① 阿基米德原理公式
阿基米德原理是一个万能的公式,任何时候都可以应用。
F浮=G只能应用与漂浮和悬浮 ,F浮=G-f是表示重力与阻力的差值等于浮力,这是应用受力分析得出的 。
最后一个问题如果能用上面两个式子,最好不要用阿基米德原理,但是这两个式子一般只有在选择和填空才能用上。
阿基米德定律是流体静力学的一个重要原理,它指出,浸入静止流体中的物体受到一个浮力,其大小等于该物体所排开的流体重量,方向垂直向上并通过所排开流体的形心。
这结论是阿基米德首先提出的,故称阿基米德原理。结论对部分浸入液体中的物体同样是正确的。同一结论还可以推广到气体。
阿基米德原理适用于全部或部分浸入静止流体的物体,要求物体下表面必须与流体接触。
如果物体的下表面并未全部同流体接触,例如,被水浸没的桥墩、插入海底的沉船、打入湖底的桩子等,在这类情况下,此时水的作用力并不等于原理中所规定的力。
如果水相对于物体有明显的流动,此原理也不适用(见伯努利方程)。鱼在水中游动,由于周围的水受到扰动,用阿基米德原理算出的力只是部分值。这些情形要考虑流体动力学的效应。水翼船受到远大于浮力的举力就是动力学效应,所循规律与静力学有所不同。
参考链接:网络-阿基米德定律
② 阿基米德原理的由来
有一次,希腊国王交给阿基米德一顶王冠。国王怀疑铸金匠在王冠中掺杂白银,而把节省下来的黄金私吞,所以请阿基米德查一查这顶王冠的成份。有一天阿基米德跳进装满热水的浴缸洗澡,有些水溢出,突然间他想到该如何测量黄金体积了。阿基米德兴奋得从浴缸里一跃而起,忘了穿衣服,跑过整座城市的街道,并且高声喊叫“Eureka!Eureka!”(希腊话是“我找到了!”的意思)他发现溢出浴缸的水的体积,就等于放进浴缸的王冠黄—金的体积。如果白银和黄金的重量相等,白银的体积将会比较大,排开的水也比较多。阿基米德由此证明王冠中的确掺入白银。这也是阿基米德定律的由来。也就是浮力定律。
③ 阿基米德原理所用的科学研究方法是什么法和化简为零法
阿基米德原理所用的科学研究方法是等效替代法和化整为零法
“曹冲称象”.巧妙地测出了大象的体重他运用的与浮力有关的两条知识(1)漂浮条件,即物体在漂浮时F浮 = G(2)阿基米德原理;另外,他所用的科学研究方法是等效替代法和化整为零法。(把本身较大的质量转换为可以测量的小质量)。
④ 阿基米德有哪些定理
阿基米德(Archimedes)定律阿基米德原理 :
力学中的基本原理之一。浸在液体里的物体受到向上的浮力作用,浮力的大小等于被该物体排开的液体的重力。
1、物理学中
(1)浸在静止流体中的物体受到流体作用的合力大小等于物体排开的流体的重量。这个合力称为浮力.这就是着名的“阿基米德定律”(Archimedes' principle)。该定律是公元前200年以前古希腊学者阿基米德(Archimedes, 287-212 BC)所发现的,又称阿基米德原理。浮力的大小可用下式计算:F浮=ρ液(气)gV排。
(2)杠杆原理:动力×动力臂=阻力×阻力臂,用代数式表示为F• L1=W•L2。
2、数学中
阿基米德原理指对于任何自然数(不包括0)a、b,如果a<b,则必有自然数n,使n×a>b.
