此法灵敏度较高,适用于组成复杂的试样中或大量铜、镍存在下微克量钴的测定。
对高含量钴的测定宜采用容量法。容量法有EDTA法、电位滴定法和碘量法。EDTA法由于铜、镍、铁、铝、锌等共存离子的干扰,须用亚硝酸钴钾或其他方法将钴与干扰元素分离后再进行滴定。
1.亚硝基-R-盐(亚硝基红盐)比色法
在pH=5.5~7.0的醋酸盐缓冲溶液中,钴与亚硝基-R-盐(1-亚硝基-2萘酚-3,6-二磺酸钠)形成可溶性红色配合物。
2.电位滴定法
在氨性溶液中,加入一定量的铁氰化钾,将Co(Ⅱ)氧化为Co(Ⅲ),过量的铁氰化钾用硫酸钴溶液滴定,按电位法确定终点。其反应式如下:
岩石矿物分析
本法适用于含1.0% 以上钴的测定。
3.EDTA容量法
钴与EDTA形成中等稳定的配合物(lgK=16.3)。能在pH为4~10范围内应用不同的指示剂进行钴的配位滴定。
铁、铝、锰、镍、铜、铅、锌等金属离子干扰测定,因此必须将它们除去或掩蔽。对于只含铁、铜、钴等较单纯的试样,可用氟化物掩蔽铁、硫脲掩蔽铜而直接进行测定。多金属矿则应在乙酸介质中,用亚硝酸钾沉淀钴与其他干扰元素分离后,再进行测定。
常用的滴定方法有:以PAN [1-(2-吡啶偶氮)-2-萘酚]为指示剂,用铜盐溶液回滴;以二甲酚橙为指示剂,用EDTA标准溶液滴定被钴所置换出的EDTA-锌中的锌。
使用PAN作指示剂铜盐回滴法时,所加的EDTA量可根据钴量而稍微过量,这样终点更加明显。在常温下反应较慢,应在70℃至近沸状态下进行滴定。加入有机溶剂(甲醇、异丙醇等),可使终点颜色变化敏锐。
以二甲酚橙为指示剂,不能用EDTA标准溶液直接滴定。因为铁、铝、铜、钴和镍等能封闭二甲酚橙,虽然用三乙醇胺能掩蔽痕量的铁、铝,用邻啡罗啉能抑制铜、钴对二甲酚橙的封闭作用,但还不够理想,故改用置换滴定法,以克服这一缺点。
本法适用于含0.5% 以上钴的测定。
4.原子吸收光谱法
每毫升溶液中,含10mg铁,9mg镍,40mg锡,3mg银,0.8mg铝,0.64mg钒、铝、钛,0.6mg铬,6.4mg 钠,0.4mg 钾,0.2mg 铜,0.16mg 锰,0.1mg 砷、锑,40μg 镁,80μg锶、磷,80μg 钨,50μg 铅,48μg 钡,40μg 锌、镉、铋、钙,23μg 铍均不干扰测定。二氧化硅含量超过40μg/mL干扰测定,当加入高氯酸冒烟处理后,含量达0.8mg/mL亦不干扰测定。小于15%(体积分数)硝酸,小于5%(体积分数)盐酸、硫酸不影响测定,高氯酸含量达16%(体积分数)亦不影响测定。磷酸严重干扰测定。
方法灵敏度为0.085μg/mL(1% 吸收),最佳测定范围为2~10μg/mL。
本法适用于镍矿及铁矿中钴的测定。
5.碘量法
Co(Ⅱ)在含有硝酸铵的氨性溶液(pH为9~10)中能被碘氧化成Co(Ⅲ),并与碘生成稳定的硝酸-碘五氨络钴的绿色沉淀。过量的碘以淀粉作指示剂,用亚砷酸钠标准溶液滴定。其反应式如下;
岩石矿物分析
岩石矿物分析
铁、铝在氨性溶液中能生成氢氧化物沉淀且易吸附钴,同时铁的氢氧化物又影响终点的判断,加入柠檬酸铵-焦磷酸钠混合溶液可消除100mg以下铁、铝的干扰。2mg锰的影响测定,铜、镍、镉、锌在100mg以下不干扰。
本法适用于5% 以上钴的测定。
6.ICP-AES法
