导航:首页 > 研究方法 > 流动注射方法研究方向

流动注射方法研究方向

发布时间:2022-04-23 16:25:43

1. 陈晓青的研究方向

主攻方向为:天然药物和手性药物分离分析新技术,过程分析化学。
1.天然药物活性成分的分离分析及药效学研究:针对中药复杂体系中活性成分的快速识别和分离制备,研究高效液相色谱、高速逆流色谱、超临界流体萃取等在复杂体系物质分离中的理论,建立了无机配合物和天然有机物分离的制备色谱数学模型;创立了多种联用色谱新技术用于快速识别复杂体系中的活性化合物;开展细胞及基因水平上的药效学研究;为新型活性物质的快速识别、提取制备、药物构效关系研究及中药组方规律的揭示提供理论和实验依据。在此方向主持国家自然科学基金3项、省部级科研计划项目4项,在国内外学术期刊上发表论文50余篇。
2.手性药物对映体的分离分析:研究色谱分离、膜分离、萃取分离、泡沫分馏分离等各种手性药物对映体分离分析新技术新方法及相关理论。在此方向主持国家自然科学基金2项、湖南省科技平台建设专项1项,在国内外学术期刊上发表论文20余篇。
3.药物与蛋白作用机理研究:在分子水平上阐明天然活性小分子与蛋白等生物大分子的非共价弱相互作用, 建立了基于荧光猝灭的二项式分布模型用于研究药物小分子和蛋白弱相互作用。研究受体和供体间的相互识别和作用机制、小分子在体内的代谢过程及其代谢动力学,明确这些成分对代谢性疾病产生、发展和治疗的影响,为药学、临床医学研究提供重要的信息。
4.过程分析仪器:根据具体的分析对象和用户要求,研制基于流动分析的分析体系,采用适当的检测器和检测手段,如分光光度、原子吸收、色谱、离子选择电极、光度滴定、电位滴定等;联用流动注射(FI)的方法实现溶液湿化学处理过程的自动化;设计配套相应的硬件和软件,微机控制整机操作。在2~5分钟内可完成一个样品的分析,从采样、测定到结果计算全部实现自动化。在此方向主持企业合作科研项目2项,发表论文近10篇

2. 流动分析技术的流动注射分析技术

Ruzicka等应用非空气间隔断流体系,向在细管内连续流动的液流中注射一定何种的液体试样,被测组分经化学反应(或不经过化学反应)后,导入检测器进行检测、定量。一般认为流动注射具有三大要素,即试样注入、试样带的受控分散、混过程和反应时间高度再现。有了这些条件,使FIA具有以下特点:
1.实验设备简单、价格便宜,国产自动化FIA仪器(不包括检测器)的价格仅为数千元。操作简便易行;
2.快速,一般分析速度为100-300样/h,最高可达420样/h,试样经在线复杂处理(如萃取、柱分离等)时分析速度也可达40-60样/h;
3.高精度,一般分析精度通常为0.3%-1%,即使反应产物很不稳定或经过复杂的在线处理,其测定精度仍可达1.5%-3%;
4.低消耗,FIA是一种微量分析技术,试样消耗量为10-100uL,每个试样消耗试剂量为数十微升至几毫升,对生物活体分析或节约贵重试剂有十分重要的意义;
5.灵活性和多样性,它可以与多种检测手段相结合,如i分我光度法、荧i光支、w电经济实体及原子吸收法等。
此方法还可以将分析化学中复杂的单元操作如分离(沉淀、萃取、离子交换、蒸馏 )、稀释、加热、冷却等技术组合到流路体系中在线完成人,从而将原来化学分析中间歇的手工操作自动化,并且可将间歇操作中无法或者难于利用的化学反应利用起来,在平衡或非平衡状态下用各种测量手段高效率地完成试样的在线处理与定量测定,使一些反应过程复杂、条件要求苛刻及操作繁的分析方法yo充得简单易行,形成独特的测定方法。因此,FIA法广泛应用在临床化验、药物分析环境监测、仪器分析、冶金地质分析与过程分析等领域。
流动注射技术是在连续流动技术的基础上发展起来的,FIA的应用使化学实验室中很多传统的设备与操作技术发生了重大变革,引起国内外分析化学工作者的重视。1975年瑞典的BIFOK AB公司买进FIA专利,根据Ruzicka 和 Hansen的原始想法设计了第一台FIA仪。1979年9月11 日在荷兰阿姆斯特丹如开了首次包括FIA分析技术的交流会,会上FIA论文占30%.1982年6月28日在瑞典隆德如开了第二次流动分析会议,FIA论文比例上升到85%.1977年中科院沈阳生态研究所方肇伦率先引进和研究了FIA分析技术,与他的同事研究了土壤及 浸出液中多种元素的FIA测定方法,并对FIA技术发展的若干前沿领域作过专题评述。许多综述也相继发表。目前国内外有关FIA的研究论文总数约8000余篇,有10余部专着问世。
早期流动注射技术示意图

早期流动注射仪器图
当然,流动注射技术除了有以上优点外,也存在一些缺点。
流动注射技术的缺点:
灵敏度有限
检测极限有限
稳定性有限
限于分析较简单的化学成分阶段
运行成本较高(试剂消耗量较大)Ø

3. 东北大学有几位院士

闻邦椿 中国科学院学部委员 院士

男,汉族,1930年9月生于浙江省杭州市。1957年毕业于东北大学机械系研究生班并留校任教。现任中国振动工程学会理事长,IFToMM(国际机器理论与机构学联合会)中国委员会委员,国际转子动力学技术委员会委员。全国第六、七、八、九届政协委员。兼任上海交通大学等校国家重点实验室学术委员会主任和兼职教授。1991年当选为中国科学院院士。
他创立了振动学与机器学相结合的新学科"振动利用工程学"。发表专着和合着6部、论文250余篇,专着《振动机械的理论及应用》获全国优秀科技图书二等奖。和科研组同志一起研制成功十多种新型振动机械和工程机械,获国际奖两项,国家级奖3项,省、部、委级奖10项,为国家创造了重大经济效益和社会效益。
他指导的和联合指导的研究生有30名取得了硕士学位,有16名取得了博士学位。组织两次国际学术会议,并担任该国际会议的学术委员会主席。曾应邀去日、澳、德等十多个国家讲学和参加国际学术会议,做过20余次学术报告,宣读论文40余篇。曾多次被评为省、市劳动模范,1983年被评为沈阳市特等劳动模范。

邱竹贤 中国工程院院士

男,1921年5月出生,冶金学家,中国工程院院士。现任东北大学教授。他致力于铝冶金及融盐电化学的基础研究和应用研究,对融盐湿润、融盐渗透、阳极效应和金属雾生成等均有新发现,形成了融盐界面现象及界面反应新学科。总结了节省电能的规律,提出了行之有效的措施,为建设和发展我国铝工业作出了重要贡献。40年来,他单独或合作撰写轻金属冶金方面的论文150余篇,单独撰写的专着有《铝冶金物理化学》和《预焙槽炼铝》两本,合作撰写的有教材《铝电解》等三本,合作翻译的有《冶金热化学》等七本,其中,《铝冶金物理化学》一书能够把物理化学的基本理论和铝冶金的生产初中联系此书成为一本具有重要理论价值和应用价值的专着。他和他的同事先后于1989年和1990年得到国家教委科技进步奖二等奖(金属溶解和电流效率研究)和一等奖(铝电解中的界面现象和界面反应研究)以及1991年国家自然科学奖三等奖(铝电解中若干物理化学问题的研究)。邱竹贤参加了大型电解槽的试制工作,经过中国有色工业总公司鉴定,电流效率达到90%,电耗率降低到13500千瓦/吨铝,该课题获有色工业总公司一等奖。此种槽型在扶顺铝厂和包头铝厂得到推广应用。