⑤ 研究阿基米德原理用什么研究方法
阿基米德原理所用的科学研究方法是等效替代法和化整为零法。
阿基米德原理是流体静力学的一个重要原理,它指出,浸入静止流体中的物体受到一个浮力,其大小等于该物体所排开的流体重量,方向垂直向上并通过所排开流体的形心。这结论是阿基米德首先提出的,故称阿基米德原理。结论对部分浸入液体中的物体同样是正确的。同一结论还可以推广到气体。
⑥ 什么叫阿基米德原理
1、物理学中
(1)浸在静止流体中的物体受到流体作用的合力大小等于物体排开的流体的重量。这个合力称为浮力.这就是着名的“阿基米德定律[1]”(Archimedes' law)。该定理是公元前200年以前古希腊学者阿基米德(Archimedes, 287-212 BC)所发现的,又称阿基米德原理(Archimedes principle)。浮力的大小可用下式计算:F浮=ρ液(气)gV排。
(2)杠杆原理:动力×动力臂=阻力×阻力臂,用代数式表示为F�6�1 L1=W�6�1L2 (F1L1=F2L2 或 L1/L2=F2/F1)
2、数学中
阿基米德原理指对于任何自然数(不包括0)a、b,如果a<b,则必有自然数n,使n×a>b.
[例1]有一个合金块质量10kg,全部浸没在水中时,需用80N的力才能拉住它,求:此时合金块受到的浮力多大?
[分析]根据G=mg可得出金属块重力,浮力大小是重力与拉力的差。
[解答]G=mg=10×9.8N/kg=98N
F浮=G-F拉=98N-80N=18N
答:金属块受到的浮力是18N。
[例2]完全浸没在水中的乒乓球,放手后从运动到静止的过程中,其浮力大小变化情况 [ ]
A.浮力不断变大,但小于重力。
B.浮力不变,但浮力大于重力。
C.浮力先不变,后变小,且始终大于重力直至静止时,浮力才等于重力。
D.浮力先大于重力,后小于重力。
[分析]乒乓球完全浸没在水中时,浮力大于重力,因浮力大小与物体在液内深度无关。因此乒乓球在水中运动时所受浮力不变,直到当球露出水面时,浮力开始变小,当浮力等于重力时,球静止在水面上,呈漂浮状态。
[解答]C
[例3]一个正方体铁块,在水下某深度时,上底面受到15N压力,下底面受到20N压力,则此时铁块受到浮力是________N;当铁块下沉到某位置时,上底受到压力增大至20N时,下底受到压力是_______N。
[分析]浮力产生的原因是物体上下底面受到液体的压力差。随着物体下沉,每个底面受到压力都要变大,但压力差不变,即
F浮=F下底-F上底=20N-15N=5N,
F'下底=F'上底+F浮=20N+5N=25N。
[解答]5,25。
[讨论]
浮力是包围物体的液体从各个方向对物体施加压力的总效果的反映。课本中以正方体为例,是为了便于理解和接受。如果从力的分解效果上讲,不规则形状的物体,同样满足F浮=F向上-F向下的关系。
[例4]质量相等的木块和冰块(ρ木<ρ冰)都漂在水面上,木块受到的浮力________冰块受到的浮力;体积相等的实心木块和冰块都漂在水面上,木块受到的浮力________冰块受到的浮力。(填大于、小于、等于)
[分析]根据物体的浮沉条件可知,物体漂浮时F浮=G,所以此题中要比较浮力的大小可通过比较木块和冰块受到的重力的大小来求得。
因为木块和冰块都漂浮在水面上,有F木浮=G木,F冰浮=G冰
(1)当木块和冰块质量相等时,由G=mg可知,G木=G冰,所以F木浮=F冰浮木块和冰块受浮力相等。
(2)当木块和冰块体积相等时,因为ρ木<ρ冰,根据G=ρgV可知,G木<G冰。
所以F木浮<F冰,此时冰块受到的浮力大。
[解答]此题正确答案为:等于、小于。
[例5]根据图中弹簧秤的读数,求出物体A在液体中所受的浮力。并回答在求浮力的过程中,主要用到了已学过的哪些知识?