ICP-AES法(等离子体发射光谱法)可以同时测定样品中多元素的含量。当氩气通过等离子体火炬时,经射频发生器所产生的交变电磁场使其电离、加速并与其他氩原子碰撞。这种连锁反应使更多的氩原子电离形成原子、离子、电子的粒子混合气体——等离子体。等离子体火炬可达6000~8000 K的高温。过滤或消解处理过的样品经进样器中的雾化器被雾化并由氩载气带入等离子体火炬中,气化的样品分子在等离子体火炬的高温下被原子化、电离、激发。不同元素的原子在激发或电离时发射出特征光谱,所以等离子体发射光谱可用来定性样品中存在的元素。特征光谱的强弱与样品中原子浓度有关与标准溶液进行比较,即可定量测定样品中各元素的含量。
含钴矿样经过盐酸、硝酸分解后,在选定的测量条件下以ICP-AES测定溶液中的Cu、Pb、Zn、Co、Ni等元素的含量。
本法适用于0.10%~20.00% 之间钴的测定。
六、钴矿石的分析任务及其分析方法的选择
在生产实践中,因不同的钴矿产品所含杂质元素的组成不同,考虑到其对生产工艺的影响,在对钴矿样进行检验时,对杂质元素的检测也要选择合适的方法进行测定。
对于主品位钴的测定,如果样品中钴含量低于1.00% 以下,一般采用光度法测定,现在通常使用的方法是亚硝基-R-盐光度法,该方法稳定可靠,样品经过处理以后可以直接进行测定。钴含量超过1.00% 时,将样品适当处理以后,可以使用电位滴定法测定,该方法特别适用于含钴量比较高的矿物。
钴矿石中的常见钙、镁、铅、锌、镉、铜等元素含量低时可以采用原子吸收法进行测定,含量高时可以使用EDTA滴定法测定;高含量铜亦可用碘量法进行氧化还原滴定;铁可以用磺基水杨酸光度法或重铬酸钾容量法进行测定;铝一般用铬天青光度法测定;二氧化硅用硅钼蓝光度法测定;镍用丁二酮肟光度法测定;磷、砷可用钼蓝光度法测定。其他元素一般在矿物中含量不高,对生产的影响不大,在作为原料检测时可以酌情考虑是否需要检测。
技能训练
实战训练
1.学生实训时按每组5~8人分成几个小组。
2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成钴矿石委托样品从样品验收到派发样品检验单工作。
3.填写附录一中质量表格1、表格2。
⑽ 亚硝酸盐含量方法
GB/T 5009.33-2003
你去查这个标准就可以了。如果你还不满意的话,我就去给你查。还请你给我100分吧,我很需要。
GB/T 5009.33—1996
中华人民共和国国家标准 食品中亚硝酸盐与硝酸盐的测定方法 Method for determination of nitrite and nitrate in foods GB/T 5009.33—1996 1 主题内容与适用范围 本标准规定了食品中亚硝酸盐和硝酸盐的测定方法。 本标准适用于食品中亚硝酸盐和硝酸盐的测定。亚硝酸酸盐方法检出限为1 mg/kg,硝酸盐方法检出限为1.4 mg/kg。 第一篇 格里斯试剂比色法(第一法) (一)亚硝酸盐测定 2 原理 样品经沉淀蛋白质、除去脂肪后,在弱酸条件下亚硝酸盐与对氨基苯磺酸重氮化后,再与N-1-萘基乙二胺偶合形成紫红色染料,与标准比较定量。 3 试剂 实验用水为蒸馏水,试剂不加说明者,均匀分析纯试剂。 3.1 氯化铵缓冲液:1 L容量瓶中加入500 mL水,准确加入20.0 mL盐酸,振荡混匀,准确加入50 mL氢氧化铵,用水稀释至刻度。必要时用稀盐酸和稀氢氧化铵调试至pH9.6~9.7。 