1. 农产品检测都有哪些项目
产品质量检测项目是依据国家标准来选定的,不同产品有不同的标准规定。
大米:农药残留、污染物(重金属元素)、真菌毒素、食品添加剂等;
小麦粉:白度、面筋的含量及数量、灰分、水分、降落数值、面粉的粗细度等。
所以质量检测,要具体到什么从产品,国家对该产品的质量依据是那个标准,该标准具体项目有哪些,检测具体项目实测数据,依据标准范围判断产品是否合格。
(1)重金属农残检测采样方法研究扩展阅读:
专科课程设置:
专业核心课程及主要实践环节:食品生物化学、微生物学、食品卫生安全、仪器分析、农产品质量检测标准、农产品质量检测技术、农产品质量安全、企业经营管理、有机化合物基本性质分析技能训练、微生物实验技术技能训练。
仪器分析应用技术训练、农产品质量检测技能训练、岗位就业综合实训、毕业论文等,以及各校的主要特色课程和实践环节。
核心课程:
开设的主要课程有分析化学、植物生长与环境、植物化学保护、微生物检测技术、现代仪器分析、食品营养与卫生、农产品安全生产技术、种子检验、农产品质量检测技术、农产品安全性检测技术、农产品贮藏加工、食品质量管理、安全食品标准与认证、环境监测技术、农产品市场营销等课程。
2. 土壤重金属含量变化的研究方法
1.土壤重金属来源及其预测方法
富含重金属的土壤是引发土壤重金属生态危害效应的物质基础。矿化作用、富含重金属的黑色岩系地层等特殊地质背景条件下发育形成的富含重金属土壤,各种人类污染作用如矿山开发、金属冶炼、污水灌溉、化肥和农药施用、大气干湿沉降、垃圾和污泥农用等人类活动不断向土壤输入重金属元素,通过长期的累积同样可以形成土壤重金属富集异常区,这些地区是土壤重金属生态风险预测评价的重点区域。
可以采取多种方法研究土壤重金属的累积变化趋势。
1)通量计算法。即通过对研究区内灌溉水、化肥农药、大气干湿沉降等各种输入端元,以及农田退水、作物收割带出、水土流失、向地下的淋滤迁移等输出端元的代表性样品的监测采样分析,计算土壤重金属的输入输出通量及其净增量,从而预测土壤重金属含量变化趋势。通量计算法具有覆盖面积广、采样测试工作量较小、可操作性较强、研究周期较短(根据1~2年的调查监测资料即可进行初步预测)的优点。但是,采样分析涉及介质类型较多,要求监测点、样品代表性强,各类样品特别是水样的采样和分析质量要求高,当然,一次性采样或监测时间过短(如大气沉降)必然影响到研究成果的可信度。
2)动态监测法。即建立土壤环境地球化学监测网络,在监测点上重复采集分析土壤样品,获取土壤重金属含量、土壤理化指标和重金属存在形态的动态变化资料,确定重金属累积与活化的变化规律,以监测数据为依据建立模型进行科学预测。其优点是数据资料及预测结果可信度较高,但是要达到预测目的需要进行长期的监测分析,研究周期长。
浙江省农业地质环境调查主要是利用了相隔10余年的2次区域土壤地球化学调查资料,结合与区域土壤环境背景值调查、第二次土壤普查数据的对比,统计得出了土壤重金属累积速率和土壤酸化趋势。根据过去十多年间土壤重金属累积与酸化速率,采用线性模型预测若干年后土壤重金属含量、土壤酸碱度值(见本章第三节),从而预测评价土壤环境质量及其生态风险。
2.土壤重金属元素总量对可浸提量的影响
从已有研究成果来看,除了表生地球化学活动性较强的重金属元素Cd之外,土壤中多数重金属元素主要以活动性弱的残渣态、有机结合态和铁锰氧化态存在,而水溶态、离子交换态等活动态组分所占的比例极小,并且从理论上讲经由各种输入途径进入土壤的重金属元素通过物理、化学、生物的复杂作用最终达到平衡时,也应该主要以稳定态存在,这就意味着尽管输送进入土壤的重金属总量很大,但实际产生危害作用的重金属浸提量的增长幅度可能要小得多,即土壤重金属生态危害作用与其污染程度(以重金属总量衡量)并不一定相称。
研究表明,土壤重金属总量对其可浸提量有着显着的影响。由表5-17可见,除了Hg和浙北、浙东地区的As之外,其他各种重金属可浸提量与其总量间具有较好的相关性,多数情况下两者间达到显着正相关性,即土壤重金属可浸提量随总量的增加而线性增长。以浙北地区Pb为例,土壤中Pb可浸提量与全量的回归方程为:
w(Pb浸提量)=0.224×w(Pb全量)-1.712
按照这一方程,假设污染影响下土壤Pb含量从25mg/kg上升为75mg/kg,则土壤中可浸提态Pb相应从3.88mg/kg上升为15.06mg/kg,显然,土壤Pb污染的生态危害风险大大上升。
