导航:首页 > 研究方法 > 压力场常用的数值分析方法

压力场常用的数值分析方法

发布时间:2022-04-24 20:28:43

㈠ 数理分析法

数理分析法仍处于快速发展阶段。常用的方法有极限平衡法和极限平衡状态假设下功能原理进行分析的极限分析法、应力-应变分析法(如有限元法、接触摩擦界元、随机有限元、损伤有限元等)、边界元法和离散元法等。由于计算模型选择与参数的取值具有较大的不确定性,数理分析的计算结果往往与变形的实际情况有较大出入,所以,目前数理分析法尚未达到准确定量分析的阶段。

(一)极限平衡法

1.基本原理

采用静力学解析法,建立在塑性极限平衡概念基础上,以库仑强度准则进行静定问题求解,对于超静定问题则采用假定法消去多余的未知数使之转化为静定问题。针对已有界面,进行整体力矩平衡计算或力的平衡计算,以其比值作为稳定性系数来表示其稳定性。由于简化处理的假定不同,产生了不同的计算方法如Bishop法(1995)、Janbu法(1954,1973)和Sarma法(1979)等。目前仍以二维计算较为多见。

2.极限平衡法的应用特点

岩土体变形中存在极为复杂的应力-应变关系,包括从峰值强度到残余强度的特性,各种岩土体材料的各向异性、孔隙水压力的变化、地震动力反应等。极限平衡法将影响岩土体抗剪强度的主要因素径高度概化后纳入计算,是其显着优点之一。

保证地质体在原地不产生大规模崩滑破坏,是勘查防治工作的主要目标。假定崩滑体中的细微变形是无关紧要的,则极限平衡分析是适用的。因为在分析中,不使用实际的应力-应变关系,不进行预期变形计算,其变形是通过设置某一适当的稳定系数来控制的,因此,在防治工程设计中应用较为广泛。

极限平衡法的应用是半经验的,除了斜坡正处于破坏的时候,其稳定系数值为1.0之外,其余情况下该值是不能准确给定的。

(二)有限单元法

1.基本原理

根据岩体结构特性,有限单元法的力学模型归纳为线弹性力学模型和非线性力学模型。后者模拟岩体的不连续性和强度上的各向异性等,可以用于模拟软层、滑带等。目前,有限单元法在求解像弹塑性及流变、动力、非稳态渗流等时间相关问题以及温度场、渗流、应力场的耦合问题等复杂的非线性问题中的效能,已使其成为在岩石力学中应用最广泛的数值分析手段。有限单元法发展甚为迅速,接触-摩擦单元、随机有限元、损伤有限元相继提出,三维有限元开始应用,均表明有限单元法日趋发展和深化。

2.有限单元法的应用特点

有限单元法的优点在于:部分地考虑了岩土体的应力-应变特征,能避免将坡体视为刚性块体过于简化计算边界条件的缺点,能够较接近地实际刻画崩滑体的变形破坏机理,计算其变形方向和变形量。由于岩土体应力-应变情况和地质材料力学特性的各向异性均极为复杂,有限单元法尚处于简单模拟阶段,如何深入全面地将各种因素在计算分析中反映和深化仍是今后研究的重大课题。

有限单元法分析的可靠性及精确度取决于对灾害地质体的正确认识和合理反映,取决于对岩土体物理力学性质的认识和参数取值的代表性及接近真实的程度。崩塌体破坏的力学机理与力学参数的取值,从勘查角度尚具有很大的不精细性和不确定性。因此,任何手段的应力-应变分析计算,只能作为定性分析的一种数学表达方法。认清此点,对稳定性分析、防治方案论证和工程设计尤为重要。

(三)地质力学模拟试验

模拟试验是以实验室的有限空间和时间对规模巨大的、历时长久的自然现象和作用进行规律性探索,通过试验直接求解,遵守量纲原则和相似原则。

在崩滑灾害稳定性研究中,常用的试验主要是地质力学模拟试验(自重力场边坡结构模拟试验、离心力模拟试验、底面摩擦模拟试验等)。

1.基本原理

采用相似材料按一定比例尺制作二维或三维的崩滑体的物理模型,配以施加作用力系统、量测系统(变形量测、压力量测等)和录像摄影系统,建立地质力学模型。通过对该模型施加各种作用和作用力,观测其变形破坏,即可进行崩滑的动力因素、形成机制、变形破坏方式、方位、规模、运动距离和防治工程效果的观测研究。由于施加作用力的方式不同,可分为自重力模型(除重力外不施加外力)、底面摩擦模型(利用材料底面和承托板之间的摩擦力模拟重力和其他作用力)、离心机模型(利用机械的离心力给模型以荷载,使模型受体积力的作用来满足力学的相似要求)和设置多种加力系统的地质力学模型。

2.模型的设计、制作和试验

(1)确定试验范围和模型比例尺

模型比例尺一般控制在1∶100~1∶500,确定试验的概化地质模型。

由于受到技术水平和比例尺等因素的限制,目前还不能做到试验模型和实际地质体在几何学的、物理的、力学的各种参数及其变化上高精度的相似。因此,在进行模型试验时,要对崩滑体各种要素作必要的归纳和简化,确定其概化地质模型。这种归纳与简化必须是基本符合地质体实际的,包括岩组的归纳与概化、地层产状的概化、岩体结构及主要结构面的概化、物理力学参数的概化与取值,地质体几何参数的概化与取值。

(2)地质条件的模拟

1)自重力的模拟,可采用配制与岩石容重相同或接近的模型材料来实现;

2)断层模拟,采用铺设与其c、Φ值相似的纸或其他材料来模拟;

3)节理模拟,可采用组合缝;

4)软夹层的模拟,采用摩擦系数不同的聚乙烯等;

5)地震力、地应力的模拟,平面模型采用拉、压传感器加载,三维模型采用加力系统。

(3)设置测量系统和录像系统

测量系统可设置电阻片与电阻应变片、电感式微型位移计、百分表、引伸仪、白光散斑、微型压力盒等。

3.试验

按地质分析设置试验程序并进行试验,应重视变形破坏和防治效果的观测研究。

4.提交试验成果

试验成果包括量测资料和宏观变形资料,应提交变形场有关图件、曲线、单项量测成果分析和综合分析报告,应提交有关照片和录像资料。

㈡ 在计算流体动力学的流场数值解法中,耦合式解法和分离式解法有什么区别

耦合解法同时求解离散方程组,连理求解出各变量,求解过程如下:

  1. 假定初始压力和速度等变量,确定离散方程的系数及常数项等。

  2. 联立求解连续方程、动量方程、能量方程。

  3. 求解湍流方程及其他标量方程。

  4. 判断当前时间上的计算是否收敛。若不收敛,返回第二步,迭代计算;若收敛,重复上述步骤,计算下一时间步的物理量。

分离式解法不直接求解联立方程组,而是顺序地,逐个地求解各变量代数方程组。分离解法中应用广泛的是压力修正法,其过程如下:

