㈠ 基于内容的图像检索的特征提取
基本体整体趋包含颜色、纹理、平面空间对应关系、外形,或者其他统计特征。 图像特征的提取与表达是基于内容的图像检索技术的基础。从广义上讲,图像的特征包括基于文本的特征(如关键字、注释等)和视觉特征(如色彩、纹理、形状、对象表面等)两类。视觉特征又可分为通用的视觉特征和领域相关的视觉特征。前者用于描述所有图像共有的特征,与图像的具体类型或内容无关,主要包括色彩、纹理和形状;后者则建立在对所描述图像内容的某些先验知识(或假设)的基础上,与具体的应用紧密有关,例如人的面部特征或指纹特征等。 颜色是彩色图像最底层、最直观的物理特征,通常对噪声,图像质量的退化,尺寸、分辨率和方向等的变化具有很强的鲁棒性,是绝大多数基于内容的图像和视频检索的多媒体数据库中使用的特征之一。颜色特征的描述方法主要有以下四种:
颜色直方图(ColorHistogram)
它是最简单也是最常用的颜色特征,描述了图像颜色的统计分布特性,具有平移、尺度、旋转不变性。其核心思想是在颜色空间中采用一定的量化方法对颜色进行量化,然后统计每一个量化通道在整幅图像中所占的比重。
常用的颜色空间有RGB,CIE,HSI,HSV空间等,主要的量化方法有最重要信息位、颜色空间划分、颜色空间聚类、参考颜色、图像分割等,文献中讨论了对这些方法进行了讨论和总结。 由于颜色直方图缺乏颜色的空间分布信息,改进的方法包括在颜色索引时加入空间位置信息和基于区域的颜色查询。最简单的方法是子窗口直方图法,即将图像分割成子图像,一一建立索引。另一文献中将图像分成了大小相等的九个子图像,然后统计每个子图像中的颜色直方图。
颜色相关图(ColorCorrelogram)
其主要思想是用颜色对相对于距离的分布来描述信息,它反映了像素对的空间相关性,以及局部像素分布和总体像素分布的相关性,并且容易计算,特征范围小,效果好。
颜色矩(ColorMoment)
其基本思想是在颜色直方图的基础上计算出每个颜色通的均值、方差、偏差,用这些统计量替代颜色的分布来表示颜色特征。它具有特征量少,处理简单的特点。
颜色一致性矢量(Color Coherence Vectors, CCV)
本质上是一种引入空间信息改进的直方图算法,统计了图像中各颜色最大区域的像素数量。通过分离开一致性像素和非一致性像素,比直方图算法具有更好的区别效果。 纹理是图像的重要特征之一,通常定义为图像的某种局部性质,或是对局部区域中像素之间关系的一种度量,其本质是刻画像素的邻域灰度空间分布规律。纹理特征描述方法大致可以分为四类:统计法、结构法、模型法、频谱法。
统计法
统计法分析纹理的主要思想是通过图像中灰度级分布的随机属性来描述纹理特征。最简单的统计法是借助于灰度直方图的矩来描述纹理,但这种方法没有利用像素相对位置的空间信息。
为了利用这些信息,Haralick 等人提出了用共生矩阵来表示纹理特征。 该方法研究了纹理的空间灰度级相关性,构造出一个基于图像像素间方向和距离的共生矩阵,并且从矩阵中提取出反差、能量、熵、相关等统计量作为特征量表示纹理特征。
Tamura 等人基于人类视觉的心理学研究后提出了一些不同的方法来描述纹理特征,给出了几个不同的描述纹理特征的术语:粗糙度(Coarseness) 、对比度(Contrast) 、方向(Directionality) 、线性度(Linelikeness) 、规则度(Regularity) 、粗略度(Roughness) 等。Tamura 纹理和共生矩阵表示的主要区别在于:前者的所有纹理属性都是视觉意义上的,而后者的某些纹理属性不具有视觉意义(如信息熵) 。这一特点使得Tamura 的纹理表示在图像检索中使用得较多。QBIC 和MARS都进一步证明了这种表示方法。
结构法
结构法分析纹理的基本思想是假定纹理模式由纹理基元以一定的、有规律的形式重复排列组合而成,特征提取就变为确定这些基元并定量分析它们的排列规则。Carlucci曾提出一个使用直线段、开放多边形和封闭多边形作为纹理基元的纹理模型,其排列规则由一种图状语法结构定义。 Lu and Fu给过一种树型语法结构表示纹理,他们将纹理按照9 ×9 的窗口进行分割,每个分解单元的空间结构表示为一棵树。 因为实际的纹理大都是无规则的,因此结构法受到很大限制。
模型法
模型法利用一些成熟的图像模型来描述纹理,如基于随机场统计学的马尔可夫随机场、子回归模型,以及在此基础上产生的多尺度子回归模型 (MultiResolution Simultaneous Autoregressive, MRSA) 等。这些模型的共同特点是通过少量的参数表征纹理。MRSA 区分不同纹理模式的能力较强,但同时计算开销也较大。
频谱法
频谱法借助于频率特性来描述纹理特征,包括傅里叶功率谱法 、Gabor 变换 、塔式小波变换( Pyramid Wavelet Transform ,PWT) 、树式小波变换( Tree Wavelet Transform,TWT) 等方法。Manjunath and Ma 实验指出, Gabor 特征提供了最佳的模式检索精度,检索性能优于TWT 和PWT,略微优于MRSA ,缺点是计算速度慢,其旋转不变性和尺度不变性仍有待讨论。 形状是刻画物体最本质的特征,也是最难描述的图像特征之一,主要难在对图像中感兴趣目标的分割。对形状特征的提取主要是寻找一些几何不变量。目前用于图像检索的形状描述方法主要有两类:基于边缘和基于区域的形状方法。前者利用图像的边缘信息,而后者则利用区域内的灰度分布信息。