方肇伦 中国科学院院士

分析化学家,中科院院士。
1934年8月16日出生于天津市。1957年10月毕业于北京大学化学系。历任中国科学院沈阳应用生态研究所实习研究员、助研、副所长、研究员。现任东北大学理学院分析科学研究中心主任、教授、博士学位研究生导师,浙江大学化学系微分析系统研究所所长、教授、博士学位研究生导师,中国仪器仪表学会分析仪器学会理事,流动注射分析专业委员会主任,国际分析化学期刊J.Analytical Atomic,Spectrometry, Talanta,Analytica Chemica Acta,Spectrochimica Acta Part B,J.Emvironmental Analytical Chemistry和Fresenius Journal of Analytical Chemistry及国内《分析化学》等十余种期刊编委或顾问编委。
自1977年以来方肇伦教授为流动注射分析在我国的发展进行了大量的开拓性工作,84年以来曾有五个研究项目获得国家自然科学基金的资助,在理论和实验技术上取得多项重要成就。他当前的研究领域包括流动分析、原子光谱分析及微芯片上的微流控分析及其联用技术,主要研究方向在顺序注射—原子吸收及原子荧光光谱分析,流动注射毛细管电泳分析,智能化流动光度分析系统,微流控分析芯片及流动分析在生物过程分析中的应用。自1995年以来,以他为首的研究集体在微流控芯片的研制方面进行了大量的开拓性工作,并在该领域首次获得国家自然科学基金委重点基金的资助。

张嗣瀛 中国科学院院士

男,汉族,山东省章丘县人,1925年4月5日生。1948年8月武汉大学毕业,1949年10月到东北大学任教。1957年9月至1959年7月在莫斯科大学数学力学系进修自动控制理论。1978年晋升为教授。1983年起任博士生导师。
在自动控制理论的稳定性理论、复杂控制系统理论等方面,发表论文200余篇。专着《微分对策》,主编《现代控制理论》。参加"红箭-73"反坦克导弹的研制,先后获国家自然科学奖及国家和冶金部的奖励。以"微分对策及定性极值原理的研究"等为题的研究成果均获国家教委的奖励。
现为博士生讲授"微分几何方法"等两门课。已培养博士21人,硕士30余人,博士后2人。1981年以后分别任《控制与决策》等刊物的主编或副主编。1983年任《中国大网络全书〈自动控制与系统工程卷〉》编委兼控制理论分支主编。1985年起任国务院学位委员会第二届学科评议组成员。
1978年以来,先后被评为部、省、市劳动模范或特等劳动模范,1990年被评为国家教委、国家科委"全国高校先进科技工作者"。1997年当选为中国科学院院士。1998年获全国"五一"劳动奖章。

陆钟武 中国工程院院士

男,汉族,1929年10月生,上海市人。1953年毕业于东北工学院冶金炉专业研究生班。1982年晋升为教授。1984年至1991年任东北工学院院长。1986年任冶金热能工程学科博士生导师。1997年当选中国工程院院士。
领导建立了国内第一个冶金炉专业和冶金热能工程博士点。率先参照势流理论研究了竖炉气体力学,用高炉炉身静压成功地判断了炉内的主要变迁。查明了一批普通平炉改为内倾式后指标下降的原因,结束了各地的争论,使各厂明确了措施。建立了火焰炉热工基本方程式;"压下炉头式加热炉"获国家科技进步二等奖。提出载能体概念,创立了钢铁工业系统节能理论和技术。编写或参编10多种专着和教材,撰写了100多篇论文。
任院长期间,贯彻教学、科研"两个中心"的办学思想,并获准试办研究生院。主持制定了学院2000年的发展纲要,提出办学"六大要素"的概念。确立既为冶金工业服务,又为地方经济服务的方针。积极推进国际学术交流,借鉴国内外院校办学经验。提出创办科技开发区和建设"大学科学园"的建议,被沈阳市政府采纳实施。

柴天佑 中国工程院院士

柴天佑院士,国际知名的控制科学与工程专家,1985年获工学博士,并留东北大学任教;1988年赴澳大利亚国立大学作高级访问学者;1986年被破格晋升为副教授;1988年被晋升为教授,1990年为博士生导师。
现为东北大学自动化研究中心主任,国家冶金自动化工程技术研究中心主任,曾任国际自动控制联合会(IFAC)技术局成员及IFAC制造与仪表技术协调委员会主席(1996-1999),任第三届、第四届、第五届国务院学位委员会学科评议组成员,国家863计划先进制造与自动化领域专家委员会副主任,国家重点基础研究发展计划(973计划)项目首席科学家。
柴天佑教授长期以来从事智能解耦控制、自适应控制、过程工业综合自动化等领域的应用基础和工程技术的研究,先后主持与完成国家自然科学重点基金、863高技术计划、国家攻关计划、国家高技术产业化专项以及企业重大自动化工程等30余项科研项目,取得多项创新性成果,产生显着的社会与经济效益。
针对常规解耦控制理论与方法难于对具有不确定性的多变量强耦合的复杂工业过程进行有效控制的难题,他首先在国际上提出多变量自适应解耦控制的研究方向,打破传统解耦控制思想,提出了基于控制器设计与直接对闭环系统解耦相结合的在线解耦控制策略, 系统地提出了20余种多变量自适应解耦控制算法,建立了算法的稳定性和收敛性分析,结合电力、冶金等行业的具有多变量强耦合、强非线性、参数时变、生产条件与运行工况变化大、常规控制系统难于投入运行的复杂工业过程开展了应用研究,将所提出的自适应解耦控制方法成功应用于冶金多段加热炉、余热锅炉、合金钢棒材连轧机立式活套、大型风洞、化工精馏塔等,取得了显着的应用成效。该项成果发表的论文被SCI收录10篇,被EI收录37篇,经SCI检索被引用38次。应邀在国际会议上作大会特邀报告,在国家科学技术学术着作出版基金资助下出版了“多变量自适应解耦控制及应用”专着。该成果获得2002年辽宁省自然科学一等奖。
他带领课题组将自适应解耦控制方法与智能控制、计算机集散控制技术相结合,研发了智能解耦控制技术及系统并应用国产20万千瓦发电机组的钢球磨中储式制粉系统,进口30万千瓦发电机组的机炉协调等复杂工业过程,解决了由于具有多变量强耦合、强非线性、参数时变、运行工况变化频繁等综合复杂特性,使得常规控制系统不能投入自动运行,造成能耗高,污染严重这一重大关键技术难题,取得显着经济效益和社会效益。研究成果获得省部级科技进步一等奖3次。“多变量智能解耦控制技术及应用”获得1999年国家科技进步二等奖,“多变量智能解耦控制理论、方法及应用”被评为1999年度中国高校十大科技进展。
他提出了建模与控制相集成的以综合生产指标为目标的复杂工业生产过程优化控制方法。他率领课题组针对我国矿山资源品位低,采、选、冶生产过程复杂,关键工艺参数等难于在线连续测量、工况多变、运行环境恶劣、难于实现生产过程的优化控制的难题,提出选矿生产过程优化控制技术及企业综合自动化的全局解决方案,研发了企业综合自动化系统,成功应用于辽宁排山楼金矿,酒钢集团选矿厂等企业,产生了显着的经济效益和社会效益。反映该项成果的论文应邀两次在IFAC国际会议上作大会特邀报告,“金矿选矿生产过程综合自动化系统”获1999年国家经贸委黄金科技进步特等奖,“金矿企业综合自动化系统”获得2002年国家科技进步二等奖。
针对被控对象特性不确定、非最小相位和开环不稳定、具有各种干扰、未建模动态、执行机构出现故障、输出不可测、大检测采样周期与小控制周期不匹配、强非线性等复杂工业过程难于实现自动控制的难题,将模糊控制、神经网络等智能控制与自适应控制相结合,创造性地提出了适于复杂工业过程的随机自适应、前馈自适应、鲁棒自适应、容错自适应、推理自适应、自整定PID、非线性自适应等20余种控制算法,建立了算法的稳定性和收敛性分析。上述成果获1991年国家教委科技进步一等奖(甲类)。他领导研究小组结合复杂工业过程开展工业研究,将自适应控制与智能控制想结合,提出了适合复杂工业过程的自适应控制技术,并结合抚钢的炼钢—精炼—连铸—连轧四位一体合金钢棒材新流程生产线的建设工程,提出了带有非线性自适应补偿的活套解耦控制技术等关键自动化技术,保证了我国第一条合金钢棒材生产线的安全、可靠、高效运行,取得显着的经济效益,该成果获2000年中国高校科技进步一等奖。
研究成果发表的论文被SCI检索收录38篇,EI检索收录170篇,在国际重要会议上发表的论文被ISTP收录76篇,获国家科技进步二等奖2项,省部级特等奖、一等奖8项。研究成果受到国际同行专家的高度评价,应邀到国外20余所大学讲学,主持国际会议6次。创建了东北大学自动化研究中心,并使之成为国家工程技术研究中心。培养了一批博士后、博士生、硕士生,其中共有9名博士后出站,40余名博士生获得博士学位,百余名硕士生获得硕士学位。培养建设了一支年轻的研究与开发队伍,有的成为自动化研究中心的学术骨干,有的成为东大自动化公司的技术骨干。他领导的东大自动化公司被评为国家863高技术计划产业化基地,辽宁省十佳校办企业。
他治学严谨,作风正派,善于合作,勇于创新,为我国控制理论与控制工程学科的发展和我国工业自动化事业做出突出贡献。2002年获何梁何利基金科学与技术进步奖,2003年获辽宁省科技功勋奖,还获得全国五一劳动奖章获得者,全国优秀教师,辽宁省特等劳动模范等荣誉称号。