3.2 硫酸锌溶液(0.42 mol/L):称取120 g硫酸锌(ZnSO4·7H2O),用水溶解,并稀释至1 000 mL。 3.3 氢氧化钠溶液(20 g/L):称取20 g氢氧化钠用水溶解,稀释至1 L。 3.4 对氨基苯磺酸溶液:称取10 g对氨基苯磺酸,溶于700 mL水和300 mL冰乙酸中,置棕色瓶中混匀,室温保存。 3.5 N-1-萘基乙二胺溶液(1 g/L):称取0.1 g N-1-萘基乙二胺,加60%乙酸溶解并稀释至100 mL,混匀后,置棕色瓶中,在冰箱中保存,一周内稳定。 3.6 显色剂:临用前将N-1-萘基乙二胺溶液(1 g/L)和对氨基苯磺酸溶液等体积混合。 3.7 亚硝酸钠标准溶液:准确称取250.0 mg于硅胶干燥器中干燥24 h的亚硝酸钠,加水溶解移入500 mL容量瓶中,加100 mL氯化铵缓冲液,加水稀释至刻度,混匀,在4℃避光保存。此溶液每毫升相当于500 μg的亚硝酸钠。 3.8 亚硝酸钠标准使用液:临用前,吸取亚硝酸钠标准溶液1.00 mL,置于100 mL容量瓶中,加水稀释至刻度,此溶液每毫升相当于5.0 μg亚硝酸钠。 4 仪器 4.1 小型粉碎机。 4.2 分光光度计。 5 操作方法 5.1 样品处理 称取约10.00 g(粮食取5 g)经绞碎混匀样品,置于打碎机中,加70 mL
中华人民共和国卫生部 1996—06—19 批准 1996—09—01 实施
GB/T 5009.33—1996
水和12 mL氢氧化钠溶液(20 g/L),混匀,用氢氧化钠溶液(20 g/L)调样品pH=8,定量转移至200 mL容量瓶中加10 mL硫酸锌溶液,混匀,如不产生白色沉淀,再补加2~5 mL氢氧化钠,混匀。置60℃水浴中加热10 min,取出后冷至室温,加水至刻度,混匀。放置0.5 h,用滤纸过滤,弃去初滤液20 mL,收集滤液备用。 5.2 测定 5.2.1 亚硝酸盐标准曲线的制备:吸取0,0.5,1.0,2.0,3.0,4.0.5.0 mL亚硝酸钠标准使用液(相当于0,2.5,5,10,15,20,25 μg亚硝酸钠),分别置于25 mL带塞比色管中。于标准管中分别加入4.5 mL氯化铵缓冲液,加2.5 mL60%乙酸后立即加入5.0 mL显色剂,加水至刻度,混匀,在暗处静置25 min用1 cm比色杯(灵敏度低时可换2 cm比色杯),以零管调节零点,于波长550 nm处测吸光度,绘制标准曲线。 低含量样品以制备低含量标准曲线计算,标准系列为:吸取0,0.4,0.8,1.2,1.6,2.0 mL亚硝酸钠标准使用液(相当于0,2,4,6,8,10 μg亚硝酸钠)。 5.2.2 样品测定:吸取10.0 mL上述滤液(5.1)于25 mL带塞比色管中,自5.2.1“于标准管中分别加入4.5 mL氯化铵缓冲液”起依法操作。同时做试剂空白。 6 计算 1000100012121×××=VVmmX……………………………………(1) 式中:X1——样品中亚硝酸盐的含量,mg/kg; m1——样品质量,g; m2——测定用样液中亚硝酸盐的质量,μg; V1——样品处理液总体积,mL; V2——测定用样液体积,mL。 结果的表述:报告算术均值的二位有效数。 7 允许差 相对相差≤10%。 (二) 硝酸盐测定 8 原理 样品经沉淀蛋白质、除去脂肪后,溶液通过镉柱,或加入镉粉,使其中的硝酸根离子还原成亚硝酸根离子,在弱酸性条件下,亚硝酸根与氨基苯磺酸重氮化后,再与N-1萘基乙二胺偶合形成红色染料,测得亚硝酸盐总量,由总量减去亚硝酸盐含量即得硝酸盐含量。 9 试剂 9.1 氯化铵缓冲溶液(pH9.6~9.7):同3.1。 9.2 硫酸镉溶液(0.14 mol/L):称取37 g硫酸镉(CdSO4·8H2O),用水溶解,定容至1 L。 9.3 盐酸溶液(0.1 mol/L):吸取8.4 mL盐酸,用水稀释至1 L。