基于边缘
基于边缘的形状特征提取是在边缘检测的基础上,用面积、周长、偏心率、角点、链码、兴趣点、傅里叶描述子、矩描述子等特征来描述物体的形状,适用于图像边缘较为清晰、容易获取的图像。文献[16]首先对图像进行了高斯平滑,接着使用经典的兴趣点检测算法发现兴趣点,然后用兴趣点的测度值作为图像特征进行匹配。文献 提出将图像边缘上的角点作为特征点,然后使用Delaunay三角形进行划分,记录三角形的形状特征来描述图像的形状特征。这种方法由于是基于边缘上的一些特殊点,因此对噪声和点位置的变化较为敏感。文献采用边缘方向直方图来刻画形状特征,具有简单、平移不变性等优点,但也存在不具备尺度、旋转不变性等缺点。
基于区域
基于区域的形状特征提取的主要思路是通过图像分割技术提取出图像中感兴趣的物体,依靠区域内像素的颜色分布信息提取图像特征,适合于区域能够较为准确地分割出来、区域内颜色分布较为均匀的图像。文献应用变形模板技术,把用户提供的形状看作模板,与图像库中的形状进行匹配。由于是直接比较两个形状,因此具有较高的精度,但同时计算量也较大。 文献提出了一种形状弹性匹配算法,首先确定感兴趣区域,在这些区域中采用爬山优化算法获取图像边缘,并用这些边缘代表物体形状。 这种方法的优点是对图像边缘进行了筛选,缺点是需要人工干预。近年来,基于区域的图像检索方法已经成为基于内容的图像检索的一大研究热点。
㈡ 图像视觉特征的提取和表达有哪些方法
第
1
章
图像视觉特征的提取和表示
1.1
引言
图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和
处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,
图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。
图像底层视觉特征一定程度上能够反映图像的内容,
可以描述图像所表达的
意义,
因此,
研究图像底层视觉特征是实现图像分类与检索的第一步。
一般来说,
随着具体应用的不同,
选用的底层特征也应有所不同,
在特定的具体应用中,
不
同底层视觉特征的选取及不同的描述方式,
对图像分类与检索的性能有很大的影
响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求:
(1)
提取简单,时间和空间复杂度低。
(2)
区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反
之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。
(3)
与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相
近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。
(4)
抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,
旋转不变性。
本章重点讨论当前比较成熟的特征提取方法,
在此基础上选取合适的特征提
取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,
纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。
1.2
颜色特征的提取和表示
颜色是图像视觉信息的一个重要特征,
是图像分类与检索中最为广泛应用的
特征之一。
一般来说同一类别的图像之间颜色信息具有一定的相似性,
不同类别
的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,
有对大小、
方向不敏感等特点。
因此,
颜色特征的提取受到极大重视并得到深入
研究。
本章首先介绍几种常用的颜色空间模型,
然后介绍各种颜色特征提取和表
示方法。
1.2.1
颜色空间模型
为了正确地使用颜色这一特征,
需要建立颜色空间模型,
通常的颜色空间模
型可用三个基本量来描述,
所以建立颜色空间模型就是建立一个
3-D
坐标系,
其
中每个空间点都代表某一种颜色。
通常来说,
对于不同的应用,
应该选取不同的
颜色空间模型。常用的颜色空间模型主要有:
RGB
、
HIS
、
HSV
、
YUV
、
YIQ
、
Munsell
、
Lu
*
v
*
和
La
*
b
*
等。
颜色空间模型的选取需要符合一定的标准,
下面就这
一标准和最常用的颜色空间模型作一些介绍。
文献
[
错误!未找到引用源。
]
中介绍了选择颜色空间模型的标准主要有以下
几个:
(1)
观察角度的鲁棒性
(2)
对物体几何性质的鲁棒性
(3)
对光照方向改变的鲁棒性
(4)
对照强度改变的鲁棒性
(5)
对照明的光谱能量分布
(SPD)
的鲁棒性
(6)
高分辨能力
(7)
对物体遮掩和杂乱的鲁棒性
(8)
对图像噪声的鲁棒性
㈢ 图像特征提取方法=特征选择与描述
(1)提取简单,时间和空间复杂度低.