  1. 假定初始压力场

  2. 利用压力场求解动量方程,得到速度场。

  3. 利用速度场求解连续方程,使压力得到修正。

  4. 根据需要,求解湍流方程及其他标量方程。

  5. 判断当前时间步上的计算是否收敛。若不收敛,返回第二步,迭代计算;若收敛,重复上述步骤,计算下一时间步的物理量。

㈢ 地层压力预测方法

压力预测是研究超压盆地的关键技术,压力场的研究不仅为地质学家提供油气可能分布的位置,而且为钻前钻井工程提供压力参数。研究地层压力的方法可以说是“百花齐放”,利用测井和地震的各种资料,按照不同公式进行地层压力的计算,以下列举二例。

(一)检测地层压力的传统方法

这种方法一般是通过测井资料结合图板、等效深度等方法进行,可以概括为下面3个步骤:

1.绘制泥岩声波时差曲线,建立正常压实趋势线

声波测井测量弹性波在地层中的传播时间,用Δt表示,它主要反映岩性、压实程度和孔隙度。根据怀利(Wyllie)公式(式5—2),地层声波时差与孔隙度有如下关系:

中国海相石油地质与叠合含油气盆地

2.结合测井资料用层速度预测地层压力的方法

在钻前没有测井资料的情况下,只能利用地震层速度对地层孔隙压力进行预测,这样预测的精度往往较低。地震层速度的大小主要受岩性、孔隙度和骨架应力的控制,而且是一个层段的平均速度。3个因素中,岩性的影响难以消除,因此用地震层速度预测地层压力,其精度受到了限制。在有测井资料的地区,用地震资料预测地层压力时,可结合测井资料进行。

结合测井资料用地震层速度预测地层压力的思路和步骤如下:

(1)收集沿预测井地震测线上靠近该井的高质量的地震速度资料,最方便的是深度和层速度数据资料;其次是双程时间,均方根速度数据;再次是双程时间和叠加速度数据。如果是后两种数据资料,还需收集时深关系资料,若无时深关系资料,可收集邻井的VSP测井资料以建立时深关系。

(2)将层速度变换为层间传播时间ITT,且将其平滑处理,并画于同一坐标系中。

(3)对一定区域范围内的地震层速度系统误差进行分析,可通过声波测井资料及VSP测井资料对比进行,确定地震层速度的系统误差。

(4)利用测井及地层测试等资料确定邻井的地层孔隙压力剖面。

(5)采用试算的办法确定用于地震层间传播时间预测地层压力的正常趋势线,依据是使得用地震资料确定的地层孔隙压力值与测井声波资料确定的值或实测值基本吻合。

(6)将待钻井的层间传播时间资料平滑处理,然后用邻井确定的正常趋势线预测待钻井的地层压力。

㈣ 计算流体力学应用范畴是什么 这是一个问答题请写得详细点! 不少于一百字!

计算流体力学是以计算机为工具、以流体力学的基本方程(纳维-斯托克斯方程)为理论依据,采用离散化的数值方法对流体力学问题(速度场、压力场、阻力场、流量、效率、噪声等)进行数值模拟和分析的流体力学分支学科.
流体力学有理论流体力学、实验流体力学和计算流体力学.很多平面问题利用复变函数和保角映射可以求得解析解,这是经典的理论流体力学的重要内容.但对几何形状比较复杂的物体,无法得到解析解,必须用计算流体力学的计算方法:迭代解法,时间相关法,交替方向隐式法,有限基本解法,超声速流动数值解等.
由此看来,计算流体力学的应用范畴为两方面:所有的流体力学问题的计算仿真;计算方法在计算精度、计算速度方面的研究.

㈤ 学习计算流体力学需要先学习数值方法这本书吗

计算流体力学是以计算机为工具、以流体力学的基本方程(纳维-斯托克斯方程)为理论依据,采用离散化的数值方法对流体力学问题(速度场、压力场、阻力场、流量、效率、噪声等)进行数值模拟和分析的流体力学分支学科。
流体力学有理论流体力学、实验流体力学和计算流体力学。很多平面问题利用复变函数和保角映射可以求得解析解,这是经典的理论流体力学的重要内容。但对几何形状比较复杂的物体,无法得到解析解,必须用计算流体力学的计算方法:迭代解法,时间相关法,交替方向隐式法,有限基本解法,超声速流动数值解等。
由此看来,计算流体力学的应用范畴为两方面:所有的流体力学问题的计算仿真;计算方法在计算精度、计算速度方面的研究。

㈥ 受力分析

受力分析
编辑
本词条由“科普中国”网络科学词条编写与应用工作项目 审核 。
将研究对象看作一个孤立的物体并分析它所受各外力特性的方法。外力又包括主动力和约束力。又称画隔离体图,或画示力图,是进行力学计算的基础。
中文名
受力分析
外文名
force analysis
所属学科
力学及其下各分支学科等
目录
1 外力种类
▪ 主动力
▪ 常见约束类型
2 简介
3 解题方法
4 分析实例
5 注意
6 一般顺序
▪ 过程简介
▪ 注意事项

外力种类
编辑

主动力
(1) 重力
(2) 弹簧弹性力
(3) 静电场力和洛仑兹力[1]

常见约束类型
(1)搁置约束,约束力沿接触面的法线.
(2)(柱)铰座,约束力垂直于转轴,但方向未定,通常用两个彼此垂直的、且垂直于转轴的分力表示.
(3)球铰座,约束力过球心,但方向不定,通常用三个彼此互垂的分力表示.
(4)辊座,约束力垂直于辊座的接触面.
(5)颈轴承与止推轴承,颈轴承处约束力垂直于转轴,但其方向未知,故用两个垂直于轴且彼此相互垂直的分力表示.止推轴承等于颈轴承再加上搁置约束力可画三个分量,一个分量沿轴方向,其他两个分量互垂直垂直于轴.对于复杂的结构进行力学计算时,有时要将各个部件从连接处折开,分别画出每一个部件的受力图,此时必须注意在受力图上表示出在连接处约束力服从作用力与反作用力定律.

简介
编辑
受力分析(forceanalysis)将研究对象看作一个孤立的物体并分析它所受各外力特性的方法。外力包括主动力和约束力(见约束)。分析力的特性主要是为确定这些外力的作用点、方向等。例如重力是地球对物体的引力,属于外加的主动力,作用点在物体的重心,方向铅垂向下。约束力的大小一般是未知的(除非用铡力器作约束体测定其作用力)。有一部分约束的约束力方向是可以确定的。例如绳索的约束力总是拉力,拉紧时方向沿绳;光滑面的约束力总是推力,方向沿该面法线。沿粗糙接触面的约束力就是摩擦力(见摩擦)。物体将开始运动时,摩擦力达到最大值。如果摩擦系数μ已知,最大静摩擦力Fm与法向反力N的数值关系为Fm=μN。在平衡情况下,摩擦力F的大小可以是从0到Fm之间的任一个值,其大小应根据力的平衡条件来计算。另外,由铰链的构造还可确定约束力的方向。例如圆柱铰的约束力可用垂直于圆柱轴的平面上的两个力表示;又如活动支座约束力的方向可用垂直于支承面的一个力N表示。
由牛顿运动定律可知,物体是否平衡由外力确定,物体不平衡时的加速度也由外力确定,都与物体内部相互作用的内力无关。所以求解力学问题时,常有意识地选取某部分作为研究对象,把它看作一个物体,并把它从周围环境的约束中割开,而加以相应的外力。解除约束后的物体称为隔离体。画出隔离体及其所受全部外力的图称为受力图。例如重为G的梯子AB置于光滑的铅垂墙和租糙的水平地面之间(图1),地面和梯接触的摩擦力为F,梯子D点和墙体E点间用水平绳拉紧。若把梯子作为隔离体,它的受力图如图l所示。其中T为绳的张力;G为梯的重力;NA为光滑墙的反力;NB为地面反力;F为摩擦力。梯子将要滑动时,F达到最大摩擦力μNR,一骰情况F<μNB。