中华人民共和国卫生部 1996—06—19 批准 1996—09—01 实施
GB/T 5009.33—1996
9.4 硝酸钠标准溶液:准确称取500.0 mg于110~120℃干燥恒重的硝酸钠,加水溶解,移于500 mL容量瓶中,加50 mL氯化铵缓冲液,用水稀释至刻度,混匀,在4℃冰箱中避光保存。此溶液每毫升相当于1 mg硝酸钠。 9.5 硝酸钠标准使用液:临用时吸取硝酸钠标准溶液1.0 mL,置于100 mL容量瓶中,加水稀释至刻度,混匀,临用时现配。此溶液每毫升相当于10 μg硝酸钠。 9.6 亚硝酸钠标准使用液同3.8。 9.7 镉柱(镉粉)。 9.7.1 海绵状镉粉的制备:于500 mL硫酸镉溶液中,投入足够的锌棒经3~4 h,当其中的镉全部被锌置换后,用玻璃棒轻轻刮下,取出残余锌棒,使镉沉底,倾去上层清液,以水用倾斜法多次洗涤,然后移入粉碎机中,加500 mL水,捣碎约2 s,用水将金属细粒洗至标准筛上,取20~40目之间的部分,置试剂瓶中,用水封盖保存,备用。 9.7.2 镉柱还原效率的测定:取25 ml酸式滴定管数支,向柱底压入1 cm高的玻璃棉作垫,上置一小漏斗,将新配制的镉粉带水加入柱内,边装边轻轻敲击柱,排除柱内空气,加镉粉至8~10 cm高,上面用1 cm高的玻璃棉覆盖,上置一贮液漏斗。 当镉柱填装好后,先用25 mL盐酸(0.1 mol/L)洗涤,再以水洗两次,每次25 mL,调节柱流速至3~5 mL/min。镉柱不用时用水封盖,随时都要保持水平面在镉层之上,不得使镉层夹有气泡。 镉柱每次使用完毕后,应先以25 mL盐酸(0.1 mol/L)洗涤,再以水洗两次,每次25 mL,最后用水覆盖镉柱。 柱先加25 mL氯化铵缓冲液,至液面接近海绵镉时,吸取2.0 mL硝酸钠标准使用液(10 μg/mL),经柱还原,控制流速3~5 mL/min,用50 mL容量瓶接收。加入5 mL氯化铵缓冲溶液,液面接近海绵镉时,加入15 mL水洗柱,还原液和洗液一并流入50 mL容量瓶中。加5 mL60%乙酸,10 mL显色剂,加水稀释至刻度,混匀,暗处放置25 min。用1 cm比色杯,以标准零管调节零点,于波长550 nm处测吸光度,根据亚硝酸盐标准曲线计算还原效率(如镉柱还原率小于95%,应经盐酸浸泡活化处理)。 9.7.3 镉粉还原效率的测定:镉粉使用前,经盐酸浸泡活化处理,再以水洗两次,用水浸没待用。用牛角勺将镉粉加入25 mL带塞刻度试管中,至5 mL刻度;用少量水封住。吸取2.0 mL硝酸钠标准使用液加入5 mL氯化铵缓冲液。盖上试管塞,振摇2 min,静止5 min,用漏斗颈部塞有少量脱脂棉的小漏斗过滤,滤液定量收集于50 mL容量瓶中,用15 mL水少量多次地洗涤镉粉,洗液与滤液合并。加5 mL乙酸(60%)后,立即加10 mL显色剂,加水稀释至刻度,混匀,暗处置25 min。用1 cm比色杯,以标准零管调节零点,于550 nm波长处测吸光度,根据亚硝酸盐标准曲线计算还原效率。 9.7.4 计算 10020232.132××=mX……………………………………(2) 式中:X2——还原效率,%; 20——硝酸盐的质量,μg; m3——20 μg硝酸盐还原后测得亚硝酸盐的质量,μg;