[分析]这是用实验的方法测浮力。
图(1)中弹簧秤的读数就是物体在空气中的重G物,大小为1.3牛;图(2)中弹簧秤读数是物体在水中的视重G视,大小为0.5牛,物体A所受浮力大小,等于两次弹簧秤示数的差,F浮=G物-G视=1.3牛-0.5牛=0.8牛。
在回答上面问题时,用到了力的合成和力的平衡知识,分析A物体的受力情况,如图(3)所示,A受重力G,浮力F,弹簧秤的拉力F,由于A在水中处于平衡状态,所以有:F+F浮=G物,所以:F浮=G物-F,F的大小等于A的视重,所以:F浮=G物-G视。
[例6]一个正立方体的铁块,边长是1分米,浸在水中。求:(1)当它的下表面距液面0.5分米,并与水平面平行时,铁块下表面受到的压强和压力,铁块受到的浮力。(2)当铁块全部浸入水中,它的上表面距液面0.5分米时,铁块上下表面受到的压强差、压力差和浮力。(3)当铁块上表面距液面1分米时,求铁块上下表面受到的压强差、压力差和浮力。
[分析]此题可用压力差法求浮力。深度见图3中各示意图,
已知:h=1分米=0.1米,横截面积S=h2=0.01米2,h1=0.5分米=0.05米,h2=0.5分米=0.05米,h3=1分米=0.1米,ρ水=1.0×103千克/米3。
求:(1)P1、F1,F浮。
(2)P2-P'2,F2-F'2,F浮2
(3)P3-P'3,F3-F'3,F浮3。
[解答](1)如图(1)所示:
P1=ρ水gh1=1.0×10^3千克米3×9.8牛/千克×0.05米=0.49×103帕,
F1=P1S=0.49×103帕×0.01米2=4.9牛,
F浮1=F1=4.9牛。
(2)如图 (2)所示,设下表面受到的向上压强、压力分别为P2、F2。上表面受到的向下压强、压力分别为P'2、F'2。
P2-P'2=ρ水g(h+h2)-ρ水gh2
=ρ水gh+ρ水gh2-ρ水gh2
=ρ水gh=1.0×10^3千克/米^3×9.8/千克×0.1米
=0.98×103帕,
F2-F'2=ρ水g(h+h2)S-ρ水gh2S
=ρ水ghS+ρ水gh2S-ρ水gh2S
=ρ水ghS
=1.0×10^3千克/米^3×9.8牛/千克×0.1米×0.01米2
=9.8牛
F浮2=F2-F'2=9.8牛。
(3)如图 (3)所示:
P3-P'3=ρg水(h+h3)-ρ水gh
=ρ水gh+ρ水gh3-ρ水gh3
=ρ水gh
=1.0×10^3千克/米^3×9.8牛/千克×0.1米
=0.98×103帕,
F3-F'3=(P3-P'3)
=ρ水ghS
=1.0×10^3千克/米^3×9.8牛/千克×0.1米×0.01米
=9.8牛,
F浮3=F3-F'3=9.8牛。
答:(1)铁块下表面受到的压强为0.49×103帕,压力和浮力均为4.9牛。(2)和(3)中铁块上下表面受到的压强差都为0.98×103帕,压力差都为9.8牛,浮力都为9.8牛。
[说明]从(2)(3)的解答中看出,物体全浸在液体中时,所受的压强差、压力差和浮力均与物体没入液体的深度无关
阿基米德原理(浮力原理)的发现
公元前245年,赫农王命令阿基米德鉴定金匠是否欺骗了他。赫农王给金匠一块金子让他做一顶纯金的皇冠。做好的皇冠尽管与先前的金子一样重,但国王还是怀疑金匠掺假了。他命令阿基米德鉴定皇冠是不是纯金的,但是不允许破坏皇冠。
这看起来是件不可能的事情。在公共浴室内,阿基米德注意到他的胳膊浮到水面。他的大脑中闪现出模糊不清的想法。他把胳膊完全放进水中,全身放松,这时胳膊又浮到水面。
他从浴盆中站起来,浴盆四周的水位下降;再坐下去时,浴盆中的水位又上升了。
他躺在浴盆中,水位则变得更高了,而他也感觉到自己变轻了。他站起来后,水位下降,他则感觉到自己重了。一定是水对身体产生向上的浮力才使得他感到自己轻了。
他把差不多同样大小的石块和木块同时放入浴盆,浸入到水中。石块下沉到水里,但是他感觉到石块变轻。他必须要向下按着木块才能把它浸到水里。这表明浮力与物体的排水量(物体体积)有关,而不是与物体的重量有关。物体在水中感觉有多重一定与它的密度(物体单位体积的质量)有关。
阿基米德在此找到了解决国王问题的方法,问题的关键在于密度。如果皇冠里面含有其他金属,它的密度会不相同,在重量相等的情况下,这个皇冠的体积是不同的。
把皇冠和同样重量的金子放进水里,结果发现皇冠排出的水量比金子的大,这表明皇冠是掺假的。
更为重要的是,阿基米德发现了浮力原理,即水对物体的浮力等于物体所排开水的重量。
阿基米德原理公式及其推导:
数学表达式:F浮=G排=ρ液(气)·g·V排.
