导航:首页 > 研究方法 > 数据分析方法梅长春目录

数据分析方法梅长春目录

发布时间:2022-04-22 03:58:28

❶ 统计数据分析的基本方法有哪些

1、对比分析法


就是将某一指标与选定的比较标准进行比较,比如:与历史同期比较、与上期比较、与其他竞争对手比较、与预算比较。一般用柱状图进行呈现。


2、结构分析法


就是对某一项目的子项目占比进行统计和分析,一般用饼图进行呈现。比如:A公司本年度营业额为1000万,其中饮料营业额占33.6%、啤酒占55%,其他产品的营业额占11.4%。


3、趋势分析法


就是对某一指标进行连续多个周期的数据进行统计和分析,一般用折线图进行呈现。比如:A公司前年度营业额为880万,去年900万,本年度1000万,预计明年为1080万。


4、比率分析法


就是用相对数来表示不同项目的数据比率,比如:在财务分析中有“盈利能力比率、营运能力比率、偿债能力比率、增长能力比率”。


5、因素分析法


就是对某一指标的相关影响因素进行统计与分析。比如,房价与物价、土地价格、地段、装修等因素有关


6、综合分析法


就是运用多种分析方法进行数据的统计与分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。

❷ 数据分析方法五种的作品目录

分析复杂调查数据

第1章 概论
第2章 抽样设计和调查数据
第3章 分析调查数据的复杂性
第4章 方差估计的策略
第5章 调查数据分析的准备
第6章 调查数据分析的操作
第7章 总结
注释
参考文献
译名对照表
缺失数据

第1章 导论
第2章 假设
第3章 传统的方法
第4章 最大似然
第5章 多重插补:基本原理
第6章 多重插补:复杂化
第7章 不可忽略的缺失数据
第8章 总结与结论
注释
参考文献
译名对照表
社会网络分析

第1章 社会网络分析简介
第2章 网络基础
第3章 数据收集
第4章 网络分析基本方法
第5章 网络分析高级方法
参考文献
译名对照表
因子分析:统计方法与应用问题

第1章 导论
第2章 抽取初始因子的方法
第3章 旋转的方法
第4章 再论因子数量的问题
第5章 验证性因子分析简介
第6章 建立因子尺度
第7章 对常见问题的简单回答
注释
参考文献
译名对照表
基于行动者的模型

前言
第1章 基于行动者建模的构想
第2章 行动者、环境和时间尺度
第3章 在社会科学研究中使用基于行动者的模型
第4章 设计和发展基于行动者的模型
第5章 基于行动者建模的发展
资源
注释
参考文献
译名对照表

❸ 数据分析的基本方法有哪些

数据分析的三个常用方法
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

❹ 数据分析方法有哪些

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。

1、聚类分析(Cluster Analysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

2、因子分析(Factor Analysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。

3、相关分析(Correlation Analysis)

相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。

4、对应分析(Correspondence Analysis)