图1斜靠在光滑墙上的梯子受力图
如果整个物体的受力图尚不足以达到解题目的(方程个数少于未知力个数),可依物体内部结构的特点,把它拆为两个隔离体,拆离处的相互作用力满足作用和反作用定律。从这两个隔离体的受力图,可写出增加的方程数目,以达到解题目的。
例如,图2的三铰拱,由于用了两个固定铰链支座,因此有四个支座反力XA,YA,XB,YB(图3a)。由整体列出的三个平衡方程不足以解出这四个未知数。这时可从中间铰C处将它拆成两部分,画出两个受力图(图3b)。在铰C处,两个图上的Xα,Yσ大小相等、方向相反。这样,六个未知量XA,XB,XO,YA,YB,yC就可由两个隔离体的六个平衡方程解出。如拆成两部分还不能求解,可拆成几部分。

图2三铰拱

图3三铰拱受力图
求物体内部的某个构件的受力大小,更须将构件拆开。饲如求桁架杆件内力时,可将杆件截断,而附以沿杆的力。[2]

解题方法
编辑
解力学题,重要的一环就是对物体进行正确的受力分析。由于各物体间的作用是交互的,任何一个力学问题都不可能只涉及一个物体,力是不能离开物体而独立存在的。所以在解题时,应根据题目的要求,画一简图,运用“隔离法”(整体法也是隔离法),进行受力分析。由于物质分为实体与场,所以,力的作用方式也分为两类,一类是实物对研究对象的作用,其特点是施力物与研究对象直接接触(如摩擦力、空气阻力、弹性力等);另一类是物体通过它所激发的场对研究对象的作用,其特点是激发场的物体与研究对象不直接接触(如重力、静电力等)。在力学中,以场方式作用于研究对象的力经常是重力。由此,得出进行受力分析的规则:在研究物体受哪些力时,除重力外,就只看该物体与之相触的物体,凡与研究对象接触的物体对研究对象都可能有力作用。

分析实例
编辑
实例一:水平面上的物体
1.水平面上的物体一木块静置于桌面上,木块受两个力作用。一是受地球的吸引而受到重力G,方向竖直向下;另一个是木块压在桌面使桌面发生极微小的形变,桌面对木块产生支持力N,方向竖直向上。如图1-8所示
图1-8
,因木块是静止的,所以G和N是作用在木块上的相互平衡的力,它们大小相等方向相反。
受力分析也可以运用假设法。即假设某力不存在,看看对于物体的运动状态是否产生影响。若无影响,则该力不存在。原理:力是改变物体运动状态的原因。
在水平面上运动的木块,除受重力G和支持力N的作用外,还受到滑动摩擦力f的作用。滑动摩擦力f的方向与木块运动方向相反。木块受力图如图1-9所示
图1-9
。木块受空气阻力的方向跟木块运动方向相反。空气阻力的大小跟物体的运动速度,以及物体的横截面大小有关。
图1-10
如果用水平的绳拉木块前进,木块除受重力G,支持力N和滑动摩擦力f的作用外,还受到绳的拉力F,木块共受四个力,如图1-10所示。
实例二:在斜面上运动的物体
2.在斜面上运动的物体:如图1-11所示,一木块沿斜面下滑,木块受到竖直向下的重力G。木块压斜面,斜面发生形变而对木块产生支持力N,方向垂直于斜面并指向被支持的木块。木块还受到与其运动方向相反,沿斜面向上的滑动摩擦力f。重力沿斜面的分力使物体沿斜面加速下滑而不存在一个独立于重力之外的所谓“下滑力”。
图1-11
实例三:一轻绳通过定滑轮
3.一轻绳通过定滑轮,用一水平力F拉物体A使之向右运动,B落于A上,其间的摩擦系数为μ1,A与桌面间摩擦系数为μ2,不计空气阻力,分析A、B所受的力。如图1-12所示。
图1-12
先研究物体A。如图1-13所示。A受地球吸引力 (向下),与A接触的有人、物体B、绳、桌面、空气。分析得:人对A的拉力 (向右),B对A的正压力(向下),B给A的摩擦力 (向左),绳的拉力 (向左),桌面对A的正压力 (向上,也叫支持力),桌面施于A的摩擦力 (向左)。
图1-13
其次,以物体B为研究对象。如图1-14所示。
图1-14
B受地球的引力 (向下),与B接触的有物体A、绳和空气。A对B的正压力 (向上),A对B的摩擦力 (向右),绳子的拉力 (向左)。
注意:
f1与f1'是一对作用力和反作用力。
N1与N1'是一对作用力和反作用力。而f1=μ1N1,f2=μ2N2。

注意
编辑
在教学中应该注意,尽管物体静止在水平地面上时,重物对地面的压力与物体的重力在数值上相等,但在某些场合下,压力并不等于重力。产生重力作用不一定要两物接触,而压力则必须要两物接触才能产生。还应讲明的是,物体对斜面的压力就不等于物体的重力。当斜面上的物体下滑时,重力G分解为沿斜面平行的分力F1和沿斜面垂直的分力F2。F1可称为下滑力,F2称为正压力。

一般顺序
编辑

过程简介
1.受力分析的定义:把指定物体(研究对象)在特定物理情景中所受的所有外力找出来,并画出受力图,这就是受力分析。
2.受力分析的一般顺序:先分析场力(重力、电场力、磁场力),再分析接触力(弹力、摩擦力),最后分析其他力。
3.受力分析的一般步骤:
(1)选取研究对象:即确定受力分析的物体。研究对象可以是单个的物体,也可以是物体的系统组合。
(2)隔离物体分析:将研究对象从周围的物体中隔离出来,进而分析物体受到的重力、弹力、摩擦力、电场力、磁场力等,检查周围有哪些物体对它施加了力的作用。
(3)画出受力示意图:按照一定顺序进行受力分析.一般先分析重力;然后环绕物体一周,找出跟研究对象接触的物体,并逐个分析弹力和摩擦力;最后再分析其它场力。在受力分析的过程中,要边分析边画受力图(养成画受力图的好习惯).只画性质力,不画效果力。
(4)检查受力分析是否有误:受力分析完后,检查画出的每一个力能否找出它的施力物体,检查分析结果能否使研究对象处于题目所给运动状态,否则,必然发生了漏力、多力或错力现象。