(2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反
之,对于视觉内容不相似的图像其特征描述之间应有一定的差别.
(3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相
近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别.
(4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,
旋转不变性.
㈣ 如何利用卷积神经网络提取图像特征
卷积神经网络有以下几种应用可供研究: 1、基于卷积网络的形状识别 物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。 2、基于卷积网络的人脸检测 卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。 3、文字识别系统 在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。
㈤ 请问数字图像中有哪些特征,怎么提取
数字图像中可以提取的特征一般指的是:局部图像特征(local image feature)。
提取特征点(兴趣点、关键点)的方法有很多,从1977年开始研究至今,最着名的算法是(Scale Invariant Feature Transform) SIFT descriptor。
有时候也指:图像边缘(image edge)。提取边缘的方法也有很多,从1965年开始研究至今,最着名的算法是:Canny Edge Detector。
㈥ 遥感影像信息的提取技术方法研究进展
遥感的对地观测系统是一个信息流交换的过程:电磁波与地表物体相互作用形成地表信息交流。而遥感影像信息提取技术就是最大限度地从遥感图像上的光谱信息反演出目标地物本身的属性特征信息。进而可对地球表层资源与环境进行探测、分析,并揭示其要素的空间分布特征与时空变化规律。遥感影像信息的提取技术是建立在对地物规律有充分的了解的基础之上的,其综合物理手段、数学方法和地物状态识别等认识,通过对影像的处理与分析,获得能反映区域内地物的分布规律和变化过程的有效信息的技术方法。
遥感地物识别主要依赖于地物的光谱和空间特征的差异。多光谱由于光谱分辨率低,地物的光谱特征表现不充分,地物识别主要依赖地物的空间特征,包括灰度、颜色、纹理、形态和空间关系。信息处理和信息提取主要是应用图像增强、图像变换和图像分析方法,增强图像的色调、颜色以及纹理的差异,达到最大限度地区分地物的目的。随着成像光谱仪研制成功以及其产业化的发展,遥感地物信息提取也随之进入了一个崭新的时代。成像光谱对地物的识别主要是依赖于地物的光谱特征,是直接利用岩石矿物的光谱特征进行地物识别,定量分析地物信息。下面从多光谱和高光谱遥感信息处理两方面来加以论述。
1.多光谱方法研究进展
多光谱的信息提取主要集中于:色调信息提取,纹理信息提取,信息融合。
(1)色调信息提取
对于色调信息提取,主要是采用一些增强处理,扩大图像中地物间的灰度差别,以突出目标信息或改善图像效果,提高解译标志的判别能力,如反差扩展、彩色增强、运算增强、变换增强等,这些传统的图像处理方法在一定程度上满足了应用的需要。近年来发展了一系列的以主成分变换为主的信息提取技术,在岩矿信息提取中发挥了重要的作用。如张满郎(1996)提出修正的直接主成分分析提取铁氧化物信息。OF 变换(Maxium Noise Fraction Transformation)(Kruse,1996,Creen,et al.,1988),NAPC(Noise-adjust Principal Components Transform)(Lee,et al.,1990)、分块主成分变换(Jia,et al.,1999)、基于主成分的对应分析(Carr,et al.,1999),以及基于主成分分析的空间自相关特征提取(Warner,et al.,1997)、子空K投影(Harsanyl,et al.,1997)和高维数据二阶特征分析(Lee,et al.,1993;Haertel,et al.,1999)等,也是基于主成分分析进行信息特征选择与特征提取。同时,根据模式识别的原理,提出并设计出监督分类与非监督分类方法:以及利用决策树进行分类识别(Wrbka,et al.,1999;Friedl,et al.,1999;Hansen et al.,1996),这些技术与方法是建立在图像灰度特征之上,利用数理统计的知识进行地物分类与信息提取。