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。

想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。

❺ 统计学中常用的数据分析方法有哪些

1、描述统计


描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析、离中趋势分析和相关分析三大部分。


2、假设检验


参数检验:参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。


非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。


3、信服分析


介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。


信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。

❻ 深入浅出数据分析的作品目录

总目录
序言 I
1 数据分析引言:分解数据 1
2 实验:检验你的理论 37
3 最优化:寻找最大值 75
4 数据图形化:图形让你更精明 111
5 假设检验:假设并非如此 139
6 贝叶斯统计:穿越第一关 169
7 主观概率:信念数字化 191
8 启发法:凭人类的天性作分析 225
9 直方图:数字的形状 251
10 回归:预测 279
11 误差:合理误差 315
12 相关数据库:你能关联吗? 359
13 整理数据:井然有序 385
附录A 尾声:正文未及的十大要诀 417
附录B 安装R:启动R! 427
附录C 安装Excel分析工具:ToolPak 431
细分目录及各章引子
序言
大脑对待数据分析的态度。一边是你努力想学会一些知识,一边是你
的大脑忙着开小差。你的大脑在想:“最好把位置留给更重要的事,
像该离哪些野生动物远点啊,像光着身子滑雪是不是个坏点子啊。”
既然如此,你该如何引诱你的大脑意识到,懂得数据分析是你安身立
命的根本?
谁适合阅读本书? II
我们了解你在想什么 III
元认知 V
征服大脑 VII
自述 VIII
技术顾问组 X
致谢 XI
1.分解数据数据分析引言
Acme化妆品公司需要你出力 2
首席执行官希望数据分析师帮他提高销量 3
数据分析就是仔细推敲证据 4
确定问题 5
客户将帮助你确定问题 6
Acme公司首席执行官给了你一些反馈 8
把问题和数据分解为更小的组块 9
现在再来看看了解到的情况 10
评估组块 13
分析从你介入的那一刻开始 14
提出建议 15
报告写好了 16
首席执行官欣赏你的工作 17
一则新闻 18
首席执行官确信的观点让你误入歧途 20
你对外界的假设和你确信的观点就是你的心智模型 21
统计模型取决于心智模型 22
心智模型应当包括你不了解的因素 25
首席执行官承认自己有所不知 26
Acme给你发来了一长串原始数据 28
深入挖掘数据 31
泛美批发公司确认了你的印象 32
回顾你的工作 35
你的分析让客户作出了英明的决策 36
2.实验
检验你的理论
你能向别人揭示自己坚信的信念吗?正在进行实证检验?做个好实验吧,再
没有什么办法能像一个好实验那样,既能解决问题又能揭示事物的真正运行
规律。一个好实验往往能让你摆脱对观察数据的无限依赖,能帮助你理清因
果联系;可靠的实证数据将让你的分析判断更有说服力。
咖啡业的寒冬到了! 38
星巴仕董事会将在三个月内召开 39
星巴仕调查表 41
务必使用比较法 42
比较是破解观察数据的法宝 43
价值感是导致销售收入下滑的原因吗? 44
一位典型客户的想法 46
观察分析法充满混杂因素 47
店址可能对分析结果有哪些影响 48
拆分数据块,管理混杂因素 50
情况比预料的更糟! 53
你需要做一个实验,指出哪种策略最有效 54
星巴仕首席执行官已经急不可待 55
星巴仕降价了 56
一个月后…… 57
以控制组为基准 58
避免解雇123 61
让我们重新做一次实验 62