注意事项
①只分析研究对象所受的力,不分析对其它物体所施加的力。切记不要把作用在其它物体上的力错误的认为“力的传递”作用在研究对象上。
②只分析按性质命名的力,不分析按效果命名的力(下滑力、向心力、回复力)。
③每分析一个力,都应找出施力物体,以防多分析出某些不存在的力。
④合力和分力不能同时作为物体所受的力。
1. 明确研究对象
进行受力分析前,要先弄清受力的对象。我们常说的“隔离法”、“整体法”,指的是受力的对象是单个物体,还是由多个物体组成的整体。对于连接体,在进行受力分析时,往往要变换几次研究对象之后才能解决问题。
有时候,选取所求力的受力物体为研究对象,却很难求出这个力,这时可以转移对象,选取这个力的施力物体为研究对象,求出它的反作用力,再根据牛顿第三定律,求出所求力。
2. 有序地分析受力
同学们要养成按一定的步骤进行受力分析的习惯,这样可以避免漏力或添力。一般分三步走:先分析重力,然后找出跟研究对象接触的物体,分析接触力,如弹力、摩擦力等,最后分析电场力、磁场力等。
确定物体是否受到力的作用,有三个常用的方法:
(1)假设法;
(2)根据运动状态判断受力情况;
(3)用牛顿第三定律。
3. 认真地检查
作完受力分析后还要认真地检查,看看所画出的每个力能否都找出施力物体,能否都找出反作用力,能否使研究对象处于题中所给的运动状态。
最后应向同学们强调,理解力的概念,掌握力的特点,是正确分析受力的基础和依据。要想熟练掌握,还需要通过一定量的练习,不断加深对物体运动规律的认识,反复体会方法,总结技巧才能达到。

词条图册更多图册

词条图片(11)

参考资料

1. 主动力 .网络[引用日期2013-06-5]
2. 汪掌诼.《中国大网络全书》74卷(第一版)力学 词条:受力分析:中国大网络全书出版社,1987:430页
词条标签:
中国力学学会 , 理学

受力分析图册

V网络往期回顾

权威合作编辑

“科普中国”网络科学词条编写与应用工作项目
“科普中国”是为我国科普信息化建设塑造的全...
什么是权威编辑查看编辑版本
资源提供

中国力学学会
中国力学学会是国际理论...
提供资源类型:内容
什么是资源合作
词条统计

浏览次数:130568次
编辑次数:31次历史版本
最近更新:2015-03-22
创建者:心心の悠

外力种类
主动力
常见约束类型
简介
解题方法
分析实例
注意
一般顺序
过程简介
注意事项

猜你喜欢
网上办理信用卡
受力分析步骤
补初中化学
苹果手机5c换屏多少钱
小升初数学一对一辅导
中考数学补习老师
苹果5c分期
初高中衔接数学
阳光板一个平方多少钱
高中数学函数辅导

新手上路
成长任务
编辑入门
编辑规则
网络术语
我有疑问
我要质疑
我要提问
参加讨论
意见反馈
投诉建议
举报不良信息
未通过词条申诉
投诉侵权信息
封禁查询与解封

㈦ 流体力学 为扩大re的范围,可以对设备做哪些改动

计算流体力学是以计算机为工具、以流体力学的基本方程(纳维-斯托克斯方程)为理论依据,采用离散化的数值方法对流体力学问题(速度场、压力场、阻力场、流量、效率、噪声等)进行数值模拟和分析的流体力学分支学科。
流体力学有理论流体力学、实验流体力学和计算流体力学。很多平面问题利用复变函数和保角映射可以求得解析解,这是经典的理论流体力学的重要内容。但对几何形状比较复杂的物体,无法得到解析解,必须用计算流体力学的计算方法:迭代解法,时间相关法,交替方向隐式法,有限基本解法,超声速流动数值解等。
由此看来,计算流体力学的应用范畴为两方面:所有的流体力学问题的计算仿真;计算方法在计算精度、计算速度方面的研究。

㈧ 数值模拟技术简介

(一)研究现状

地下多相、多组分流体运移数值模拟是在质量和能量守恒的基础上,建立的多相流体运动以及反映地球化学运移扩散的数学模型,通过离散建立大量的线形或非线形方程组,然后利用计算机计算求解,再通过图像显示模拟结果,达到对工程问题和物理问题乃至相关其他问题研究的目的。CO2地质封存数值模拟就是利用计算机模拟的方法,来解决CO2进入地质封存系统后运移、转化、水-岩-气之间的相互反应、CO2泄漏对浅部含水层影响及诱发的储盖层物性变化等一系列问题,从而指导CO2地质封存工程的实施。

目前,国内外已开展的关于CO2地质封存数值模拟的研究工作包括以下几个方面:

1.超临界CO2-水多相流体运动模拟

Pruess等(2003)模拟了均质各向同性咸水含水层中以恒定流量灌注CO2条件下,灌注井井周非等温径向流情况。当忽略重力和惯性力效应时,模拟结果中存在相似变量ζ=R2/t(其中,R为径向流动距离,t为时间),CO2饱和度、溶解CO2质量分数、沉淀盐的体积分数及流体压力都是相似变量的函数。这与O' Sullivan(1981)及Doughty和Pruess(1992)的结果一致。两相流的模拟考虑了CO2和水的相对渗透率及毛细管力作用问题(Van Genuchten,1980),考虑了流体密度、黏度和CO2溶解性随压力、温度和含盐度的变化,以及盐的沉淀导致含水层渗透率的减小等因素。

Doughty和Pruess(2004)利用Fro咸水含水层封存CO2监测资料,反推了CO2灌注后发生的物理和化学过程。他们采用TOUGH2数值模拟软件对两相(液、气)三组分(CO2、水和溶解NaCl)系统进行模拟。考虑15MPa和65℃条件下,超临界CO2在咸水中为非混溶流体,并能部分溶解于咸水的情况,分析了多相流系统边界设定的影响及相对渗透率取值问题,即模拟中对侧向边界的设置为均开(或均闭),结果导致压力的模拟结果与实际相比过低(或过高)。研究表明,由于上覆断层对CO2的封堵作用,侧向边界对CO2弥散羽的影响不大。模拟结果还显示,相对渗透率函数对CO2弥散羽的演化有很强的影响。如何确定一个合适的相对渗透率以表征CO2灌注咸水含水层的变化,仍是亟待解决的问题。Doughty和Pruess模拟了两种CO2残余饱和度条件下的CO2羽扩展随时间的变化,发现存在较大差异。残余饱和度较大的情况下,CO2羽表现出紧缩状,在浮力作用下运移较慢;相反,在残余饱和度较小的情况下,CO2羽流弥散很快,溶解性显着提高。

2.多组分反应地球化学运移模拟

水-砂岩-CO2相互作用往往形成一系列次生矿物,或次生矿物组合。Worden et al.(2006)通过岩石学和CO2灌注长石砂岩的地球化学模拟表明,北海Magnus油田上侏罗统浊积亚长石砂岩中的铁白云石、高岭石和石英可能具有成因联系。其中,铁白云石中的碳来自有机成因的CO2。Watson et al.(2004)通过CO2气与CH4气储集砂岩的比较岩石学研究,证实澳大利亚Otway盆地Ladbroke Grove CO2气储集砂岩中与CO2气灌注有关的次生矿物组合为铁白云石-高岭石-次生石英。