(2)纹理信息提取
遥感影像的边缘和纹理信息对线环构造的识别具有一定作用,但却似乎无助于岩性的识别。边缘信息提取通常采用滤波算子或锐化的方法进行(Gross,et al.,1998;Varbel,2000)。纹理信息提取通常采用共生矩阵、傅立叶功率谱和纹理谱等方法。
(3)信息融合
多源数据融合研究也非常普及与深入,其技术方法涉及不同的数理知识(Jimen,et al.,1999;Pohl,1998;Robinson,et al.,2000;Price,1999;Gross et al.,1998),比如小波信息融合。应用面涉及非遥感数据(王润生,1992;朱亮璞,1994),如遥感数据与地化数据、物探数据的叠置与融合。这些方法一方面开阔了遥感的应用视野,另一方面也扩展了遥感的应用能力。
总的来说,多光谱遥感岩矿信息提取主要是基于图像灰度特征,即基于岩矿的反射率强度差异,采用一些数学变换方法,增强或突出目标信息,使之易于目视解译。在数据处理中,由于波段有限,未能有效地导入岩矿类别的光谱知识,其结果精度更多地取决于研究人员的经验。
2.高光谱方法研究进展
成像光谱技术是多光谱技术发展的飞跃,它是在对目标对象的空间特征成像的同时,对每个空间象元经过色散或分光形成几十个乃至几百个窄波段以进行连续的光谱覆盖。形成的遥感数据可以用“图像立方体(三维)”来形象描述,其中两维表示空间,另一维表征光谱。这样,在光谱和空间信息综合的三维空间内,可以任意地获得地物“连续”的光谱以及其诊断性特征光谱,从而能够基于地物光谱知识直接识别目标地物,并可进一步地获取定量化的地物信息。在地质应用中,矿物识别和信息处理技术可分为:①基于单个诊断性吸收的特征参数;②基于完全波形特征以及③基于光谱知识模型三大类型。
岩石矿物单个诊断性吸收特征可以用吸收波段位置(λ)、吸收深度(H)、吸收宽度(w),吸收面积(A)、吸收对称性(d)、吸收的数目(n)和排序参数作一完整地表征。根据端元矿物的单个诊断性吸收波形,从成像光谱数据中提取并增强这些参数信息,可直接用于识别岩矿类型。如IHS编码与吸收波段图(Kruse,1988)是利用连续法去除后的光谱图像,定义出波段吸收中心位置图像,波段深度图像以及波段半极值宽度图像,并分别赋予HS I 空间的明度(H)、强度(l)和饱和度(S),然后逆变换到RGB色度空间。从而根据色调差异进行矿物直接识别。在描述岩矿单个诊断性吸收特征参数中,吸收深度是一非常重要的特征指标而受到重视。如相对吸收深度图(RBD image,Relative absorption Band-depthimage)(Crowley,et al.,1989)采用比值运算来增强识别端元的吸收深度,即根据要识别端元的单个诊断性吸收峰的两侧肩部反射率之和,除以其谷中心邻近两侧对应波长的反射率之和的商图像,来表征端元矿物诊断性吸收峰的相对吸收深度。不同端元矿物的RBD图像,除象元本身比值大小代表了端元矿物存在的可能性外,通过进一步地诸如PC变换分析进行特征增强与选择来识别端元矿物。由于吸收峰的非对称性,采用RBD方法难以准确描述其特征。连续插值波段算法(CIBR,continuum interpolated band algorithm)(De Jong,1998)和光谱吸收指数图像(SAI,spectral absorption index image)(王晋年等,1996)与相对吸收深度图方法类似,但引入了对称度因子,使其对吸收特征的描述更为合理。CIBR是利用诊断性光谱吸收谷中心的辐射值,除以左右肩部的辐射值与吸收特征对称度因子之积的和,产生相应的商图像,用以增强不同矿物的诊断性吸收深度,进行矿物识别。SAI方法与CIBR类似,也是对单个吸收波形肩部的特征增加了对称度因子。上述方法类似于常规比值或彩色增强处理。与常规增强处理最大不同之处在于有机地融入端元矿物的光谱特征这一先验知识,针对性、目的性更明确。由于大气辐射对遥感数据中波谱特征的影响、光谱混合形成的光谱漂移和变异对单个波形的影响,使识别结果含有较大的干扰。