王国栋 中国工程院院士

王国栋,男,1942年10月生,辽宁大连市人。现任东北大学轧制技术及连轧自动化国家重点实验室学术委员会副主任。曾任轧制技术及连轧自动化国家重点实验室主任。
王国栋院士主要从事钢铁材料轧制的理论、工艺、自动化方面的研究,在板形理论和板形控制、热轧板带组织和性能的预测与控制、塑性加工理论与有限元方法、轧制过程的人工智能优化、板带新产品的开发等方面做出一系列创新成果,对轧制理论发展和轧制技术进步产生很大的影响。
承担国家的重大基础研究规划项目(973)、国家高技术项目(863)、国家攻关项目、自然科学基金重大项目等。所发表的论文被SCI、EI收录200余篇次,专着4部,合作完成译着4部。获国家科技进步奖一等奖1项,二等奖1项,省部级科技进步奖15项。担任中国金属学会轧钢学会副理事长、中国金属学会轧制理论及新技术开发学术委员会主任、中国材料研究学会第四届理事会理事。
王国栋院士主要学术成就:
在超级钢的研究中,提出晶粒适度细化、复合强化等学术思想,解决了提高材料抗拉强度、降低屈强比和在现有轧机上生产超级钢两个关键问题,完成了板材、棒线材生产工艺制定、原型钢研制、热轧超级钢轧制、产品工业应用等系统研究工作。在一批热轧带钢连轧机和棒线材连轧机批量工业生产超级钢,在汽车和建筑等部门推广使用。相关成果“低碳铁素体/珠光体钢的超细晶强韧化与控制技术”获国家科技进步奖一等奖。
承担国家重大技术装备研制项目,集成和开发了大型中厚板轧机控轧控冷、中厚板轧制钢材组织性能预测与控制、中厚板生产线自动控制等技术,形成了具有我国自主知识产权的成套中厚板核心轧制技术,闯出了大型中厚板轧机实现国产化的新路,相关成果已经在首钢、南钢等中厚板厂的新建和改造中得到应用。相关成果“首钢3500mm中厚板轧机核心轧制技术和关键设备研制”获冶金科技进步奖一等奖。
综合运用人工智能、组织性能预测、有限元等方法,建立连轧过程数模开发工具和模型参数调优工具,利用轧制过程得到的海量信息,进行轧制过程优化与数模调优。提出将“变形参数调优”、“组织性能参数调优”和“人工智能调优”三种方法融为一体进行轧制过程优化的创新思想,形成了具有特色的轧制过程智能优化理论体系和实用方法;将上述理论成果应用于宝钢、抚钢、本钢等企业,提高了产品质量,降低了生产成本。相关成果 “板带钢轧制过程的智能优化与数模调优” 获国家科技进步二等奖。
王国栋院士治学严谨,学风正派,勇于开拓,深入实际。忠诚党的教育事业,教书育人,培养博士36人,硕士34人。在1996-2004年任国家重点实验室主任期间,正确把握实验室的发展方向,加强研究平台建设,带领实验室面向国民经济主战场,形成了凝聚团队、深入现场、躬行实践、争创一流的实验室特色,成为促进我国轧制技术发展和钢铁工业进步的有生力量,在我国轧制领域有良好的学术声誉和影响。