Xu et al.(2005)利用一维砂岩-页岩系统模型模拟了储层中灌注的CO2与矿物发生的化学反应过程,以及对储层环境的影响。模拟显示,在砂岩环境下,CO2主要被方解石所固定,而方解石的沉淀导致孔隙度减小,进而导致渗透率相应减小。10万年间,砂岩封存能力达到90kg/m3的封存能力,这些被矿物固定下来的CO2可以永久封存。Zwingmann等运用地球化学模拟软件EQ3/6进行的水-矿物-CO2相互作用模拟也表明,若将CO2灌注到日本本州岛中北部新潟盆地更新世灰爪组砂岩,CO2以溶于水和形成碳酸盐矿物两种形式封存,其中后者封存量最大为21.3mol/kgH2O,可达总封存量的90%,形成的碳酸盐矿物中也出现了片钠铝石。

3.耦合岩石力学模拟

从目前发表的论文及各国研究计划的综合报告上看,在CO2咸水含水层封存研究方面,对于CO2运移机制的分析和模拟很少考虑应力场的耦合作用。事实上,CO2灌注压力和超临界CO2的浮力作用将改变地层应力状态,即CO2在上浮运移和侧向扩散过程中,孔隙压力可能会对原始裂隙和断裂产生影响;CO2在咸水含水层中的长时期(千年级尺度以上)的封存,将改变含水层的地球化学状态,CO2-咸水-含水层矿物的化学作用将可能导致岩体力学和水力学性质发生变化。

日本因位于4大板块交界处与环太平洋构造带中,活断层密集发育,地震频繁,地应力分布复杂,在CO2地质封存评价方面,非常重视CO2地质封存的力学稳定性研究(李琦等,2002;李小春等,2003)。李琦等(2002;2004;2006)提出了一个考虑初始地应力场、灌注压力、CO2浮力及含热传导作用的热-水-力(THM)耦合模拟框架,考虑盖层底部附近存在不同倾角断层的二维平面应变地质封存问题。采用有限元算法,对灌注CO2流体对断层稳定性的影响进行模拟分析。计算结果表明,为了避免断层位移需要特别注意对灌注压力的控制,因为CO2灌注压力对断层滑动的影响远大于CO2羽流浮力带来的影响。停止灌注CO2后,CO2羽流的上升则成为应力场扰动的主要因素。

(二)主要软件介绍

近年来,计算机模拟技术在许多研究领域得到了广泛的应用,开发出了许多优秀的模拟软件和程序。同样,可用于研究CO2地质封存的数值模拟软件也很多,主要有PHREEQC、GEM、ECLIPSE、TOUGHREACT、PetroMod、MUFTE-UG和NUFT等,它们都有各自的特点和适用性。在进行数值模拟之前,需对这些数值模拟软件进行评价分析,选择适用于所研究问题的模拟软件。现对国际上常用的几款软件简介如下。

1.PHREEQC

PHREEQC是一款用于计算多种低温水文地球化学反应的计算机软件。以离子缔合水模型为基础,PHREEQC可完成以下任务:(1)计算物质形成种类与矿物的溶解饱和指数;(2)模拟地球化学反演过程;(3)计算批反应与一维运移反应。另外,与多组分溶质-运移模型耦合的PHREEQC可生成PHAST,一个用于模拟地下水流系统的三维反应-运移模拟器。但由于PHREEQC是在单相水流的基础上建立的模型,因而不能模拟超临界CO2-水的两相流运动。

PHREEQC最简单的应用就是计算溶液中各种化学物质的分布,以及溶液中矿物与气体的饱和状态。反演模拟功能可推导和量化在流动过程中,能够反应化学物质变化的化学反应方程。PHREEQC可处理的反应方程包括建立矿物、表面配合物、阳离子交换剂、土壤溶液、气体组分单位分压、给定压力或给定体积气相间平衡的物质运移反应。在模拟这些均衡反应的同时,PHREEQC还可以模拟动力化学与生物反应,以及模拟从简单的线性衰变(代谢物降解或放射性衰变)到复杂的依赖于溶液化学组成和微生物数量确定的反应速度。这些反应处理功能可在批反应模拟或一维对流、弥散、反应型运移模拟中使用。

2.GEM

GEM v.2009.13(Nghiem et al.,2004)是一款用来模拟利用CO2和酸性气体提高石油采收率的模拟器,该模拟器完全耦合了地球化学组成状态方程。GEM采用一步求解法进行状态方程的求解。GEM可以用来模拟:对流和弥散流体、油(或超临界CO2)、气和咸水间的平衡、水相物种间的化学平衡,以及矿物的动态溶解和沉淀。该模拟器采用自适应的隐式离散技术利用一维、二维或者三维模型来模拟孔隙介质中溶质的运移。油相和气相用一个状态方程来模拟,气体在水相的溶解度采用亨利定律模型来计算。水通过蒸发进入到气相、盖层的穿透、热效应和裂隙的封闭作用也可以利用GEM来模拟。

3.ECLIPSE

ECLIPSE是一个并行化的可以模拟黑油、组分、热采等问题的成熟软件。1994年,胜利石油管理局引进了ECLIPSE油藏数值模拟串行软件,广泛开展了从油藏到气藏,从常用油田到特殊油气田、从常规模拟研究到特殊模拟研究等多方面的应用。主要模块有主模型、黑油、组分、热采、流线法、运行平台和ECLIPSE Office等。

ECLIPSE是一个商业软件,在使用中其内核部分是封闭的,使用者只能将其作为一个“黑箱”来操作。其不足之处有:不可能免费的获得和随意地使用和修改;无法耦合最前沿的地质流体热力学模型;无法加入更多影响因素来研究具体问题。因此,ECLIPSE不适宜用于前沿科学研究。

4.TOUGH2/TOUGHREACT

TOUGH2是Transport of Unsaturated Groundwater and Heat(非饱和地下水流及热流传输)的英文缩写,是一个模拟一维、二维和三维孔隙或裂隙介质中,多相流、多组分及非等温的水流及热量运移的数值模拟程序。TOUGH2使用积分有限差分(Integral Finite Differences,IFD)(图3-8)的方法来解决多相流动和多组分化学运移模拟中的空间离散化问题(Pruess et al.,1999s;Xu et al.,2004)。为了满足大规模计算需要,Zhang et al.(2008)开发了TOUGH2的平行计算版本,即TOUGH2-MP。

该方法在对地质介质的离散化上是比较灵活的,允许使用不规则的网格,十分适合对多区域非均质系统和裂隙岩石系统中流体流动、运移和水岩相互作用的模拟。而对于规则的网格剖分,积分有限差分方法相当于传统的有限差分法。其中,对于任意区域Vn,它的质量(对于水、气体和其他化学组分)和能量(对于热)守恒方程可以用积分的方式(式3-5)表达:

图3-8 积分有限差分法中的空间离散化和几何参数数据构成图

中国二氧化碳地质封存选址指南研究

式中:下角标n为表示一个单元格;下角标m为表示和单元格n互相连接的网格m;Δt为时间步长;Mn为单元格n的平均质量或能量密度;Anm为单元网格n和m交界的面段;Fnm为通过面积为Anm的质量或能量通量;qn为单元格n内单位体积的平均源汇率。