成像光谱最大的优势在于利用有限细分的光谱波段,去再现象元对应物的波谱曲线。这样,利用整个光谱曲线进行矿物匹配识别,可以在一定程度上改善单个波形的不确定性影响(如光谱漂移、变异等),提高识别的精度。基于整个波形的识别技术方法是在参考光谱与象元光谱组成的二维空间中,合理地选择测度函数度量标准光谱或实测光谱与图像光谱的相似程度。例如,光谱匹配(SM,Spectral matching)(Baugh,et al.,1998)利用岩矿光谱矢量的欧氏距离测度函数,即求图像象元光谱与参考光谱在光谱空间中的差异大小。距离愈小,表示图像端元光谱或待识别的端元光谱与来自实验室或野外实测的参考光谱之间拟合程度愈高。类似地,相似指数(SI,similarity index algorithm)(Fenstermaker,et al.,1994)是基于欧氏距离侧度,根据已知地物类型的图像象元平均光谱与未知图像象元光谱的波段差值平方和的均值大小来识别地物。以上两种方法比基于单个吸收波形参数识别技术可靠。但往往由于光谱数据分辨率的影响,其光谱的差异不明显,同时又因欧氏距离测度固有的缺陷而难以对地物进行准确分类与识别。光谱角识别方法(SAM,spectral angle mapper)(Ben-Dor,et al.,1994;Crosta,et al.,1998;Drake,et al.,1998:Yuhas,et al.,1992)是在由岩矿光谱组成的多维光谱矢量空间,利用一个岩矿光谱矢量的角度测度函数求解岩矿参考光谱端元矢量(r)与图像象元光谱矢量(t)的相似程度。参考端元光谱既可来自实验室、野外测量,也可来自已知类别的图像象元光谱。根据两者相似程度大小,识别与提取矿化蚀变信息。该方法的难点在于如何合理地选择阈值进行信息分割。不过,从已有应用的角度看,该方法简单易行、比较可靠。交叉相关匹配(Fer-rier,et al.,1999;Varder Meer,et al.,1997)是使用一个相关因子(r.)作为相似性指数,通过逐象元交叉相关匹配进行矿物识别。当参考光谱与检验光谱完全匹配时,其位置m=0;参考光谱向长波方向移动时,其m<0。反之,m>0。在RGB空间,分别赋予斜度(skewness),t检验值与相关因子以R,G,B;若在“0”匹配位置,其斜度、t检验值与相关因子(r.)均接近于“1”而显示为白色,从而识别出端元矿物。对于矿物的智能识别,往往也采用完全谱形。例如,Tetracord矿物识别软件是基于UNIX平台,利用光谱数据库中的光谱与图像光谱拟合从而自动进行识别矿物;王润生等(1999)根据矿物的完全波形,利用神经网络进行矿物自动识别。以上方法在具有大量已知地物光谱时适应性强。对图像地物识别更有用。但明显不足是由于实际地物光谱变异、获取数据受观测角以及颗粒大小的影响而造成光谱变化,对于整体光谱特征差别不太大的地物,准确匹配比较困难,造成岩矿识别与分析上的混淆和误差。
基于光谱模型的识别的技术方法是建立在一定的光学、光谱学、结晶学和数学理论之上的信号处理技术方法。它不仅能够克服上述方法存在的缺陷,而且在识别地物类型的同时精确地量化地表物质的组成和其他的物理特性。例如,建立在Hapke光谱双向反射理论基础之上的线性混合光谱分解模型(SMA/SUM)(Adams,et al.,1986;Mustard,et al.,1987;Roberts,et al.,1997;Sabol,et al.,1992;Settle,et al.,1993;Shipman,et al.;1987:Shimabukuro,et al.,1991;Smith,et al.,1985),可以根据不同地物或者不同象元光谱反射率响应的差异,构造光谱线性分解模型。一个象元内并非存在单一类型地物,而更多地由不同类型地物组成。因此,在大多数情况下,象元光谱并非为纯地物光谱的线性混合,而更多地表现为非线性。对于单散射,可作为线性模型分解,多散射则认为非线性混合。由于平均单散射反照率丰度主要依赖于成分含量不同而可以认为是线性混合(Mustard,et al.,1987)。