4. 维生素C所有实验方法,国内外人士的研究概况

目前研究Vc测定方法的报道较多,有关Vc的测定方法如荧光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、碘量法、光度分析法、化学发光法、电化学分析法及色谱法等,各种方法对实际样品的测定均有满意的效果。为了解国内Vc含量测定方法及其应用方面的现状及发展态势。方法以"Vc或抗坏血酸和测定"为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A、B和医药卫生专辑进行篇名检索,对所得有关Vc含量测定的文献数据分别以年代、作者区域、载刊等级、样品类型、测定方法等进行计量分析。结果核心期刊载刊文献占文献总量的45.06%,其中光度法占65.69%,电化法占18.63%,色谱法占12.75%;复杂被测样品文献占文献总量的45.06%,其中光度法占60.92%,色谱法占19.54%,电化法占10.34%。结论目前国内Vc含量测定仍以光度法为主流,但近年来色谱法,特别是HPLC法上升趋势尤为明显。
1.4.1还原型Vc的测定
1.4.1.1 2,6-二氯酚靛酚法(2,6-D法)
其原理是利用2,6-二氯酚靛酚钠盐(C12H6O2NCl2Na)在酸性条件下将还原型抗坏血酸氧化成氧化型抗坏血酸,而其本身被还原成无色的衍生物;当还原型抗坏血酸全部被氧化时,过量的2,6-二氯靛酚钠盐呈现红色,指示终点。该方法适于测定无色和浅色样液或提取液中的AsA,无须特殊仪器,操作简便、快速、准确[7]。
由于大多数果蔬和其制品有颜色,影响了终点的准确性。使用白陶土脱色[8]和加1,2-二氯乙烷[9]均不能得到理想的结果。作为对该法的改进,向一定量的AsA提取液中加入过量2,6-D与AsA作用后,剩余的2,6-D被二甲苯萃取、比色。样液中AsA含量与二甲苯萃取液中浅红色呈线性负相关。因花青素不溶于二甲苯,故可测定深色样品[10]。应用流动注射分析(Flow Injection Analysis,简称FIA),使该法的分析速度更快(120样品/h)、灵敏(检出限0.5 ug/ml)[11]。由于2,6-二氯靛酚和还原型抗坏血酸具有不同的电位(2,6-二氯靛酚的氧化还原电位是150mV,AsA的氧化还原电位是100 mV),利用铂和氯化银复合电极测定其电位差的变化,可准确地测定样液中AsA的含量。该法适宜色泽较深样品中AsA的测定。溶解氧测定是利用极谱分析法原理进行的,其基本电路与电位滴定相似[12]。但样品中同时存在的Fe2+、Sn2+、SO2、SO3、S2O32-等还原性杂质对本法则有干扰。扣除样品中内源还原性物质是对2,6-二氯靛酚法的一个改进[13]。
1.4.1.2 碘量法
其原理是基于AsA还原碘,自身氧化DAsA,而碘可由碘酸钾还原碘化钾来得到,当多余碘存在时,淀粉呈蓝色,指示终点。反应式如下:
KI+KIO3+6H→2K++3H2O+I2 (1-1)
还原型抗坏血酸+I2+2H+→氧化型抗坏血酸+2HI
该法简便,但在测定深色样品时,准确度欠佳[14]。
1.4.1.3 分光光度法
其原理是三价铁离子被AsA还原二价铁离子,后者与4,7-二苯基-1,10-菲咯啉(Bathophenanthroline, BP)生成红色络合物,其强度与样品中AsA含量有化学计量关系。该法具有快速,灵敏的优点;此外,样品中DAsA还可被Dithiothreitol (DTT)还原为AsA,同时测定DAsA的含量[15]。
采用流动注射分析停留技术还可实现AsA与果蔬常用抗褐变剂L-半胱氨酸的同时测定[16]。
1.4.1.4 间接光度法
测定是在pH=5.0的乙酸-乙酸钠缓冲溶液中,抗坏血酸与铁(III)和1,10-二氮杂菲溶液相互作用,形成橘红色的Fe(II)-二氮杂菲络合物,在波长510 nm处,吸光度与50mL抗坏血酸含量在10~200ug浓度内呈线性关系。该法的特点是简便快速,灵敏度高,干扰少[15]。
1.4.1.5 紫外光度法
其原理是还原型Vc(AsA)在紫外区243.8nm处有最大吸收峰,以Cu2+作催化剂,利用溶解氧,将在243.8nm处有最大吸收的AsA选择性氧化为243.8nm处无最大吸收峰的DAsA,进行本底校正,此法具有简便、快速、准确的特点[17]。
1.4.1.6 光电比浊法
其原理是在酸性提取液中的AsA,可被亚硒酸氧化成DAsA,后者还原成元素硒,在一定条件下,其溶液中形成稳定的悬浊液。当20~50mL浸出液中AsA含量在0~4mg时,浊度与AsA含量成正比。样品中含有单宁、山梨酸、还原酮类不干扰测定。Fe2+、SO2在常温下干扰不明显,仅亚锡离子有干扰[18]。
1.4.1.7 高效液相色谱法(HPLC)
此法的优点不仅操作简便,分离时间短,对结构不稳定的Vc尤为适合;缺点是所用仪器较为昂贵[20]。
1.4.1.8 极谱法
其原理是用溴水将AsA氧化成DAsA,而后者与邻苯二胺缩合,可用于极谱定量测定Vc含量。脱氢型的还原糖、还原酸等对测定有干扰,可用氯仿萃取分离干扰物质后进行测定[18]。
1.4.2 Vc总量的测定
1.4.2.1 2,4-二硝基苯肼法
此法为测定Vc总量最常用的方法。其原理是用活性炭把AsA氧化成DAsA,在pH5以上时,后者分子重排,其内酯环裂开生成2,3-二酮古乐糖酸(DKG),与硝基苯肼偶联,生成红色的脎,其呈色强度与DKG浓度成正比;如果再测定出DKG、DKG + DAsA的含量,则可计算出AsA、DAsA的含量。该法虽然测试过程长、须严格掌握测试条件,但其准确度和精密度均较高[20]。
1.4.2.2 荧光分光光度计法
其测定Vc的基本原理是:样品中的AsA被氧化成DAsA,并与邻苯二胺反应,生成荧光物质喹喔啉(Quinoxaline)衍生物,荧光强度与DAsA的浓度成正比,用荧光计测定荧光强度。该法具有较强的专一性,样品中有些成分会造成干扰,可作空白试验校正干扰物质所产生的荧光。此法的优点是,生成荧光物质所需时间短,操作简单,能在短时间内测定Vc总量和分开测定AsA、DAsA的含量[19]。
1.4.2.3 过氧化物酶法
果蔬中的Vc在过氧化氢存在下,添加合成底物1,4-二氨基苯,通过过氧化物酶氧化显色,作为Vc氧化终点,然后比色测定。该法的特点是不需要昂贵的仪器,适应性强,容易掌握,费用低,检测快速,不需要预先纯化所分析的试样[20]。
这个是我论文的综述部分,你看看吧!

