导航:首页 > 研究方法 > 显着性分析方法

显着性分析方法

发布时间:2022-01-08 06:33:08

1. 如何用SPSS做显着性差异分析

不能比较贡献度有没有差异,可以比较回归系数有没有差异

2. 统计资料的显着性检验(significant test)方法怎样选择

这是在创新医学网上看到的 不知道 对楼主的帮助大不大
三、 t检验与校正t检验(t′检验)

这是文稿中极易混淆的一类计量资料统计问题。
(一)检验的注意事项

1.t检验的意义:t检验与所有统计分析相同,其结果提示现有差别不仅仅是抽样误差所致,且提示犯第一类错误的可能性大小,即t0.05与t0.01犯第一类错误的可能性各为5%与1%。

2.统计意义与临床意义的关系:统计学有显着意义,而在临床上可能是无意义的,提示该研究应继续深入,以明确该差异是否真有显着意义;相反,统计无显着意义,而临床上却是有意义的,不能贸然轻易地下结论。应复查实验设计、方法、试剂及仪器性能、质控措施和实验数据等是否有问题,或尚需再进一步增加样本量进行复测等。

3.t检验适用范围:t检验仅适用于正态或近似正态分布(包括偏态转换)和其方差是齐性资料的检验;t检验适用于可比性资料,即除了欲比较的因素外,其它所有可影响的因素应相似。

4.t检验的结果判断:判断结果不应绝对化,P<或>0.05,分别表示可拒绝或接受原定的假设,但两者都有5%的可能性犯第一类错误;而P值越小,只能是更有理由拒绝原定的假设。

5.单侧与双侧检验:应预先制定本研究的结果是需行双侧还是单侧检验。对有把握确知某治疗措施或某指标是不会劣于现有的,才作单侧检验;若不知何者为优,应行双侧检验。因为在同一t值的界限上,单侧检验的概率(P)仅为后者的一半,也就是说单侧检验较双侧检验更易得出差别有统计意义的结论,不可随意制定。一般讲,绝大多数研究以采用双侧检验为妥。

(二)t′检验与t检验的区别

当两样本均数的方差非齐性时,应以t′替代t检验。例如:甲组32例血清某指标值为53.9±49.6(μmol/L);乙组6例的结果为26.6±7.2(μmol/L),若不考虑两样本方差大小,t检验示t=1.331,P>0.05,提示两组血清该指标的平均含量差异无显着意义。但先作方差齐性检验,F=47.4,P<0.01,示这两样本方差差异有极显着意义。据此应采用t′检验,t′=2.952>t′0.012.875,P<0.01。显然,与上述结论恰恰相反。

3. 如何分析回归模型的拟合度和显着性

模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显着性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显着性水平下显着,小于0.01就可以说在99%的显着性水平下显着了。如果没有给出系数表,是看不到显着性如何的。

回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。 从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显着,哪些不显着。利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。

其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。

拓展资料:

回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。

(资料来源:网络:回归模型)

4. 多元线性回归的显着性检验包含哪些内容如何进行

多元线性回归的显着性检验包含所有自变量与因变量。

回归方程的显着性检验,即检验整个回归方程的显着性,或者说评价所有自变量与因变量的线性关系是否密切。能常采用F检验,F统计量的计算公式为:

(4)显着性分析方法扩展阅读:

建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:

(1)自变量对因变量必须有显着的影响,并呈密切的线性相关;

(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;

(3)自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;

(4)自变量应具有完整的统计数据,其预测值容易确定。

5. 显着性检验的步骤

显着性检验的一般步骤或格式,如下:
1、提出假设
H0:______
H1:______
同时,与备择假设相应,指出所作检验为双尾检验还是左单尾或右单尾检验。
2、构造检验统计量,收集样本数据,计算检验统计量的样本观察值。
3、根据所提出的显着水平 ,确定临界值和拒绝域。
4、作出检验决策。
把检验统计量的样本观察值和临界值比较,或者把观察到的显着水平与显着水平标准比较;最后按检验规则作出检验决策。当样本值落入拒绝域时,表述成:“拒绝原假设”,“显着表明真实的差异存在”;当样本值落入接受域时,表述成:“没有充足的理由拒绝原假设”,“没有充足的理由表明真实的差异存在”。另外,在表述结论之后应当注明所用的显着水平。