许天福等(1998)在TOUGH2的框架基础之上,增加了多组分溶质运移和地球化学反应的模拟功能,形成了一套较为完善的可变饱和地质介质中非等温多相流体反应地球化学运移模拟软件——TOUGHREACT。该软件不仅包括了TOUGH2的全部功能,而且适用于不同温度、压力、水饱和度、离子强度、pH值和氧化还原电位(Eh)等水文地质和地球化学条件下的热-物理-化学过程。还可以应用于一维、二维或三维非均质(物理和化学的)孔隙或裂隙介质中的相关数值模拟研究。在理论上可以容纳任意数量的以固相、液相或气相存在的化学组分(但是在实际模拟中会受到计算能力和计算时间等硬件条件的限制),并且考虑了一系列化学平衡反应,如溶液中的配合反应、气体的溶解或脱溶、离子吸附作用、阳离子交换及受平衡控制或反应动力学控制的矿物溶解或沉淀反应等。可以说TOUGHREACT、是TOUGH2的升级版,近年来在世界范围内CO2地质封存研究和工程实践中得到了广泛的应用。

除包含TOUGH2所有的功能外,TOUGHREACT还可以应用于一系列的反应性流体和地球化学迁移问题。比如:(1)伴随Kd线性吸附和放射性衰变的污染物迁移问题;(2)在周围环境条件下,自然界中地下水的化学演变;(3)核废料处置地点评估;(4)深部岩层的沉积成岩作用;(5)CO2地质处置。多相流体运动,多组分反应地球化学,各种封存形式封存量以及随时间空间变化;(6)矿物沉积(如表生铜矿富集);(7)自然和补给环境下热水系统中的矿物变化。

通过最近几年相关研究者的不懈努力,TOUGHREACT在实际应用中得到了进一步完善和提高,增加了部分新功能,如水相内部反应动力学和生物降解作用,改进了矿物-水反应表面积计算方法,以及气-水反应中气的活度系数的修正等。

5.PetroMod

由德国IES(Integrated Exploration System)公司研究开发的PetroMod多组分、多相态的多维含油气系统模拟软件综合平台已被世界石油业所公认。该软件融入了断层活动性、盐丘上涌和刺穿、火山岩的侵入、气体扩散效应、油气水三相运移和油气吸附模型等相关技术。

该模拟软件平台推出和采用的油气运移组合模拟算法(Hybird)是当今最先进的油气运移模拟算法,既可以保证模拟的精度,又可以极大地提高模拟的运算速度。其中的PetroFlow3D用于油气运移、聚集、圈闭和散失等情况的模拟,同时PetroCharge Express为我们提供了基于图件的油气运移和圈闭模拟的快速分析工具。

6.MUFTE-UG

MUFTE-UG是MUFTE和UG.MUFTE的结合。MUFTE即多相流(Muliphase Flow)、运移(Transport)和能量(Energy)模型。该软件包主要包括物理模型概念和孔隙裂隙介质中等温和非等温多相多组分流动和运移过程的离散方法(Helmig,1997;Helmig et al.,1998)。它能对裂隙孔隙介质进行离散性描述(Dietrich et al.,2005)。UG是非结构性网格(Unstructured Grid)的缩写,它提供的数据结构能快速解算以平行、自适应多网格法为基础的离散型偏微分方程。具有模块化结构的MUFTE-UG很容易解决各种有特殊要求的问题。

模块化结构的MUFTE-UG具有许多不同的环境与技术应用。例如,在环境应用领域,MUFTE-UG能够模拟如下两个问题。

(1)NAPL(非液相流体)向饱和与非饱和土壤的渗流。优化改进的修复技术在MUFTE中具有广泛的研究和发展空间。

(2)地下CO2的消散。CO2以高温高压灌注地表以下几百米的地层中,MUFTE-UG可用于非均质含水层(对流和弥散运移)中羽状体演化评价,伴随温度效应(由于膨胀和压缩)和组分间相互溶解(卤水和CO2)。

7.NUFT

NUFT(Nonisothermal Unsaturated-Saturated Flowand Transport model)是一套用来解决在多孔介质中多相、多组分非等温流动和溶质运移过程中地下污染物运移的数值解法器。此软件利用简单的代码来利用通用的实用程序和输入文件的格式。最近,此代码在Unix和DOS系统下运行成功。

该程序利用一套完整的有限差分空间离散法求解平衡方程组。每一个时间步长内利用Newton-Raphson方法求解非线性方程组,而在每一步迭代过程中利用直接解法和预共轭梯度法求解线性方程组。该模型可以解决一、二和三维水流及溶质运移问题。将来该模型会耦合进毛细滞后、非正交网格离散、有限单元剖分和固体非线性等温吸附等功能。

(三)研究方法

通常情况下,CO2地质封存数值模拟包括以下主要过程。

(1)建立概念模型:根据各种方法获取的实际资料来概化和建立CO2地质封存概念模型,包括边界范围、地层或储盖层高程、储盖层确定、参数及分区、源汇项、主要物理化学过程以及模型维度(一维、二维和三维)。

(2)建立数学模型:建立一套描述深部咸水层中多相流动和多组分反应性溶质运移的偏微分方程组,包括初始条件和边界条件问题。

(3)模型离散化:把概念模型中的各种信息通过网格剖分进行离散,形成大量的网格单元,然后通过有限差分、有限单元和积分有限差分等方法转化成单元的质量和能量守恒方程组,再用多种方法将非线性方程组线性化,形成线性代数方程组,然后求解方程组。

(4)模型识别和校正:根据模型计算结果和实际监测数据进行对比拟合,适度合理调整参数,使模型能够综合反映实际情况。在历史拟合过程中出现较大误差,应重新检查概念模型,修正概念模型。对所建模型进行参数敏感性分析,对于较敏感的参数应该慎重选取,甚至需要做大量的试验来确定。

(5)模型预测:建立了可靠的模型后,便可以进行模拟预测。

数值模拟的关键是地质模型概化、计算精度和计算速度。由于计算的精度取决于离散的程度,而离散的程度又决定了计算的速度,这是一对矛盾,要根据解决问题的需要来选择离散化的程度和计算速度。

CO2在储层中的运移、溶解以及与围岩的化学反应形成了一个多相、多组分的反应体系,涉及的主要数学方程有超临界CO2-水的两相流体运动控制方程、溶质运移控制方程和化学反应方程等。建立数值模型时,通常采用有限差分法、有限元法和积分有限差分法等。

由于实际应用时多采用已有的数值模拟软件对CO2地质封存的某一过程进行模拟,不涉及软件的开发及程序代码的编写,只需根据研究的需要选择合适的软件进行模拟预测,而软件一旦选定,数学模型和数值模型基本上已经确定。

㈨ 应力场数值模拟方法

近30年来,人们采用现场测试、实验室试验、理论分析与模型试验等多种方法,使岩土力学研究取得很大进展[162~166]。如今随着计算机技术的快速发展,岩土力学的研究进入了一个新的阶段,其中数值计算方法已成为解决岩土力学问题的重要手段之一。