5. 环境分析化学的发展趋势

环境分析化学发展的趋势是:
分析方法标准化
这是环境分析的基础和中心环节。环境质量评价和环境保护规划的制定和执行,都要以环境分析数据作为依据,因而须要研究制订一整套的标准分析方法,以保证分析数据的可靠性和准确性。
分析技术连续自动化
环境分析化学逐渐由经典的化学分析过渡到仪器分析,由手工操作过渡到连续自动化的操作。70年代以来,已出现每小时可连续测定数十个试样的自动分析仪器,并已正式定为标准分析方法。现已采用的有:比色分析、离子选择性电极、X射线荧光光谱、原子吸收光谱、极谱、气相色谱、液相色谱、流动注射分析等自动分析方法及相应的仪器。特别是流动注射分析法,分析速度可达每小时200多个试样,试剂和试样的消耗量少,仪器的结构简单,比较容易普及,是发展较快的方法之一。
电子计算机的应用
在环境分析化学中应用电子计算机,极大地提高了分析能力和研究水平。在现代化的分析实验室中,很多分析仪器已采用电子计算机控制操作程序、处理数据和显示分析结果,并对各种图形进行解释。应用电子计算机,可实现分析仪器自动化和样品的连续测定。如配备有电子计算机的γ-能谱仪可同时测定几百个样品中多种元素,利用傅里叶变换在计算机上进行计算,既可提高分析的灵敏度和准确度,又可使核磁共振仪能测得13C讯号,使有机骨架结构的测定有了可能,为从分子水平研究环境污染物引起的生态学和生理机制的有关问题开拓了前景。
多种方法和仪器的联合使用
这可以有效地发挥各种技术的特长,解决一些复杂的难题,再配用电子计算机,更可大大提高分析效果,并能及时给出分析结果。例如,色谱-质谱-计算机联用,能快速测定各种挥发性有机物。这种方法已应用于废水的分析,可检测200种以上的污染物。在环境污染分析中还常采用火花源质谱-电子计算机联用、气相色谱-微波等离子体发射光谱联用、色谱-红外光谱联用、色谱-原子吸收光谱联用、发射光谱和等离子体源联用,以及质谱-离子显微镜组合而成的直接成象离子分析仪。
激光技术的应用
利用激光作为分析化学的光源已发展了吸收光谱、拉曼光谱、原子和分子荧光光谱、激光光声光谱、高分辨率光谱以及其他激光光谱技术和分析方法。激光分析的特点是高分辨率、高灵敏度、长距离、短时间。随着激光基础理论研究的进一步发展,激光技术必将进一步改变环境分析化学的面貌。
痕量和超痕量分析的研究
环境科学研究向纵深发展,对环境分析提出的新要求之一就是常须检测含量低达10-6~10-9克(痕量级)和10-9~10-12克(超痕量级)的污染物,以及研究制订出一套能适用于测定存在于大气、水体、土壤、生物体和食品中的痕量和超痕量的污染物的分析方法。例如已测定太平洋中心上空空气中铅的含量为1ppb,南北极则低于0.5ppb。南极洲冰块中的DDT含量为0.04ppb;雨水中汞的平均含量为0.2ppb;人体中铀的平均含量为1ppb。这些成果是依靠痕量或超痕量分析技术取得的。加强对新的灵敏度高、选择性好而又快速的痕量和超痕量分析方法的研究,成为今后环境分析化学的发展方向之一。
环境分析样品前处理
(sample pretreatment methodologies in environmental analysis)
由于环境样品具有被测物浓度低,组分复杂,干扰物质多,同种元素以多相形式存在,易受环境影响而变化等特点,通常都要经过复杂的前处理后才能进行分析测定。经典的前处理方法,如沉淀,络合,衍生,吸附,萃取,蒸馏,干燥,过滤,透析,离心,升华等,靠人工操作,重现性差,工作强度大,处理周期长,又要使用大量有机溶剂等.因此样品前处理预分离是环境分析中最薄弱的环节,而也是现环境分析化学,乃至分析化学中一个重要的关键环节,前沿研究课题。它包括了各种前处理新方法与新技术的研究及这些技术与分析方法在线联用设备的研究两个方面.
新方法与新技术中较为成熟的有:
1,固相萃取法(solid-phase extraction,SPE)
其原理是根据样品中不同组分在固相填料上的作用力强弱不同,被测组分与其它组分分离。主要用于处理环境水样及可溶的固体环境样品,也可用于捕集气体中的痕量有机物及气溶胶.改变洗脱剂组成,填料的种类及其它参数以达到不同分离的目的。早期以柱状固相填料为主,近段时间来出现了厚度为1mm左右新型薄膜填料,它们截而积大,流量高,特别适合于野外现场处理样品.
2,超临界流体萃取法(supported liquid memberane,SLM)
该法利用超临界流体既有与液体相仿的高密度,具有较大的溶解能力,又有与气体相近的高扩散率,因此能有效地从固体内部将被测的溶质萃取出来。它特别适合于处理各种固体的环境样品.改变超临界流体的组成,温度,压力,可以有选择地把不同的组分从样品中先后连续萃取进行分离。既用于样品的前处理,也用于固体废弃物的治理.
3,固相微萃取法(solid-phase microsextraction,SPME)
它用装在注射器针头内的熔融石英光导纤维作载体,表面用有机固定液作涂渍处理。当它浸在样品溶剂中时,被测物通过扩散吸附在它表面,然后转移至气相色谱仪的进样口进样,通过加热脱附,被测物随载气进入色谱校进行分离和测定.该法可用于处理各种气体和液体的环境样品,也可用于处理固体样品中的挥发性物质,通过改变固定液的类型与液层的厚度,可以改变方法的选择性,提高吸附量,易于自动化,可直接处理低于10-9级的水样,也便于和其它分析方法(例HPLC等)联用。表-1列出几种代表性的无,少溶剂样品前处理方法的比较.
表-1几种主要的无,少溶剂样品前处理方法
前处理方法
原理
分析方法
分析对象
萃取相
缺点
顶空法(静态顶空法,捕吹法)
利用待测物的挥发性
直接抽取样品顶空气体进行色谱分析;利用载气尽量吹出样品中待测物冷冻捕集或吸附集的方法收集被测物
挥发性有机物
气体
静态顶空法不能浓缩样品,定量需要校正,吹捕法易形成泡沫,仪器超裁
超临界流体萃取
利用超临界流体密度高,粘度小对压力变化敏感的特征
在超临界状态下萃取待测样品,通过减压,降温或吸附收集后分析
烃类及非极性化合物,以及部分中等极性化合物
CO2,氨,乙烷,乙烯,丙烯,水等
萃取装置昂贵,不适于分析水样
膜萃取
膜对待测物质的吸附作用
由高分子膜萃取样品中的待测物,然后再用气体或液体萃取出膜中的待测物
挥发,半挥发性物质,支载液膜萃取在不同pH值下能离子化的化合物
高分子膜,中空纤维
膜岁待测物浓度变化有滞后性,待测物受膜限制大
固相萃取
固相吸附剂对待测物的吸附作用
先用吸附剂吸附在用溶剂洗脱待测物
各种气体液体及可溶的固体
盘状膜,过滤片,固相萃取伎
回收率低,固体吸附剂容易被堵塞
固微相萃取
待测物在样品及萃取涂层之间的分配平衡
将萃取纤维暴露在用品或其顶空中萃取
挥发,半挥发性有机物
具有选择吸附性的涂层
萃取涂层易磨损,使用寿命有限
4,加速溶剂萃取法(简称ASE)
这是一种全新的萃取方法,它可以显着提高样品前处理的速度。溶剂被泵入盛有样品的萃取池后,加温加压,数分钟后,萃取物从加热的萃取他中输送到收集瓶中供分析中.萃取步骤全程自动化,并且可以多次萃取,快速省时,溶剂消耗量少。以分析土壤中有机氯农药为例,首先要用大量有机溶剂将其从基体中提取出来.新近颁布和即将出台的环保法规对实验室使用溶剂在许多方面作出了严格的限制。为适应这种变化,加速溶剂萃取作为减少溶剂消耗量的固体样品前处理技术应运而生.与传统方法相比较,加速溶剂萃取更方便,快速,溶剂用量少,其重现性与超声萃取相当。并且避免了使用超声萃取所带来的多次清洗的问题.