中华人民共和国卫生部 1996—06—19 批准 1996—09—01 实施
GB/T 5009.33—1996
1.232——亚硝酸盐换算成硝酸盐的系数。 10 分析步骤 10.1 样品处理 同5.1。 10.2 测定(用镉柱法或镉粉法还原硝酸盐为亚硝酸盐) 10.2.1 甲法(镉柱法):经活化的镉柱先加25 mL氯化铵缓冲液,至液面接近海绵镉时,准确吸取5.1的样品滤液10.0 mL,加入镉柱还原。以下按9.7.2自“控制流速3~5 mL/min”起依法操作。 10.2.2 乙法(镉粉法):准确吸取5.1的样品滤液10.0 mL,置于盛有高度5 mL镉粉的25 mL带塞刻度试管中。自“加入5 mL氯化铵缓冲液…”按9.7.3依法操作。 注:蔬菜、腌菜类食品中硝酸盐含量较高,可根据样品中硝酸盐的实际含量,将样品溶液稀释至适当浓度。 11 计算 1000)/(1000232.1)(344653××××−=VVmmmX……………………………………(3) 式中:X3——样品中硝酸盐的含量,mg/kg; m4——样品的质量,g; m5——经镉粉还原后测得亚硝酸钠的质量,μg; m6——直接测得亚硝酸盐的质量,μg; 1.232——亚硝酸钠换算成硝酸钠的系数。 V3——样品处理液体积,mL; V4——测定用样液体积,mL。 结果的表述:报告算术平均值的两位有效数。 12 允许差 相对相差≤10%。 第二篇 示波极谱法(亚硝酸盐测定)(第二法) 13 原理 样品经沉淀蛋白质、除去脂肪后,在弱酸性的条件下亚硝酸盐与对氨基苯磺酸重氮化后,在弱碱性条件下再与8-羟基喹啉偶合形成橙色染料,该偶氮染料在汞电极上还原产生电流,电流与亚硝酸盐的浓度呈线性关系,可与标准曲线比较定量。 14 试剂 14.1 亚铁氰化钾溶液:称取106.0 g亚铁氰化钾[K4Fe(CN)6·3H2O],用水溶解,并稀释至1 000 mL。 14.2 乙酸锌溶液:称取220.0 g乙酸锌[Zn(CH3COO)2·2H2O],加30 mL冰乙酸溶于水,并稀释至1 000 mL。 14.3 饱和硼砂溶液:称取5.0 g硼酸钠(Na2B4O7·10H2O),溶于100 mL热水中,冷却后备用。 14.4 对氨基苯磺酸溶液(8 g/L):称取2 g对氨基苯磺酸,用热水溶液,再加25 mL盐酸(1.0 mol/L),移至250 mL容量瓶稀释至刻度。
中华人民共和国卫生部 1996—06—19 批准 1996—09—01 实施
GB/T 5009.33—1996
14.5 8-羟基喹啉溶液(1 g/L):称取0.250 g 8-羟基喹啉,加4 mL盐酸(0.1 mol/L)和少量水溶解,移至250 mL容量瓶稀释至刻度。 14.6 EDTA溶液(0.10 mol/L):称取3.722 gEDTA(C10H14N2O8Na·2H2O)加水30 mL溶解,转入100 mL容量瓶中用水稀释至刻度。 14.7 氨水(5%):吸取28%的浓氨水5.00 mL于100 mL容量瓶中,加水稀释至刻度。 