6.1.1 概述

许多工程分析问题,如固体力学中的位移场和应力场分布分析、电磁学中的电磁场分析、振动特性分析、传热学中的温度场分析以及流体力学中的流场分布等,都可以通过在给定边界条件下对其控制方程进行求解得到,但是利用解析方法只能求出一些方程性质比较简单且几何边界相当规则的极少数问题。对于大多数实际工程技术问题,由于物体的几何形状比较复杂或者问题的某些特性是非线性的,因而一般无解析解。为了解决此类问题,一般采用两种处理方法:一种是进行简化处理,将方程和边界条件简化为能够处理的问题,从而得到在简化情况下的解,但这种方法应用非常有限,且假设过多将会导致错误的解;另一种是在广泛接收现代数学和力学理论的基础上,借助于计算机和计算软件来获得工程上要求的数值解,这就是目前应用非常广泛的数值模拟方法。

目前在工程技术领域内常用的数值分析方法包括:有限单元法、边界元法、离散单元法以及有限差分法。最初常用的是有限差分法,它可以处理一些相当复杂的问题。但对于几何形状复杂的边界条件,其解的精度受到影响。20世纪60年代出现并得到广泛应用的有限单元法,使经典力学解析方法难以解决的工程力学问题都可以用有限元方法求解。它将连续的求解域离散为一组有限个单元的组合体,解析地模拟或逼近求解区域。由于单元能按各种不同的联结方式组合在一起,且单元本身又可有不同的几何形状,所以能适应几何形状复杂的求解域。但有限单元法需要的存贮容量常非常巨大,甚至大得无法计算。由于相邻界面上只能位移协调,对于奇异性问题(应力出现间断)的处理比较麻烦,这是有限单元法的不足之处。70年代末期,出现了另一种重要的数值方法为边界元法。边界元方法是把求解区域的边界剖分为若干个单元,将求解简化为求单元结点上的函数值,通过求解一组线性代数方程实现求解积分方程。上述两种数值方法的主要区别在于,边界元法是“边界”方法,而有限元法是“区域”方法,它们都是针对连续介质,只能获得某一荷载或边界条件下的稳定解。对于具有明显塑性应变软化特性和剪切膨胀特性的岩体,无法对其大变形过程中所表现出来的几何非线性和物理非线性进行模拟,这就使得人们去寻求适合模拟节理岩体运动变形特性的有效数值方法。

1971年Cundall,P.A[167]提出了一种不连续介质数值分析模型——离散单元法。该方法优点在于适用于模拟节理系统或离散颗粒组合体在准静态或动态条件下的变形过程。离散单元法的基本原理不同于基于最小总势能变分原理的有限单元法,也不同于基于Betti互等定理的边界单元法,而是建立在牛顿第二运动定律基础上。最初的离散元法是基于刚性体的假设,由于没有考虑岩块自身的变形,在模拟高应力状态或软弱、破碎岩体时,不能反映岩块自身变形的特征,使计算结果与实际情况产生较大出入。Maini,T.,Cundall,P.A.[168~169]等人针对刚体单元没有考虑岩块自身变形的缺点,利用差分方法提出了考虑岩石自身变形的改进的离散单元法,编制了通用的离散元程序UDEC(Universal Discrete Element Code),将离散元推广到模拟岩体破碎和变形情况,推动了离散元的进一步发展。我国学者也相继开展这方面的研究,王泳嘉教授[170]等将离散单元法应用于采矿工程方面的研究。

6.1.2 FLAC数值模拟方法

(1)概述

数值模拟技术通过计算机程序在工程中得到广泛的应用。一直到20世纪80年代初期,国际上较大型的面向工程的通用程序有:ANSYS、NASTRAN、FLAC、UNDEC、ASKS以及ADINA等程序。它们功能越来越完善,不仅包含多种条件下的有限元分析程序,而且带有功能强大的前、后处理程序。

连续介质快速拉格朗日差分法(Fast Lagrangian Analysis of Continua,简写FLAC)是近年来逐步成熟完善起来的一种新型数值分析方法。把拉格朗日法移植到固体力学中,即将所研究的区域划分为网格,节点相当于流体质点,然后按照时步用拉格朗日方法来研究网格节点的运动,这就是固体力学变形研究中的拉格朗日数值研究方法。

FLAC与基本离散元法相似,但它克服了离散元法的缺陷,吸取了有限元法适用于各种材料模型及边界条件的非规则区域连续问题解的优点。FLAC所采用的动态松弛法求解,不需要形成耗机时量较大的整体刚度矩阵,占用计算机内存少,利于在微机的工程问题。同时,FLAC还应用了节点位移连续的条件,可以对连续介质进行大变形分析。

(2)数学模型

显式有限差分法的基本方程主要包括:平衡方程、几何方程、物理方程和边界条件。在FLAC3D2.0中采用的拉格朗日描述方程,一般规定介质中一点由向量分量xi,ui,vi,dvi/dt(i=1,2,3)来表征,其分别代表位置、位移、速度和加速度分量。

其基本原理和基本公式简单叙述如下:

空间导数的有限差分近似

三维FLAC方法中采用了混合离散方法,区域被划分为常应变六面体单元的集合体;而在计算过程中,又将每个六面体分为常应变四面体,变量均在四面体上进行计算,六面体单元的应力、应变取值为其四面体的体积加权平均。

如图6.1所示,所研究区域任一四面体,节点编号为1~4,规定与节点n相对的面为第n面,设定其内任一点的速度分量为vi,则由高斯散度定理得

煤岩动力灾害力电耦合

式中:V——四面体体积,m3;S——四面体外表面,m2;nj——外表面单位法向向量分量。

图6.1 四面体

对于常应变单元,nj在每个面上为常量,因此通过上式积分可得

煤岩动力灾害力电耦合

式中上标f表示f面的变量值,对于为线性分布的速率分量,速度分量的平均值为

煤岩动力灾害力电耦合

式中上标l表示节点l的变量值。将(6.3)式代入(6.2)式可得

煤岩动力灾害力电耦合

经过变换可得节点速率计算公式:

煤岩动力灾害力电耦合

1)平衡方程(运动方程)

显式有限差分法采用的平衡方程就是人们熟知的牛顿第二运动定律,即

煤岩动力灾害力电耦合

式中:Fi——节点合力在i方向分力,N;mi——节点质量,kg;ai——节点加速度在i方向分量,m/s2

作用于各个节点的合力:外力(集中力、均布力、重力等)和内力(单元变形引起的应力在单元节点上的分量)。节点质量是根据节点相邻单元的面积(体积)和密度,按照面积(体积)加权求出。

FLAC3D以节点为计算对象,将力和质量均集中在节点上,然后通过运动方程在时域内进行求解。节点运动方程可以表示为如下形式:

煤岩动力灾害力电耦合

式中:(t)———t时刻l节点在i方向的不平衡力分量,可以由虚功原理导出;ml———l节点的集中质量,在分析静态问题时,采用虚拟质量;而在分析动态问题时,则采用实际的集中质量。

将(6.7)式左端用中心差分来近似,则可得

煤岩动力灾害力电耦合

2)变形协调方程——几何方程

作为连续介质力学,变形体之间必须满足变形协调方程(几何方程),否则变形体就会出现分离或嵌入。变形协调方程反映了位移与应变间的关系,对于某一时步的单元应变增量可由下式确定:

煤岩动力灾害力电耦合

求出应变增量后,即可由本构方程得到应力增量,各时步的应力增量叠加即可得到总应力,在大变形时,还需根据本时步单元的转角对本时步前的总应力进行旋转修正,然后即可由虚功原理求出下一时步的节点不平衡力,进入下一时步的计算。