表-2示出水中优先检测有机污染物600系列标准分析方法,经过适当的前处理步骤,便可发展为相应污染物在饮用水(500系列)和固体废弃物(8000系列)中的标准分析方法,这些方法与各自前处理的操作步骤实际上是相应的。
表-2USEPA 500,600和8000系列方法编号对照表
污染物名称
500系列
(饮用水)
600系列
(废水)
8000系列
(固体废弃物)
主要分析方法
挥发性卤代烃
502.1
601
8010
GC/OHD,ECD
挥发性有机物
502.2
8015
挥发性芳烃类
503.1
601
8020
GC/PID
丙烯醛,丙烯腈
603
8030
GC/FID
二溴乙烯,二氯氮丙烷
504
酚类
604
8040
GC/FID',EC
有机卤化物,农药急PCBs
505
联苯胺类
605
邻苯二甲酸酯类
506
606
8060
含N,P农药
507
亚硝胺类
607
GC/NPD'TEA
有机氯农药及PCBs
508/508A
608
8080
GC/ECD
硝基芳烃及异佛尔酮
609
8090
GC/EC,FID
多环芳烃类
610
8100
LC/UV,荧光,GC/FID
卤代醚类
611
GC/OHD
卤代烃类
612
8120
GC/ECD
2,3,7,8-TCDD
613
GC/MS
有机磷类
8140
有机氯除草剂
515
8150
挥发性有机物
524-2(60重)
624
8240
GC/MS
半挥发性有机物
525
625
8250
GS/MS
各种色谱技术的进展
1,毛细管气相色谱技术的不断发展和应用
高灵敏度,高选择性气相色谱检测器和GC,MS的发展奠定了USEPA 1979年底公布的114种水中优先检测有机污染物分析方法的基础,而毛细管气相色谱的应用大大提高了分离效率和分析速度,使方法简化,净化损失减少,近20年来,毛细管柱管材由金属改变为玻璃,再发展为熔融石英,解决了管壁对分析的干扰和操作技术的可靠性。毛细管柱固定相,高分子液晶固定相,高分子冠醚新固定相的研制,柱表面去活性处理(如辐射处理),尤其是化学键合交联固定相的研制成功,使大批重要污染物(包括众多异构体)有了可靠的测定方法.采用无分流进样和柱上进样技术解决了柱容量小和热不稳定试样的分解问题。近几年来发展的0.53mm,0.75mm内径的宽口径毛细管柱进一步解决了柱容量小的问题,使它们直接与气提设备相接,简化了挥发性化合物的分析步骤,而且更有利于与灵敏度稍差的检测器匹配。组合柱技术,化学衍生技术(包括柱前,柱后)等,不但可提高分辨能力或灵敏度,并在一定程度上解决了某些挥发性较差的化台物的监测.高灵敏,高选择性的检测器仍在不断发展,例如化学发光检测器,TEA,离子化检测器,酶抑制剂荧光监测器等,再加上多维色谱的应用,多监测器联用,特别是GC与MS及其它仪器的联用,使GC在环境分析,色谱分析中仍将继续占据优势。徐晓白等综述了色谱技术研究我国大气污染的现状,对环境中潜在致癌物质,如多环芳烃和硝基多环芳烃进行了研究和探讨.并对我国若干城市大气中痕量元素的温室效应和有害有毒颗粒物进行了研究。EPA已将毛细管气相色谱作为常规监测技术,GC—TID(离子阱检测器)在提高灵敏度方面有特色.我国在这方面,无论是仪器的生产或毛细管柱的研制都有较好基础,今后可能在开辟色谱新技术,提高质量,降低价格以及系列处方固做出更多贡献。在1998年召开的第七次全国色谱学术报告会上发表了350多篇论文,其中1/6与环境样品有关,这也反应了我国色谱分析在环境分析化学中的重要作用.
近段时间江桂斌研制的表面发射火焰光度检测方法(Quartz surface inced lurninescene-FPD)在国际上首次将由石英表面引发的发射(QSIL)原理用于定量分析,引起学术界的高度评价,并获国家发明专利。该研究工作提供了一种高灵敏度火焰光度检测器.和现有商品仪器相比,它有三个优点:(1)色谱柱直接插入燃烧头的顶端,避免了样品的扩散等造成的色谱峰展宽等现象。(2)改变了传统的氢火焰燃烧方式,使火焰的稳定性得到根本的提高.(3)通过改变火焰的发射介质,导致了发射机理的根本变化,获得了强度很大的发射光谱。与一般气相色谱火焰光度方法相比,灵敏度提高100—1000倍.用该系统已很好地分离和测定了各种介质中不同形态的有机锡化合物,最低检测限在30fg—2.3pg.另外,已证明这一原理可以推广到硫,磷化合物,有机硒,有机铅等化合物的定量分析。
1997年在美国召开的21世纪环境实验室 (environmental laboratory moving for the 21 century)研讨会后,对现场监测和可移动实验室的设计与研究,出现了一个新的发展方向.如便携式色谱仪已开始在现场环境分析中应用。1998年匹茨堡会议上,已出现了商品.我国也正在研制毛细管便携式色谱仪。在微型化过程中,常规色谱检测器的微型化技术是这一领域的制约因素.
色谱进样技术:发展很快,枝头进样(oncolumn),分流/无分流进样(split/splitless)吹捕法(purge and trap)进样等技术已成为实验室的常规方法。色谱校的发展也日新月异.法国研制的用一种平行的多毛细管往系(含有900根1m长,40μm内径的毛细管,涂层厚度为0.2μm)成功地分离和测定了多种有机锡化合物。分离时间由常规毛细管柱的5—10min缩短到30s.
2,高效液相色谱的广泛应用
80年代以来,HPLC仪器的增长速度一直据首位,据估计1983年世界HPLC的销售额己超过GC.这是出于GC主要适用于测定较易挥发的污染物,但70%以上的化合物是低挥发性,大分子量或热不稳定的,不进行衍生化就不能直接用GC法测定,而HPLC法恰好弥补了这方面的不足,所以后者在环境分析中越来越多地得到应用。金祖亮曾统计Analytical Abstract引述文章的情况;1980年应用HPLC的文章数量仅为引用GC的文章数量的1/5,而到1989年则几近一半.HPLC的分辨率虽不如毛细管气相色谱(HRGC).但也有用它一次直接分析32种优先检测污染物的成功例子,缩小柱径和采用3μm填料可提高分辨率。己制成的3—7cm商品柱的柱效可达5000一10000理论塔板/m,用它进行环境样品的常规分析,1min就能完成一次测定HPLC的柱后反应,检测灵敏度可达pg级,是现迅速发展的领域.另外发展类似GC上用的更为通用型的检测器,例如HPLC-FID,HPLC-ECD,HPLC—TID,HPLC—NPD和HPLC-FPD等是另一倾向。
微孔柱的应用促进了LC-MS的发展,由于溶剂的减少,与MS接口的问题迎刃而解,已可进行常规检测.不过由于用微孔柱分析速度较慢,其它的接口例如热喷射(thermospray),电喷雾(electrospray),粒子束(particle beam)等接口技术配合更为理想。如用HPLC法分级预分离,在系统分析中能使被检出的污染物数目增加数倍.
3,超临界流体色谱的发展
超临界流体在化学分离中的应用并与计算机技术的成功结合,制成了现代化的SFC仪,引起了分析界的兴趣。近段时间来商品毛细管SFC的问世在环境分析化学中得到较广泛的关注.由于该方法的特点是采用超临界的流体作为流动相,可填补GC与HPLC的空隙,适用于极性化合物,热不稳定,化学性质活泼,分子量高及挥发性化合物等复杂混合物的分离,测定,理论计算推断毛细管SFC分离效率与GC相近,而比HPLC高。因此SFC兼具GC与HPLC的优点.