一个月后… 63
实验照样会毁于混杂因素 64
精心选择分组,避免混杂因素 65
随机选择相似组 67
随机访谈 68
准备就绪,开始实验 71
结果在此 72
星巴仕找到了与经验吻合的销售策略 73
3.寻找最大值最优化
有些东西人人都想多多益善。为此我们上下求索。要是能用数字表示我
们不断追求的东西——利润、钱、效率、速度等,实现更高目标的机会
就在眼前。有一种数据分析工具能够帮助我们调整决策变量,找出解决
方案和优化点,使我们最大限度地达到目标。本章将使用这样一种工具,
并通过强大的电子表格软件包Solver来实现这个工具。
现在是浴盆玩具游戏时间 76
你能控制的变量受到约束条件的限制 79
决策变量是你能控制的因素 79
你碰到了一个最优化问题 80
借助目标函数发现目标 81
你的目标函数 82
列出有其他约束条件的产品组合 83
在同一张图形里绘制多种约束条件 84
合理的选择都出现在可行区域里 85
新约束条件改变了可行区域 87
用电子表格实现最优化 90
Solver一气呵成解决最优化问题 94
利润跌穿地板 97
你的模型只是描述了你规定的情况 98
按照分析目标校正假设 99
提防负相关变量 103
新方案立竿见影 108
你的假设立足于不断变化的实际情况 109
4.数据图形化
图形让你更精明
数据表远非你所需。你的数据庞杂晦涩,各种变量让你目不暇接,应付堆积
如山的电子表格不只令人厌倦不堪,而且确实浪费时间。相反,与仅仅使用
电子表格不同,一幅用纸不多、栩栩如生的清晰图像,却能让你摆脱“一叶
障目,不见泰山”的烦恼。
新军队需要优化网站 112
结果面世,信息设计师出局 113
前一位信息设计师提交的三份信息图 114
这些图形隐含哪些数据? 115
体现数据! 116
这是前一位设计师主动提供的意见 117
数据太多绝不会成为你的问题 118
让数据变美观也不是你要解决的问题 119
数据图形化的根本在于正确比较 120
你的图形已经比打入冷宫的图形更有用 123
使用散点图探索原因 124
最优秀的图形都是多元图形 125
同时展示多张图形,体现更多变量 126
图形很棒,但网站掌门人仍不满意 130
优秀的图形设计有助于思考的原因 131
实验设计师出声了 132
实验设计师们有自己的假设 135
客户欣赏你的工作 136
订单从四面八方滚滚而来! 137
5.假设并非如此假设检验
世事纷纭,真假难辨。人们需要用庞杂多变的数据预测未来,然而免不了
剪不断,理还乱。正因如此,分析师不会简单听信浮于表面的解释,也不
会想当然地认可这些解释的真实性:通过数据分析的仔细推理,分析师能
够异常细致地评估大量备选答案,然后将手头的一切信息整合到各种模
型中。接下来要学的证伪法即是一种切实有效的非直觉方法。
给我来块“皮肤”…… 140
我们何时开始生产新手机皮肤? 141
PodPhone不希望别人看透他们的下一步行动 142
我们得知的全部信息 143
电肤的分析与数据相符吗? 144
电肤得到了机密《战略备忘录》 145
变量之间可以正相关,也可以负相关 146
现实世界中的各种原因呈网络关系,而非线性关系 149
假设几个PodPhone备选方案 150
用手头的资料进行假设检验 151
假设检验的核心是证伪 152
借助诊断性找出否定性最小的假设 160
无法一一剔除所有假设,但可以判定哪个假设最强 163
你刚刚收到一条图片短信…… 164
即将上市! 167
6.贝叶斯统计
穿越第一关
数据收集工作永不停息。必须确保每一个分析过程都充分利用所搜集到的与
问题有关的数据。虽说你已学会了证伪法,处理异质数据源不在话下,可要
是碰到直接概率问题该怎么办?这就要讲到一个极其方便的分析工具,叫做
贝叶斯规则,这个规则能帮助你利用基础概率和波动数据做到明察秋毫。
医生带来恼人的消息 170
让我们逐条细读正确性分析 173
蜥蜴流感到底有多普遍? 174
你计算的是假阳性 175
这些术语说的都是条件概率 176
你需要算算 177
1%的人患蜥蜴流感 178
你患蜥蜴流感的几率仍然非常低 181
用简单的整数思考复杂的概率 182