单位:F浮———牛顿,ρ液(气)——千克/米3,g%%——牛顿/千克,V排———米3.
浮力的有关因素:浮力只与ρ液,V排有关,与ρ物(G物),深度无关,与V物无直接关系.
适用范围:液体,气体.
根据浮力产生原因——上表下表而的压力差:
p=ρ液gh1,=ρ液(气)gh2=ρ液g(h1+l).
F浮=F向上-F向下=pl2-l2=ρ液g[h1-(h1+l)]l2=ρ液·g·V排.
⑦ 阿基米德原理的内容
阿基米德原理是流体静力学的一个重要原理。指出浸没在静止流体中的物体受到的浮力大小等于其排出流体的重量,其方向是垂直向上并穿过排出流体的中心。这一结论最早由阿基米德提出,因此被称为阿基米德原理。结论对部分浸没物体也是正确的。同样的结论也适用于气体。
阿基米德原理适用于完全或部分浸入静止流体中的物体,要求物体的下表面必须与流体接触。如果物体的下垫面没有完全接触到流体,如浸入水中的桥墩、插入海床的沉船、打入湖底的桩等,此时水的作用力不等于原理中规定的作用力。
如果水相对于物体有明显的流动,此原理也不适用。鱼在水中游动,由于周围的水受到扰动,用阿基米德原理算出的力只是部分值。这些情形要考虑流体动力学的效应。水翼船受到远大于浮力的举力就是动力学效应,所循规律与静力学有所不同。
(7)阿基米德原理及研究方法扩展阅读:
阿基米德原理的发现:
阿基米德发现的浮力原理,奠定了流体静力学的基础。传说希伦王召见阿基米德,以确定纯金皇冠是否掺假。阿基米德冥想了很多天,当踏进浴缸洗澡时,从看到水面上升中得到了灵感,对浮体问题有了很大的发现,并通过王冠排出的水量解决了国王的疑虑。
在着名的《论浮体》一书中,阿基米德根据各种固体的形状和比重来确定浮在水中的固体的位置,并阐述和总结了阿基米德原理,即放置在液体中的物体受到向上浮力的作用,其大小等于物体所排开的液体重量。从此使人们对物体的沉浮有了科学的认识。
⑧ 阿基米德原理
阿基米德定律:流体静力学的一个重要原理,它指出,浸入静止流体中的物体受到一个浮力,其大小等于该物体所排开的流体重量,方向竖直向上并通过所排开流体的形心。
这结论是阿基米德首先提出的,故称阿基米德原理,结论对部分浸入液体中的物体同样是正确的,同一结论还可以推广到气体。
如果物体的下表面并未全部同流体接触,例如,被水浸没的桥墩、插入海底的沉船、打入湖底的桩子等,在这类情况下,此时水的作用力并不等于原理中所规定的力。
机械应用:
阿基米德对于机械的研究源自于他在亚历山大城求学时期,有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”。
埃及一直到二千年后的现代,还有人使用这种器械,这个工具成了后来螺旋推进器的先祖。
阿基米德非常重视试验,一生设计、制造了许多仪器和机械,值得一提的有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。