SFC常用的流动相为CO2,但现有更多的流体可供选用。还可能用不同流体及不同成分比的组合,因此分析方法可以有相当多样化选挥.还能起到选择萃取预分离的作用。这样既可节省溶剂,减少萃取时间,又可能减少预处理过程中引起的污染.
现公认SFC可贵的另一主要原因是因为它能和一系列检测系统联用。一般说来,GC与HPLC的检测器在SFC上均可应用,常用的有FID,FPD,ECD,UV和荧光等.新的检测器,如化学发光硫检测器,测定硫化合物的灵敏度可达数十至100pg,线性范围为103.SFC与MS及FT-IR的联用亦已获得成功。现与—般EI,CI相似的质谱图可从SFC-FTIR获得,而且灵敏度尚佳.
已报道应用SFC的对象有农药,染料,有机酸,表面活性剂及药物等。其中以农药及其代谢物测定的报告较多.
4,离子色谱[IC]的应用
由于IC具有操作简便,快速,选择性好,灵敏度和推确度均较高,而且能进行多组分同时测定等优点,随着离子色谱的发展,已逐渐应用于环境分析。首先在阴离子分析方而,发展很快.近几年由于梯度淋洗,柱和检测器等的进一步发展,已能应用IC测定阳离子,过渡金属,金属络合物。区分不同价态,直至分析有机化合物等.
5,毛细管电泳
近段时间来,毛细管电泳在环境化学中的应用正在逐步扩大,包括污染物与DNA加合物的分析,正辛酵—水分配系数的测定以及动物体内甲基汞的测定等,并且已发表了数篇综述,由于毛细管电泳的持点:样品需要量小,高分离效率,柱价格低,易清洗,试剂耗费量小,方法简单,分析时间短等,使其在分离环境污染物时拥有独特优势,可以作为一种与GC和HPLC相互补充的新的污染物分析手段。Yan等采用填充拄毛细管电色谱,在45min以内分离了16种EPA优先检测PAHs.采用CZE(毛细管区带电泳)模式可在24min内分离酚及其10种衍生物,改变分析条件可在5min内就能实现对12种酚类化合物的快速分离。也有关于分离二恶英TCDD,PCB异构体,光学异构体的报导,MEKC(micellar electrokinetic chromatography胶柬电动色谱)分离分析胶类化合物获得成功.毛细管电泳曾用来分离百草快和杀草快,磺酰脲,苯氧基酸等。此类工作既涉及除草剂对映体或异构体的分离,又包括分析农作物上除草剂的残留和水中的除草剂.现毛细管电泳分离分析环境污染物的研究在不断深入和扩大,但很多工作集中在分离标准样品上,应用于实际环境样品分析的还相对较少。就其主要原因,主要是检测器灵敏度不够和要求新的样品预处理方法等.但总的来看前景是十分光明的。
联用技术
联用技术是现分析化学中的热点,在环境分析中由于样品的复杂性,测量难度大,对信息的要求又高,用一种仪器的单项技术很难解决.GC/MS在环境分析化学,特别是在环境有机分析中应用的成功经验已不必赘述,其中尤以四级质谱的引入再结合微型计算机系统的检索,使其在美国环保局系统中的常规检测费用可与GC相比,有时甚至低于后者。MS本身的发展,开拓了这类联机的应用范围,而GC与元素分析仪器的联用使其威力引伸到无机物或金属有机物等的分析.用HPLC替代联机中的GC虽然有溶剂去除的难题,但对与FT-IR,NMR等的联用尚有方便之处,另外结合热喷射,电喷雾,软电离离子化等接口技术,不但解决了LC/MS联用的主要障碍,使分析的对象可扩展至挥发性低的化合物,而且使SFC,IC等与MS的联用也获得成功,表-3示出环境分析中的若干联用技术,从中可以看到联用技术及其组合方式正在迅速增加。
三联与四联仪器系统乃至多机一体化等的出现是当前环境分析化学,环境分析仪器发展的新动向.另外,如进样流动注射(FIA)等技术的引入也将使环境样品分析自动化,快速化等达到新的高度。
表-3 环境分析化学中的联用技术
联用技术
应用举例
GC-AAS
石油中乙基铅化合物,络合物,鱼中汞化合物
GC-AES(原子发射光谱)
有机锡化合物,甲硅烷化醇类
GC-MES(微波等离子体发射光谱)
元素选择性检测
GC-AFS(原子荧光光谱)
四乙基铅
GC-ICP-AES(DCP,MIP)
烷基铅,有机硅(Mn,Hg,Cr)
GC-MS
普遍应用(挥发性,半挥发性化合物,衍生物)
GC-FTIR
柴油机尾气颗粒物中硝基多环芳烃
GC-MS-FTIR
GX-TEA
亚硝胺
HPLC-AAS
四烷基铅,有机锡
HPLC-ICP-AES
VB12中CO,蛋白质中金属,Fe,As,Hg,Cu;螯合物状态分析,同位素稀释
HPLC-ICP/MS;HPLC-FTIR;HPLC-TEA
HPLC-MS
Thermospray,Particle Beam/MAGIC
HPLC-NMR
10-4g,多组分电喷雾中半挥发性及非挥发性物质
HPLC-FTIR/MS
MS/MS(可与GC或HPLC联用)
10-11-10-12g(PCDD,PCDF)
SFC-FID,UV等
偶氮,蒽醌,苯胺类染料,PAH
SFC-MS,FTIR或NMR
农药等
IC-ICP
1-100×10-9级地表水
ICP-MS
0.1-10×10-9级(检测下限可达0.01)海洋生物中Al,Mn,Cu,Ni,Co,Zn,Sn,Cd,Ba,La,Ce,Th,U
GC-QSIL-FPD(气相色谱表面发射火焰光度检测)
水中有机锡,铅,汞,锗,硒等形态分析以及生物样品等,灵敏度达0.7-2.3pg(检出限)有机锡
在无机物的分析方面,IC与检测仪器的联用,尤其是各种进样方式的ICP与MS的联用在痕量元素分析中已成为重要的分析技术前沿。由于后者的高灵敏度(检出限达l0—60pg/mL),高选择性,线性范围宽,以及多种元素的同时测定,和可进行在线分析等已使USEPA将ICP-MS列为可行的常规分析手段.
与生物学科的结合的环境分析化学
1,生物试验指导的分离分析
生物试验指导的分离分析发展于80年代初,是有机污染物分析的重要发展方向之一。现环境样品中的致癌,致畸变,致突变性成份是人们主要关心的对象,由于医学还不能完全控制和治愈严重威胁人类生命的癌症,而流行病学又指出,人类70%—90%的癌症是由于环境中的致癌物所引起,短期生物试验的发展(如Ames试验)提供了在短期内初步评价研究对象三致特性的可能,且费用较为低廉,灵敏度高,选择性好,结合化学分离和鉴定,就有可能从复杂的环境试样中有效地筛选出活性组分,获得新的结果,环境中潜在致癌物硝基多环芳烃的发现即是一例.较近的研究表明大气飘尘中不但存在硝基多环芳烃,而且有羟基硝基多环芳烃,后者的致突变性有时比前者为高。在气体研究中也得到相应的结果,这些结果促进了环境污染活性的研究.生物指导的活性发现是生物学科与分析学科结合的产物,它将在环境科学研究中发挥更大的作用。
2,新的分析方法——生物监测:免疫分析
常规的环境分析有时对大批复杂试样不能及时迅速报出结果,在这方面某些生物监测方法却能起到很好的作用.免疫试验就是一个很好的例子,后者近几年在环境方面的应用有很大的成就,并已在区域性环境质量评价中得到应用。免疫试验优点很多:价格便宜,灵敏度高(如1ng),前处理方法简便.有利于大量监测某种确定的对象,还有可能进行实时分析,因此前景诱人。在《分析化学前沿》有关环境分析若干进展中已报道免疫分析在农药,致癌物,甚至DNA加合物方面试验的一些数据.由此得知其灵敏度甚高。美国EPA,AOAC,IUPAC已组织过多次专业会议,今后有希望在环境监测中得到更多应用.
此外,各种类型的生物传感器和生物标记物的开发与应用亦将有广泛的前途。