14.8 亚硝酸钠标准溶液:准确称取0.100 0 g亚硝酸钠于硅胶干燥器中24 h,加水溶解移入500 mL容量瓶中,并稀释至刻度,此溶液每毫升相当于200 μg亚硝酸钠。 14.9 亚硝酸钠标准使用液:准确称取亚硝酸钠标准溶液5.00 mL于200 mL容量瓶中,加水稀释至刻度,此溶液每毫升相当于5μg亚硝酸钠。再取10.00 mL该稀释液于100 mL容量瓶中,加水稀释至刻度,此溶液每毫升相当于0.5 μg的亚硝酸钠。 15 仪器 15.1 小型绞肉机。 15.2 JP-2A或JP-1A示波极谱仪。 16 操作方法 16.1 样品处理 称取5.000 g经绞碎混匀的样品(午餐肉,火腿肠可称10.00~20.00 g),置于50 mL烧杯中,加12.5 mL硼砂饱和液,搅拌均匀,以70℃的水300 mL将样品洗入500 mL容量瓶中,于沸水溶中加热15 min取出后冷却至室温,然后一面转动,一面加入5 mL亚铁氰化钾溶液,摇匀,再加入5 mL乙酸锌溶液,以沉淀蛋白质。加水至刻度,摇匀,放置30 min,除去上层脂肪,清液用滤纸过滤,弃去初滤液50 mL,滤液备用。 16.2 测定 吸取3 mL上述滤液于10 mL容量瓶(或比色管)中,另取0,0.50,1.00,1.50,2.00,2.50,3.00 mL亚硝酸钠标准溶液(相当于0,0.25,0.50,0.75,1.00,1.25,1.50 μg亚硝酸钠)于10 mL容量瓶(或比色管)中。于标准与样品管中分别加入0.20 mL EDTA溶液(0.10 mol/L),1.50 mL对氨基苯磺酸溶液(8 g/L),混匀,静止3~4 min后各加入1.00 mL8-羟基喹啉溶液(1 g/L)和0.5 mL氨水(5%),用水稀释至刻度,混匀,静止10~15 min,将试液全部转入电解池中(10 mL小烧杯)。在示波极谱仪上采用三电极体系进行测定(滴汞电极为工作电极,饱和甘汞电极为参比电极,铂电极为铺助电极)。 测定参考条件: 原点电位调节在-0.2 V; 倍率为0.1(可以根据试样中亚硝酸盐含量多少选择合适的倍率,含量高,倍率高,倍率选择在0.1以上;反之,倍率选择在0.1以下); 电极开头拔至三电极、导数档; 测量开关拔至阴极。 将三电极插入电解池中,每隔7 s仪器自行扫描一次,在荧光屏上记录-0.56 V左右(允许电位波动10~20 mV)的极谱波高,绘制标准曲线比较。 17 计算 10001000)/(100056784××××=VVmmX……………………………(4)
中华人民共和国卫生部 1996—06—19 批准 1996—09—01 实施
GB/T 5009.33—1996
式中:X4——样品中亚硝酸盐的含量,g/kg; m8——测定用样液中亚硝酸盐的质量,μg; V5——样品溶液的总体积,mL; V6——测定用样液的体积,mL; m7——样品质量,g。 结果表述:报告算术平均值二位有效数。 18 允许差 相对相差≤10%。 附加说明: 本标准由卫生部卫生监督司提出。 本标准第一法由卫生部食品卫生监督检验所、河南省食品卫生监督检验所、吉林省卫生防疫站、青岛医学院负责起草;第二法由华中师范大学、湖北省食品卫生监督检验所、武汉同济医学大学负责起草。 本标准由卫生部委托技术归口单位卫生部食品卫生监督检验所负责解释。 中华人民共和国卫生部 1996—06—19 批准 1996—09—01 实施