搜集到新数据后,用贝叶斯规则处理基础概率 182
贝叶斯规则可以反复使用 183
第二次试验结果:阴性 184
新试验的正确性统计值有变化 185
新信息会改变你的基础概率 186
放心多了! 189
7. 信念数字化
主观概率
虚拟数据未尝不可。真的。不过,这些数字必须描述你的心智状态,表
明你的信念。主观概率就是这样一种将严谨融入直觉的简便办法,具体
做法马上介绍。随着讲解的进行,你将学会如何利用标准偏差评估数据
分布,前面学过的一个更强大的分析工具也会再次登台亮相。
背水投资公司需要你效力 192
分析师们相互叫阵 193
主观概率体现专家信念 198
主观概率可能表明:根本不存在真正的分歧 199
分析师们答复的主观概率 201
首席执行官不明白你在忙些什么 202
首席执行官欣赏你的工作 207
标准偏差量度分析点与平均值的偏差 208
这条新闻让你措手不及 213
贝叶斯规则是修正主观概率的好办法 217
首席执行官完全知道该怎么处理这条新信息了 223
俄罗斯股民欢欣鼓舞! 224
8.启发法
凭人类的天性做分析
现实世界的风云变幻让分析师难以料事如神。总有一些数据可望不可及,即
使有所能及,最优化方法也往往艰深耗时。所幸,生活中的大部分实际思维
活动并非以最理性的方式展开,而是利用既不齐全也不确定的信息,凭经验
进行处理,迅速做出决策。奇就奇在这些经验确实能够奏效,因此也是进行
数据分析的重要而必要的工具。
邋遢集向市议会提交了报告 226
邋遢集确实把镇上打扫得干干净净 227
邋遢集已经计量了自己的工作效果 228
他们的任务是减少散乱垃圾量 229
计量垃圾量不可行 230
问题刁钻,回答简单 231
数据邦市的散乱垃圾结构复杂 232
无法建立和运用统一的散乱垃圾计量模型 233
启发法是从直觉走向最优化的桥梁 236
使用快省树 239
是否有更简单的方法评估邋遢集的成就? 240
固定模式都具有启发性 244
分析完毕,准备提交 246
看来你的分析打动了市议会的议员们 249
9. 数字的形状直方图
直方图能说明什么?数据的图形表示方法不计其数,直方图是其中出类
拔萃的一种。直方图与柱状图有些相似,能迅速而有效地汇总数据。接
下来你将用这种小巧而实用的图形量度数据的分布、差异、集中趋势等。
无论数据集多么庞大,只要画一张直方图,就能“看出”数据中的奥妙。
让我们在本章中用一个新颖、免费、无所不能的软件工具绘制直方图。
员工年度考评即将到来 252
伸手要钱形式多样 254
这是历年加薪记录 255
直方图体现每组数据的发生频数 262
直方图不同区间之间的缺口即数据点之间的缺口 263
安装并运行R 264
将数据加载到R程序 265
R创建了美观的直方图 266
用数据的子集绘制直方图 271
加薪谈判有回报 276
谈判要求加薪对你意味着什么? 277
10.回归
预测
洞悉一切,未卜先知。回归分析法力无边,只要使用得法,就能帮助你预测
某些结果值。若与控制实验同时使用,回归分析还能预测未来。商家狂热地
运用回归分析帮助自己建立模型,预测客户行为。本章即将让你看到,明智
地使用回归分析,确实能够带来巨大效益。
你打算怎么花这些钱? 280
以获取大幅度加薪为目的进行分析 283
稍等片刻……加薪计算器! 284
这个算法的玄机在于预测加薪幅度 286
用散点图比较两种变量 292
直线能为客户指明目标 294
使用平均值图形预测每个区间内的数值 297
回归线预测出人们的实际加薪幅度 298
回归线对于具有线性相关特点的数据很有用 300
你需要用一个等式进行精确预测 304
让R创建一个回归对象 306
回归方程与散点图密切相关 309
加薪计算器的算法正是回归方程 310
你的加薪计算器没有照计划行事…… 313
11. 合理误差误差
世界错综复杂。预测有失精准并不稀奇。不过,如果在进行预测的时候
指出误差范围,你和你的客户就不仅能知道平均预测值,还能知道该误
差造成的典型偏差,指出误差可以让预测和信念更全面。通过本章讲授
的工具,你还会懂得如何控制误差及如何尽量降低误差,从而提高预测
可信度。
客户大为恼火 316
你的加薪预测算法做了什么? 317