6. 如何进行显着性分析

利用SPSS进行统计检验

在教育技术研究中,经常需要利用不同的教学媒体或教学资源对不同的对象进行教学改革试验,但教学试验的总体往往都有较大数量,限于人力、物力与时间,通常都采用抽取一定的样本作为研究对象,这样,就存在样本的特征数量能否反映总体特征的问题,也存在着两种不同的样本的数量标志的参数是否存在差异的问题,这就必需对样本量数进行定量分析与推断,在教育统计学中称为“统计检验”。

一、统计检验的基本原理

统计检验是先对总体的分布规律作出某种假说,然后根据样本提供的数据,通过统计运算,根据运算结果,对假说作出肯定或否定的决策。如果现要检验实验组和对照组的平均数(μ1和μ2)有没有差异,其步骤为:
1.建立虚无假设,即先认为两者没有差异,用表示;
2.通过统计运算,确定假设成立的概率P。
⒊ 根据P 的大小,判断假设是否成立。如表6-12所示。

二、大样本平均数差异的显着性检验——Z检验

Z检验法适用于大样本(样本容量小于30)的两平均数之间差异显着性检验的方法。它是通过计算两个平均数之间差的Z分数来与规定的理论Z值相比较,看是否大于规定的理论Z值,从而判定两平均数的差异是否显着的一种差异显着性检验方法。其一般步骤:

第一步,建立虚无假设,即先假定两个平均数之间没有显着差异。
第二步,计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。

(1)如果检验一个样本平均数()与一个已知的总体平均数()的差异是否显着。其Z值计算公式为:

其中是检验样本的平均数;
是已知总体的平均数;
S是样本的方差;
n是样本容量。
(2)如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显着。其Z值计算公式为:

其中,1、2是样本1,样本2的平均数;
是样本1,样本2的标准差;
是样本1,样本2的容量。
第三步,比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显着性关系表作出判断。如表6-13所示。

第四步,根据是以上分析,结合具体情况,作出结论。

【例6-5】某项教育技术实验,对实验组和控制组的前测和后测的数据分别如表6-14所示,比较两组前测和后测是否存在差异。

由于n>30,属于大样本,应采用Z检验。由于这是检验来自两个不同总体的两个样本平均数,看它们各自代表的总体的差异是否显着,所以采用双总体的Z检验方法。
计算前测Z的值

= -0.658

∵=0.658<1.96
∴ 前测两组差异不显着。
再计算后测Z的值

= 2.16

∵ = 2.16>1.96
∴ 后测两组差异显着。

三、小样本平均差异的显着性检验——t检验
t检验是用于小样本(样本容量小于30)时,两个平均值差异程度的检验方法。它是用t分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显着。其一般步骤如下:
第一步,建立虚无假设,即先假定两个总体平均数之间没有显着差异。
第二步,计算统计量t值,对于不同类型的问题选用不同的统计量计算方法。
(1)如果要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量t值的计算公式为:

(2)如果要评断两组样本平均数之间的差异程度,其统计量t值的计算公式为:

第三步,根据自由度df= n-1,查t值表,找出规定的t理论值(见附录)并进行比较。理论值差异的显着水平为0.01级或0.05级。不同自由度的显着水平理论值记为t (df)0.01和t (df)0.05
第四步,比较计算得到的t值和理论t值,推断发生的概率,依据表6-15给出的t值与差异显着性关系表作出判断。

第五步,根据是以上分析,结合具体情况,作出结论

7. 回归模型的显着性检验

回归模型的显着性检验采用方差分析方法进行。按试验数据分别计算样本总离差QT(平方和)、剩余离差Q剩余和回归离差Q回归,然后由剩余离差Q剩余、回归离差Q回归及其相应的自由度计算样本的F值,并与给定的显着水平对应的Fα值比较,确定其显着性。采用的有关计算公式如下:

表5-2 土壤入渗能力预报模型参数估计及检验表

水分在季节性非饱和冻融土壤中的运动

水分在季节性非饱和冻融土壤中的运动

水分在季节性非饱和冻融土壤中的运动

水分在季节性非饱和冻融土壤中的运动

根据试验样本资料,计算四种模型和变量情况下的离差和F值见表5-1,给定显着水平α=0.05,查得相应的F0.05(m,m-n-1)值也列于表5-1。从计算的F值与F0.05(m,m-n-1)值的比较可知,所计算的四种情况下的F值都大于相应的F0.05(m,m-n-1)值,且相差幅度很大,所以各种模型和变量在多数情况下的回归是显着的。同时可以看出线性回归的显着水平要比连乘积模型高;三个变量回归的显着水平要高于四个变量的回归。