3)物理方程——本构关系

物理方程反映应力与应变之间的关系,在程序中通常被称为材料模式或材料模型。在FLAC3D2.0中提供了10种基本材料模型,它们是:①Null;②Elastic,isotropic;③Elastic,transversely isotropic;④Druck-Prager plasticity;⑤Mohr-Coulomb plasticity;⑥Ubiquitous joint plasticity;⑦Strain-hardening/softening Mohr-Coulomb plasticity;⑧bilinear strain-hardening/softening ubiquitous-joint plasticity;⑨Modified Cam-clay plasticity 和⑩elastic,orthotropic。

本文进行应力场数值模拟时采用的是Mohr-Coulomb应变硬化软化破坏准则,在FLAC3D2.0中,Mohr-Coulomb 模型的破坏准则以主应力σ1,σ2,σ3来描述,相应的应变为三个主应变ε1,ε2,ε3。根据Hooke定律,应力、应变增量具有如下表达形式:

煤岩动力灾害力电耦合

式中α1,α2为材料常数,可以由体积模量K和剪切模量G确定:

煤岩动力灾害力电耦合

不失一般性,令σ1≥σ2≥σ3,摩尔—库仑准则为

其中:

煤岩动力灾害力电耦合

式中C,φ分别为煤岩的粘聚力和内摩擦角。

FLAC3D2.0的Mohr-Coulomb 破坏准则如图6.2所示。

图6.2 FLAC3D的Mohr-Coulomb 破坏准则

本着作中就是选用上述的Strain-hardening/softening Mohr-Coulomb plasticity模型,对单轴压缩煤岩以及矿山地下煤岩独巷掘进时围岩的变形破坏过程进行模拟。

4)阻尼力

对于静态问题,FLAC3D2.0在式(6.7)的不平衡力中加入了非黏性阻尼,以使系统的振动逐渐衰减直至达到平衡状态(即不平衡力接近零),此时节点运动方程变为:

煤岩动力灾害力电耦合

式中阻尼力(t)由下式确定:

煤岩动力灾害力电耦合

上式中α为阻尼系数,其默认值为0.8;而:

煤岩动力灾害力电耦合

5)初始条件与边界条件

边界条件包括面积力、集中载荷等应力边界条件和位移边界条件。此外也可加载体力和初始应力。在编写程序代码时,一般所有的应力和节点速度初始化为零,然后指定初始化应力。集中载荷则加载在面节点上,位移边界条件则以运动方程形式施加到相应的边界节点上。

边界条件分为应力边界条件和位移边界条件,应力边界条件为:

煤岩动力灾害力电耦合

式中:Fi———作用于节点i上的力;——作用于边界上的应力;nj———边界上的法线沿j方向的矢量大小;Δs———边界的长度。

若是位移边界条件,应将边界条件以运动方程的形式施加到相应的边界节点上。

FLAC3D2.0[171]与FLAC2D3.3也是由美国Itasca Consulting Group Inc开发的三维显式有限差分法程序,它可以模拟岩土或其他材料的三维力学行为。FLAC3D2.0的计算循环过程如图6.3所示。

图6.3 FLAC3D2.0的计算循环

6.1.3 FLAC数值模拟方法在采矿工程中的应用[172~179]

采矿过程中围岩活动规律及巷道围岩稳定性问题涉及岩体力学特性、围岩压力、支护围岩相互作用关系及巷道与工作面时空关系等一系列复杂力学问题。随着我国经济建设的高速发展,岩土工程稳定性分析问题日益突出,除采矿工程外,在水利、交通(铁道和公路)、高层建筑的地基等行业也都存在着大量的岩土力学数值计算分析问题。能否用计算机数值模拟分析采矿岩层控制问题和岩土工程问题已成为一个大学岩层控制技术和岩土力学学科水平高低的标志之一。

与ANSYS、ADINA相比,FLAC 和UDEC的最大特点是计算分析岩土工程中的物理不稳定问题,因而特别适用于岩土工程中几何和物理高度非线性问题的稳定性分析,如采场的采动影响规律,软岩巷道的大变形问题,采动后的地表沉陷,露天矿的边坡稳定,水坝的稳定性等问题。

从力学计算方法上讲其主要特点

1)可以直接计算非线性本构关系;

2)物理上的不稳定问题不会引起数值计算的不稳定;

3)开放式程序设计(FISH),用户可以根据需要自己设计程序;

4)既可以分析连续体问题(FLAC),也可以分析非连续体问题(UDEC);

5)可以模拟分析很大的工程问题;

6)高度非线性问题不增加计算时间。

在采矿工程中,许多学者利用FLAC软件对采矿过程中围岩活动规律及巷道围岩稳定性问题涉及到岩体力学特性、围岩压力、支护围岩相互作用关系及巷道与工作面的时空关系等一系列复杂的力学问题进行了一系列的研究,取得了显着的效果。梅松华等以施工期监测结果为基础,在正交设计原理的基础上,选定反演参数与水平,采用二维显式差分法FLAC进行弹塑性位移反分析。朱建明等在分析FLAC有限差分程序的基础上,提出了变弹性模量方法模拟时间因素对巷道围岩稳定性影响的衰减曲线,为揭示巷道围岩变形机理和有效指导围岩支护提供了有效的分析方法。来兴平等探讨了岩石力学非线性计算软件FLAC2D3.3在地下巷道离层破坏数值计算中的应用。康红普对回采巷道锚杆支护影响因素进行了FLAC分析,认为FLAC2D3.3在分析几何非线性和大变形问题方面性能优越。

在煤岩动力灾害预测中,这些方法的优点

1)可以提前知道煤与瓦斯突出、冲击矿压等煤岩动力灾害防治的重点区域;

2)可以得到大范围内的空间信息;

3)可以提前预测预报煤岩动力灾害的危险性;

4)可以确定在采掘过程中,应力的分布状况和集中程度。

在煤岩动力灾害预测中,这些方法也具有以下缺点

1)对实际问题均进行了简化处理;

2)对于煤岩体的力学特性,如弹性模量、泊松比等力学参数,也进行了简化,没有考虑其局部非均质性和各向异性;

3)只能作为一种近似方法使用。

阅读全文

与压力场常用的数值分析方法相关的资料

热点内容
欧姆龙血压计的使用方法 浏览:133
磨砂猫眼美甲的步骤操作方法 浏览:226
维修及时率的计算方法 浏览:182
数据采集分析方法 浏览:938
鳖甲的功效与作用及食用方法 浏览:727
舞蹈压腿正确方法 浏览:357
四轮车倒车入库最简单方法 浏览:526
第五套人民币鉴别真伪的方法 浏览:322
蒸汽机使用方法 浏览:109
到哪里能学到辣条制作方法 浏览:714
水牙线使用方法视频 浏览:92
qq怎么找人群方式方法有哪些 浏览:804
26种烹饪技巧和方法 浏览:569
咽喉炎最佳食疗方法 浏览:590
如何腌制羊肉串的方法 浏览:285
如何提高反腐倡廉教育的方法 浏览:715
谈英语学习方法视频 浏览:689
动漫剪辑方法教学手机 浏览:857
o环尺寸测量方法图解 浏览:741
手抓鱼方法大全视频 浏览:140