6. 浅析药物分析几种新技术的现状及发展前景

【摘要】 评述药物分析的几种新技术,包括时间分辨荧光分析法、流动注射分析和液相色谱一质谱联用技术。其中时间分辨荧光分析法作为一种新的非同位素标记分析技术,具有灵敏度高、选择性好、无放射性污染等优点,能有效消除杂质与背景荧光以提高信噪比,目前广泛用于药物含量测定、酶活性测定、DNA检测和时间分辨荧光免疫分析;流动注射分析是一种新型的微量、高速和自动化的分析技术,具有分析速度快、样品和试剂消耗量少、设备与操作简单、分析效率高等特点,可与各种检测器联用,检测手段灵活多样,适用性广泛,目前在药物分析领域主要用于药物含量测定和生物内源性物质的分析;液相色谱一质谱联用技术集液相色谱的高分离效能与质谱的高选择性、高灵敏检测能力于一体,是组分复杂样品和微量/痕量样品分离分析的最有力的研究手段,是药物分析相关领域中不可或缺的重要工具,目前广泛用于药物及天然产物化学成分分析、药物代谢研究、残留物分析等。(剩余1901字)

7. 化学问题

不同的学校有不同的专业,我也不是很清楚你学校化学系的侧重点是什么,不过我也是学应用化学的。
在我学校
高分子专业:主要还是以化学合成为主,最主要的是液晶方面的研究,其中也有表面活性剂的研究。
物理化学专业:主要是进行电化学方面的研究。
分析化学有两个方向:一方面是仪器分析:主要进行实验。另一方面是进行微流控分析和流动注射方面的研究。
无机化学有泡沫铝和可降解材料方面的研究。
既然你是女生,我建议你学分析化学、物理化学和无机方面的专业。不过因为在我校没有无机和物理化学专业这两个方向,只有分析和高分子专业,所以对其他学校这两个专业就不是很清楚了。
既然你要继续深造,那么我建议你学物理化学和分析化学,在我学校学物理化学的几乎都读博了,分析化学也是考研中比较抢手的专业,无机化学就不是很清楚了。
综上:分析化学,物理化学,无机化学相对于高分子化学都是对身体伤害比较小的专业。至于我不清楚你是哪个学校的,所以我建议你问问你们专业的老师,或者是上届的学哥和学姐,应该就可以知道的更清楚了。
希望对你有帮助!

8. 方肇伦的简介

方肇伦 (1934.8.16-2007.11.12)生于天津市,籍贯浙江定海。
任中国科学院院士。东北大学教授。
1934年8月16日出生于天津市,籍贯浙江定海。1957年10月毕业于北京大学化学系。
历任中国科学院沈阳应用生态研究所实习研究员、助研、副所长、研究员。曾任东北大学理学院分析科学研究中心主任、教授、博士学位研究生导师,浙江大学化学系微分析系统研究所所长、教授、博士学位研究生导师,中国仪器仪表学会分析仪器学会理事,流动注射分析专业委员会主任,国际分析化学期刊J. Analytical Atomic, Spectrometry, Talanta, Analytica Chemica Acta, Spectrochimica Acta Part B,J. Emvironmental Analytical Chemistry 和Fresenius Journal of Analytical Chemistry及国内《分析化学》等16种期刊编委或顾问编委。
自1977年以来,方肇伦教授为流动注射分析技术在我国的发展进行了大量的开拓性工作,在理论和实验技术上取得多项重要成就。他当前的研究领域包括流动分析,原子光谱分析,微分析系统及其联用技术。主要研究方向有顺序注射-原子吸收及原子荧光光谱分析,流动注射毛细管电泳分析,智能化流动光谱分析系统,微分析系统及流动分析在生物过程分析中的应用。在该领域先后发表论文180余篇,出版英文专着2部,中文专着1部。他在流动注射在线分离浓集及流动注射原子吸收光谱分析等重要领域的研究达到了国际领先。他在此领域所取得的成就曾获2001年辽宁省自然科学一等奖,1995年国家自然科学三等奖,1993年科学院自然科学二等奖,1990年科学院自然科学二等奖,1982年科学院科技成果二等奖,1981年辽宁省科技成果二等奖,1981年辽宁省科技成果二等奖,并于1994年获首届海光分析化学奖。 1997年当选为中国科学院院士。
2007年11月12日20时40分,因心脏病突发,在沈阳逝世 。

9. 安徽工业大学化学与化工学院的科研方向

科研方向
01 炼焦煤资源利用与合理配置 02 弱(非)粘结性煤的改质及其在炼焦配煤中的应用
03 炼焦配煤专家系统及其过程控制技术研究 04 焦炉节能与自动加热控制技术研究
05 焦炉长寿技术研究 06 炼焦过程节能减排技术研究
07 干熄焦系统工艺优化和烧损控制技术研究 08 煤焦显微结构研究
09 高炉用焦质量及其控制技术研究 10 捣固焦质量控制技术及其评价体系研究
11 煤液化技术基础研究 12 煤液化产物分离技术研究
13 煤的高效催化液化及催化新材料和多相催化研究 14 选择性催化氧化和清洁化工过程开发
15 煤液化粗油提质加工精制的催化剂研究 16 超净煤制备和转化技术研究
17 煤系重质产物高效转化和煤基碳材料研究 18 煤转化工程中新型催化材料的研发
19 煤基炭材料的制备及其应用研究 20 酚醛树脂基混合基质炭分子筛膜的制备及应用的研究
21 高炉喷煤燃烧催化剂和烧结节能增效剂的应用研究 22 动力电池电极材料的开发与应用研究
23 金属表面精饰以及铁尾矿资源综合利用研究 24 流动注射分析方法在冶金分析及环境测试与治理中的应用研究
25 固体酸催化剂的合成与应用研究 26 金属磷化工艺及不锈钢酸洗工艺的开发与应用研究
27 润滑油及添加剂合成与制备 28 气敏材料及其传感器的研究
29 化学机械平坦化(CMP)研究 30 高能绿色化学电源电极材料及其第一性原理计算
31 纳米材料修饰电极的制备与应用研究 32 化学发光技术在食品安全检测中的应用
33 环金属铱配合物的化学发光与电致化学发光性质的研究 34 环境污染物检测技术开发
35 含氮手性杂环化合物的合成和生物活性构效关系研究 36 金属有机化学、功能配合物的光电性质与催化应用研究
37 纳米晶构筑的过渡金属多孔氧化物的制备与性能研究 38 固体润滑与金属表面处理研究
39 水性树脂的合成及应用开发研究 40 功能防腐涂料和带锈涂料的研制
41 环氧树脂水性化研究 42 固体酸催化剂的制备与应用研究
43 树状大分子的合成与应用研究 44 涂料和胶黏剂用水性树脂的开发与应用研究
45 聚合物纳米复合材料、乳液聚合、水性涂料开发以及钢铁表面防腐涂层的研究

10. 有谁能介绍一下流动注射(化学分析方法)的基本原理及应用

http://col.njtu.e.cn/zskj/2015/yifen/chapt17/17-3-1.html
这是一个有关流动注射的课件,里面有相关的概念和仪器介绍,希望能帮到你。

阅读全文

与流动注射方法研究方向相关的资料

热点内容
前瞻性分析的管理方法是 浏览:410
肱三头肌长头锻炼方法动图 浏览:161
45乘14用简便方法计算脱式 浏览:340
有什么方法除锈 浏览:302
企业员工素质测评方法与分析论文 浏览:573
洗车机枪头连接方法 浏览:218
exceldatedif函数的使用方法 浏览:744
鸦胆子过敏治疗方法 浏览:919
治疗肾炎水肿的方法 浏览:627
孕期盆腔炎的治疗方法 浏览:647
迷你世界创造节中如何找到新的登录方法 浏览:997
csdn数组的常用方法 浏览:501
中考化学最爱考的鉴别方法 浏览:683
在水里的物体浮起来的方法有哪些 浏览:827
快速学做烘焙的方法 浏览:420
彩铅画眼睛的方法视频 浏览:871
抖音账号快速贴标签的三个方法 浏览:581
三角小窗安装方法 浏览:722
座套卡扣使用方法 浏览:408
治理人类不要用极端的方法出自哪里 浏览:536