客户组成 318
要求加薪25%的家伙不在模型范围内 321
如何对待想对数据范围以外的情况进行预测的客户 322
由于使用外插法而惨遭解雇的家伙冷静下来了 327
你只解决了部分问题 328
扭曲的加薪结果数据看起来是什么样子? 329
机会误差=实际结果与模型预测结果之间的偏差 330
误差对你和客户都有好处 334
机会误差访谈 335
定量地指定误差 336
用均方根误差定量表示残差分布 337
R模型知道存在均方根误差 338
R的线性模型汇总展示了均方根误差 340
分割的根本目的是管理误差 346
优秀的回归分析兼具解释功能和预测功能 350
相比原来的模型,分区模型能更好地处理误差 352
你的客户纷纷回头 357
12.你能关联吗? 关系数据库
如何组织变化多端的多变量数据?一张电子数据表只有两维数据:行和
列。如果你的数据包括许多方面,则表格格式很快就会过时。在本章,
你会看出电子表格很难管理多变量数据,还能看到关系数据库管理系统
让多变量数据的存储和检索变得极其简单。
《数据邦新闻》希望分析销量 360
这是他们保存的运营跟踪数据 361
你需要知道数据表之间的相互关系 362
数据库就是一系列相互有特定关系的数据 365
找到一条贯穿各种关系的路线,以便进行必要的比较 366
创建一份穿过这条路径的电子表格 366
通过汇总将文章数目和销量关联起来 371
看来你的散点图确实画得很好 374
复制并粘贴所有这些数据是件痛苦的事 375
用关系数据库管理关系 376
《数据邦新闻》利用你的关系图建立了一个RDBMS 377
《数据邦新闻》用SQL提取数据 379
RDBMS数据可以进行无穷无尽的比较 382
你上了封面 383
13.井然有序整理数据
乱糟糟的数据毫无用处。许多数据搜集者需要花大量时间整理数据。不
整齐的数据无法进行分割、无法套用公式,甚至无法阅读,被人们视而
不见也是常事,对不对?其实,你可以做得更好。只要眼前清楚地浮现
出希望看到的数据外观,再用上一些文本处理工具,就能抽丝剥茧地整
理数据,化腐朽为神奇。
刚从停业的竞争对手那儿搞到一份客户名单 386
数据分析不可告人的秘密 387
Head First猎头公司想为自己的销售团队搞到这份名单 388
清理混乱数据的根本在于准备 392
一旦组织好数据,就能修复数据 393
将#号作为分隔符 394
Excel通过分隔符将数据分成多个列 395
用SUBSTITUTE替换“^”字符 399
所有的“姓”都整理好了 400
用SUBSTITUTE替换名字模式太麻烦了 402
用嵌套文本公式处理复杂的模式 403
R能用正则表达式处理复杂的数据模式 404
用sub指令整理“名” 406
现在可以向客户交货了 407
可能尚未大功告成…… 408
为数据排序,让重复数值集中出现 409
这些数据有可能来源于某个关系数据库 412
删除重复名字 413
你创建了美观、整洁、具有唯一性的记录 414
Head First猎头公司正在一网打尽各种人才! 415
再见…… 416
附录A 尾声
正文未及的十大要诀
你已颇有收获。但数据分析这门技术不断变迁,学之不尽。由于本书篇幅有
限,尚有一些密切相关的知识未予介绍,我们将在本附录中浏览十大知识点。
其一:统计知识大全 418
其二:Excel技巧 419
其三:耶鲁大学教授Edward Tufte(爱德华·塔夫特)的图形原则 420
其四:数据透视表 421
其五:R社区 422
其六:非线性与多元回归 423
其七:原假设-备择假设检验 424
其八:随机性 424
其九:Google Docs 425
其十:你的专业技能 426
启动R! 附录B 安装R
强大的数据分析功能靠的是复杂的内部机制。好在只需几分钟就能安装
和启动R,本附录将介绍如何不费吹灰之力安装R。
附录C 安装Excel分析工具
ToolPak
Excel有一些最好的功能在默认情况下并不安装。为了执行第3章的优化和第
9章的直方图,需要激活Solver和Analysis ToolPak,Excel在默认情况下安
装了这两种扩展插件,但若非用户主动操作,这些插件不会被激活。