这样,通过单散射反照率(SSA)转换,即可以利用算子W=(3r+6)r/(1 +2r)2,将非线性“线性化”,再进行光谱分解。Tompkins(1996)提出修正的光谱混合分析(MSMA)模型。该模型利用虚拟端元,采用一个阻尼最小二乘算法,根据一定的先验知识,有效地并最终可以选择亚像端元进行光谱分解,提高了SMA实用性。与SMA相比,MSMA最大的不同表现在:①端元以及其丰度均作为未知变量;②对数据组中所有象元同时求解。对于能量约束最小模型(CEM,constrained en-ergy minimization technique)(Farrand,et al.,1997;Farrand,et al.,1996;Resmini,et al.,1997)是在成像光谱图像序列中,运用一个目标区域(或ROI区域,region of insteresting)与象元光谱(ri)相关的权系数wk来描述象元向量的数字值y,从而进行特征选择与分解进行地物识别与信息提取。与混合光谱分解模型一样,该分解结果在一定程度上,不仅代表了识别象元的类型信息,而且有机地表示了其丰度比值。与混合光谱分解模型不同的是,该方法更多地依赖于目标区域的统计特征,但结果更精确。总之,这些方法更多地依赖光谱学知识与数理方法,在实际应用中由于难以确定特征参数或难以准确地描述光谱模型而限制了该类技术方法的应用。不过,由于该类方法在识别地物的同时量化物质组成,因此就其发展趋势而言,随着一系列技术的成熟与光谱学、结晶学等知识的深入发展,识别精度的改善与量化能力的提高,其应用将会越来越广泛。
国内也相继开展了一些成像光谱进行矿物直接识别应用试验,但由于国产传感器的性能尚不够完善,数据信噪比较低。但在定性岩矿识别方面取得了一定的收获。如甘甫平等(2000)利用基于波形特征组合的主成分分析有效地对河北张家口后沟金矿区进行了岩性划分;刘庆生(1999)利用对应分析提取出内蒙古某矿区的含金蚀变。在直接定量矿化识别、识别模型和识别谱系等方面都落后于美国等发达国家,相比还存在一定差距。
总之,岩矿光谱学机理研究、遥感信息提取基础与遥感信息提取方法技术研究,三者之间相辅相成,具有一定的对应关系。
遥感地物光谱应用基础与遥感影像信息提取技术研究随着遥感光谱成像技术的发展而发展,两者研究方向与趋势都主要集中在光谱特征知识与地物物理化学属性的关联以及光谱物理模型两大方面。对地物物化属性与光谱特征的相关性和对光谱物理模型的深入分析与研究可从不同的角度为遥感直接识别矿物、提取地物的分布规律、属性、物化性质以及进行地物深层次信息挖掘等提供理论基础支撑,推动遥感应用技术的发展。遥感地学应用的实用化与产业化是遥感地物光谱应用基础与遥感地物影响信息提取技术研究相互促进的结果。
地物光谱学机理研究、遥感信息提取基础与遥感信息提取方法技术研究的发展将导致三者的结合,并最终综合于遥感应用模型和技术集成中,以便充分利用各自的优势,提高遥感应用能力并增强对地质应用的理解,以及模拟、评估和预测地学发展的规律。
㈦ 人脸图像特征提取原理是什么
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。说到人脸识别,大部分的人第一反应是“刷脸”,我们来看下人脸识别的定义:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。通过变换增强图像阴影或降低光区域的灰度值范围,从而把人脸图像的整体亮度变换到一个预先定义的标准人脸图像。
㈧ 高分求教关于图像处理中特征的问题!图像特征提取研究的核心是找到更高不变性的特征,寻找不变的计算方法
图像经过去噪、旋转、降采样等等操作之后,原本提取的特征也会随之变化;
角点是一种图像中的特殊点,图像中提取的角点在其所在的空间中具有一个分布,也就是说,不同位置提取的角点总有些差异,它们构成了一种分布,例如类似的角点在分布中距离近。当图像改变时,角点空间的分布也随之改变。好的特征具备高的鲁棒性,在对图像进行各种操作后,仍能找到原先的特征,且相似的特征仍然相似。
㈨ 关于图像特征提取怎么入门有没有比较基础且全面的书
可以。 特征提取本身就是计算机视觉或者图像处理的一个研究方向。 做特征提取需要用到很多图像处理方面的知识。 目前比较成熟的特征提取方法有:SIFT和SURF。 这两种在计算机视觉中用的比较多,效果也好。