8. 显着性检验最常见的有t检验法和什么

计算出统计量的值,这个统计量的选取要使得在假设H0成立时,作出拒绝或接受假设H0的判断、t检验法。常用的假设检验方法有u—检验法;由实测的样本假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法,秩和检验等。具体作法是,其分布为已知、χ2检验法(卡方检验),记作H0:根据问题的需要对所研究的总体作某种假设,并根据预先给定的显着性水平进行检验;选取合适的统计量、F—检验法

9. 统计学怎样用方差分析方法检验有无显着差异性

什么是方差分析
方差分析(ANOVA)又称“变异数分析”或“F检验”,是R.A.Fister发明的,用于两个及两个以上样本均数差别的显着性检验。
由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显着影响的因素,各因素之间的交互作用,以及显着影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。
经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。

1、多个样本均数间两两比较
多个样本均数间两两比较常用q检验的方法,即Newman-kueuls法,其基本步骤为:建立检验假设-->样本均数排序-->计算q值-->查q界值表判断结果。

2、多个实验组与一个对照组均数间两两比较
多个实验组与一个对照组均数间两两比较,若目的是减小第II类错误,最好选用最小显着差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。

方差分析的基本思想
基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
下面我们用一个简单的例子来说明方差分析的基本思想:
如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
问该地克山病患者与健康人的血磷值是否不同?
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:
组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;
组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。
而且:SS总=SS组间+SS组内 v总=v组间+v组内
如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。

方差分析的应用条件
应用方差分析对资料进行统计推断之前应注意其使用条件,包括:
1、可比性。若资料中各组均数本身不具可比性则不适用方差分析。
2、正态性。即偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。
3、方差齐性。即若组间方差不齐则不适用方差分析。多个方差的齐性检验可用Bartlett法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。

方差分析主要用于:
1、均数差别的显着性检验;
2、分离各有关因素并估计其对总变异的作用;
3、分析因素间的交互作用;
4、方差齐性检验。

方差分析的主要内容
根据资料设计类型的不同,有以下两种方差分析的方法:
1、对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。
2、对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。

两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。整个方差分析的基本步骤如下:
1、建立检验假设;
H0:多个样本总体均数相等;
H1:多个样本总体均数不相等或不全等。
检验水准为0.05。
2、计算检验统计量F值;
3、确定P值并作出推断结果。

10. 怎样用SPSS检验数据显着性

1,数据输入方式不当。应设变量1为种类(有8个种类,1,2,...8),变量2为指示剂(有2种检测方法,1, 2)。
正确的数据表应为两变量的组合(如1,1;2,1;3,1,,,,),再加上测定值的三列表格。
注意是4次重复,所以组合也要重复4次。
2,采用单变量方差分析。分析--一般线性模型--单变量。选测定值为因变量,种类和指示剂为固定因子。按需要选择两两比较的方法。确定即可。
3,无法得出哪种指示剂测定的更准确,只能得出两种指示剂测定的结果是否有差异,是否相同。
4,两两比较页面,选入固子种类,再选择两两比较的方法,如Duncan比较方法。一次检验结果是可以一起分析8种类样品之间的差异的。

阅读全文

与显着性分析方法相关的资料

热点内容
vivo触屏设置在哪里设置方法 浏览:52
私密洗液使用方法 浏览:971
如何哄老婆开心五个方法 浏览:904
叠合板吊装方法视频 浏览:684
心理治疗方法包括什么 浏览:137
高中课文教学方法 浏览:556
宏观经济研究方法 浏览:395
常用毛胚成型方法 浏览:888
记物理笔记的方法有哪些 浏览:186
民间治疗混合庤的方法 浏览:936
电脑和飞信的使用方法 浏览:818
最快锻炼腹肌方法只用动腿 浏览:355
北京企业研究方法分析报告 浏览:209
外食制作方法视频 浏览:303
磁铁红外感应报警连接方法 浏览:522
高速玻璃双边机连接方法 浏览:240
特推邀请码在哪里找方法 浏览:471
最简单的方法永久除毛 浏览:257
消音枪使用方法视频 浏览:284
友合豆浆机使用方法 浏览:540