表5-17 浙北、浙东、浙中地区土壤重金属全量与有效量相关系数
注:置信度为0.01时,显着相关的临界值为F100=0.254。
由此推断,尽管土壤重金属生态危害程度与其总量不完全一致,但土壤重金属总量的增长仍然是引发重金属生态危害的物质基础。本章第四节指出,浙北、浙东地区土壤中Cd、Cu、Pb、Zn等多数有害重金属元素含量具有较快的累积富集趋势,因此,土壤重金属可浸提量及其生态危害风险也在增加。
3. 土壤重金属污染怎么检测
土壤重金属污染检测方法和过程如下:
4. 水果农残检测如何抽样
农业行业标准NY/T 789―2004有明确规定。以下节选您需要的内容:
采样原则
3.1 采样应由专业技术人员进行。
3.2 采集的样本应具有代表性。
3.3 样本采集、制备过程中应防止待测定组分发生化学变化、损失,避免污染。
3.4 采样过程中,应及时、准确记录采样相关信息。
4 采样方法
4.1 产地样本采样
4.1.1 样本采集
按照产地面积和地形不同,采用随机法、对角线法、五点法、z形法、S形法、棋盘式法等进行多点采样。产地面积小于1 hm2时,按照NY/T398规定划分采样单元;产地面积大于1 hm2小于10 hm2时,以1 hm2~3 hm2作为采样单元;产地面积大于10 hm2时,以3 hm2~5 hm2作为采样单元。每个采样单元内采集一个代表性样本。不应采有病、过小的样本。采果树样本时,需在植株各部位(上、下、内、外、向阳和背阴面)采样。
4.1.2.6 果菜类(果皮可食)
除去果梗后的整个果实。采集样本量为6个~12个个体,不少于3 kg。代表种类有:黄瓜、胡椒、茄子、西葫芦、番茄、黄秋葵。
4.1.2.7 果菜类(果皮不可食)
除去果梗后的整个果实,测定时果皮与果肉分别测定。采集样本量为4个~6个个体。代表种类:哈密瓜、南瓜、甜瓜、西瓜、冬瓜。
4.1.2.9 柑橘类水果
取整个果实。外皮和果肉分别测定。至少6个~12个个体,不少于3 kg。代表种类有:橘子、柚子、橙子、柠檬等。
4.1.2.10 梨果类水果
去蒂、去芯部(含籽)带皮果肉共测。至少12个个体,不少于3 k。代表种类有:苹果、梨等。
4.1.2.11 核果类水果
除去果梗及核的整个果实,但残留计算包括果核。至少24个个体,不少于2 kg。代表种类有:杏、油桃、樱桃、桃、李子。
4.1.2.12 小水果和浆果
去掉果柄和果托的整个果实,样本采集量不少于3kg。代表种类有:葡萄、草莓、黑莓、醋栗、越桔、罗甘莓、酸果蔓、黑醋栗、覆盆子。
4.1.2.13 果皮可食类水果
枣、橄榄:分析除去果梗和核后的整个果实,但计算残留量时以整个果实计。无花果取整个果实。样本采集量不少于1 kg。代表种类有:枣、橄榄、无花果。
4.1.2.14 果皮不可食类水果
除非特别说明,应取整个果实。鳄梨和芒果:整个样本去核,但是计算残留量时以整个果实计。菠萝:去除果冠。样本采集量为4个~12个个体,不少于3 kg。代表种类有:鳄梨、芒果、香蕉、番木瓜果、番石榴、西番莲果、新西兰果、菠萝。
4.2 农药残留田间试验样本采样
根据试验目的和样本种类实际情况,按照随机法、对角线法或五点法在每个采样单元内进行多点采样。
4.3.1 散装样本
对于散装成堆样本,应视堆高不同从上、中、下分层采样,必要时增加层数,每层采样时从中心及四周五点随机采样。抽检样本的采样量按照GB/T 8855规定进行。样本预处理方法按照4.1.2进行。
4.3.2 包装产品
对于包装产品,抽检样本的采样量按照GB/T 8855规定进行随机采样。采样时按堆垛采样或甩箱采样,即在堆垛两侧的不同部位上、中、下或四角中取出相应数量的样本,如因地点狭窄,按堆垛采样有
困难时,可在成堆过程中每隔若干箱甩一箱,取出所需样本。样本预处理方法按照4.1.2进行。
5.3 小体积蔬菜和水果
均匀混合后,按四分法缩分,用组织捣碎机或匀浆器处理后取250 g~500 g保存待测。
5.4 大体积蔬菜和水果
切碎后,按四分法缩分,取600 g~800 g保存待测。
5.5 冷冻样本
冷冻状态下破碎后进行缩分。如需解冻处理,须立即测定。
6 样本包装、贮存
6.1 样本的包装
采集的样本用惰性包装袋(盒)装好,写好标签(包装内外各一个)和编号(伴随样本各个阶段,直至报告结果)。样本及有关资料(样本名称、采样时间、地点及注意事项等)在24 h内运送到实验室,在运
输过程中应避免样本变质、受损、失水或遭受污染。