❼ 数据分析方法的作品目录

第1章 数据描述性分析
1.1 一维数据的数字特征
1.1.1 表示位置的数字特征
1.1.2 表示分散性的数字特征
1.1.3 表示分布形状的数字特征
1.2 数据的分布
1.2.1 直方图、经验分布函数与QQ图
1.2.2 茎叶图
1.2.3 数据的分布拟合检验与正态性检验
1.3 多维数据的数字特征及相关分析
1.3.1 二维数据的数字特征及相关系数
1.3.2 多维数据的数字特征及相关矩阵
1.3.3 总体的数字特征、相关矩阵及多维正态分布
习题1
第2章 线性回归分析
2.1 线性回归模型及其参数估计
2.1.1 线性回归模型及其矩阵表示
2.1.2 参数估计及其性质
2.2 统计推断与预测
2.2.1 回归方程的显着性检验
2.2.2 回归系数的统计推断
2.2.3 预测及其统计推断
2.2.4 与回归系数有关的假设检验的一般方法
2.3 残差分析
2.3.1 误差项的正态性检验
2.3.2 残差图分析
2.3.3 Box-cox变换
2.4 回归方程的选取
2.4.1 穷举法
2.4.2 逐步回归法
习题2
第3章 方差分析
3.1 单因素方差分析
3.1.1 单因素方差分析模型
3.1.2 因素效应的显着性检验
3.1.3 因素各水平均值的估计与比较
3.2 两因素等重复试验下的方差分析
3.2.1 统计模型
3.2.2 交互效应及因素效应的显着性检验
3.2.3 无交互效应时各因素均值的估计与比较
3.2.4 有交互效应时因素各水平组合(AiBj)上的均值估计与比较
3.3 两因素非重复试验下的方差分析
习题3
第4章 主成分分析与典型相关分析
4.1 主成分分析
4.1.1 引言
4.1.2 总体主成分
4.1.3 样本主成分
4.2 典型相关分析
4.2.1 引言
4.2.2 总体的典型变量与典型相关
4.2.3 样本的典型变量与典型相关
4.2.4 典型相关系数的显着性检验
习题4
第5章 判别分析
5.1 距离判别
5.1.1 两个总体的距离判别
5.1.2 判别准则的评价
5.1.3 多个总体的距离判别
5.2 Baves判别
5.2.1 Bayes判别的基本思想
5.2.2 两个总体的Beyes判别
5.2.3 多个总体的Beyes判别
习题5
第6章 聚类分析
6.1 样品间相近性的度量
6.2 快速聚类法
6.2.1 快速聚类法的步骤
6.2.2 用Lm距离进行快速聚类
6.3 谱系聚类法
6.3.1 类间距离及其递推公式
6.3.2 谱系聚类法的步骤
6.3.3 变量聚类
习题6
第7章 Bayes统计分析
7.1 Baves统计模型
7.1.1 Bayes统计分析的基本思想
7.1.2 Bayes统计模型
7.1.3 Bayes统计推断原则
7.1.4 先验分布的Bayes假设与不变先验分布
7.1.5 共轭先验分布
7.1.6 先验分布中超参数的确定
7.2 Baves统计推断
7.2.1 参数的Bayes点估计
7.2.2 Bayes区间估计
7.2.3 Bayes假设检验
习题7
第8章 SAS软件及有关数据分析过程简介
8.1 SAS基本内容简介
8.1.1 数据的输入与输出
8.1.2 利用已有的SAS数据集建立新的SAS数据集
8.1.3 SAS系统的数学运算符号及常用的SAS函数
8.1.4 逻辑语句与循环语句
8.2 与本书内容有关的SAS过程简介
8.2.1 几种描述性统计分析的SAS过程和作图过程
8.2.2 回归分析的SAS过程——PR0C REG过程
8.2.3 方差分析的sAS过程——PR0C ANOVA过程
8.2.4 主成分分析的SAS过程——PROC PRINc0MP过程
8.2.5 典型相关分析的sAS过程——PROC CANC0RR过程
8.2.6 判别分析的SAS过程——PR0C DISCRIM过程
8.2.7 聚类分析的SAS过程
8.2.8 SAS系统的矩阵运算编程语言——PROC IML过程简介
主要参考文献

阅读全文

与数据分析方法梅长春目录相关的资料

热点内容
液压锁漏油解决方法 浏览:473
治疗肚子痛的土方法 浏览:69
开饵失败的原因和解决方法 浏览:426
42除28简便运算方法 浏览:614
mra常用的检查方法是 浏览:326
潍坊市生态园艺温室安装方法 浏览:379
平面度测量仪的使用方法 浏览:736
三孔风筝的安装方法 浏览:433
高层加气砖用量计算方法 浏览:856
鱼的保健方法有哪些 浏览:700
食用菌的挑选方法 浏览:583
洋葱的养殖方法怎么种 浏览:501
什么方法可以控制白蚁 浏览:781
如何预防咯血的方法 浏览:598
治疗脱发的民间方法 浏览:249
呲咳有什么土方法 浏览:673
糖尿病正规治疗方法 浏览:785
请写出乳剂类型的鉴别方法有哪些 浏览:281
放颜色的简单方法 浏览:782
教育人才的方法和技巧 浏览:662