6.2 样本的贮存
6.2.1 对含性质不稳定的农药残留样本,应立即进行测定。
6.2.2 容易腐烂变质的样本,应马上捣碎处理,在低于-20℃条件下冷冻保存。
6.2.3 水样在冷藏条件下贮存,或者通过萃取等处理,得到提取液,在冷冻条件下贮存。
6.2.4 短期贮存(小于7 d)的样本,应按原状在l℃~5℃下保存。
6.2.5 贮藏较长时间时,应在低于-20℃条件下冷冻保存。解冻后应立即分析。取冷冻样本进行检测时,应不使水、冰晶与样本分离,分离严重时应重新匀浆。
6.2.6 检测样本应留备份并保存至约定时间,以供复检。
7 样本记录
样本记录表包括以下基本内容:
a) 样本名称、种类、品种;
b) 识别标记或批号、样本编号;
c) 采样日期;
d) 采样时间;
e) 采样地点;
f) 样本基数及采样数量;
g) 包装方法;
h) 采样(收样)单位、采样(收样)人签名或盖章;
i) 贮存方式、贮存地点、保存时间;
j) 采样时的环境条件和气候条件;
k) 对市场抽检样品需标明原编号及生产日期、被抽样单位,并经被抽样单位签名或盖章。
5. 土壤重金属检测方法和标准有哪些
各项重金属的检测原理及采用标准
1、重金属砷的检测原理及采用标准
采用标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三价砷还原为负三价,经仪器检测得出砷含量。
2、重金属铅的检测原理及采用标准
采用相关标准(GB/T5009.12-2003)二硫腙比色法,即样品经消化后,在弱碱性条件下,铅离子与二硫腙生成红色络合物,比色测定。
3、重金铬的检测原理及采用标准
样品经消化后,在二价锰存在条件下,铬离子与二苯碳酰二肼反应生成紫红色络合物,络合物颜色的深浅与六价铬含量成正比,比色测定可得出铬含量。
4、重金属镉的检测原理及采用标准
采用标准(GB/T5009.15-2003)比色法,即样品经消化后,在碱性条件下,镉离子与6-溴苯丙噻唑偶氮萘酚生成红色络合物,比色测定。
5、重金属汞的检测原理及采用标准
采用标准(GB/T5009.17-2003)二硫腙比色法,即样品经消化后,在酸性条件下,汞离子与二硫腙生成橙红色络合物,比色测定。
6. 达到出口标准,农药残留,和重金属超标检测
不知道你是出口什么地区,现在大部分西方国家对农残的要求比较严格,国内大部分水果和蔬菜都有农药残留,如果是用比亚酶泡过的蔬菜水果基本上都可以达到出口的标准。
7. 土壤重金属检测
1.土壤样品的采集2.确定采样的布点原则3.采样点的布点设计方法
土壤环境样品一般有下列几种布点方法:对角线布点法、梅花形布点法、棋盘式布点法、蛇形布点法、网格法布点。4.送去当地质检局做重金属检测后等待即可。
8. 进行土壤重金属元素含量分析测试方法都有哪些
2.土壤中重金属检测方法 2.1 原子荧光光谱法
原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律,通过测定荧光的强度即可求出待测样品中该元素的含量。
原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势[4],并且克服了这2种方法在某些地方的不足。该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题[5]。该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用[6]。突出在土壤中的应用如何,以下各方法均是这个问题,相比之下2.5写的比较好
应用原子荧光光谱法测定土壤的重金属快速准确,测定周期约为2小时,具有检出限低、精密度好,干扰少和操作简单方便,值得推广应用。 2.2 原子吸收光谱法
原子吸收光谱法又称原子吸收分光光度分析法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法[7]。其基本原理是从空心阴极灯或光源中发射出一束特定波长的入射光,通过原子化器中待测元素的原子蒸汽时,部分被吸收,透过的部分经分光系统和检测系统即可测得该特征谱线被吸收的程度即吸光度,根据吸光度与该元素的原子浓度成线性关系,即可求出待测物的含量[8]。
原子吸收光谱法在农业方面,主要应用与土壤、肥料及植物中的中微量元素分析、水质分析、土壤重金属环境污染分析、土壤背景值调查及农业环境评价分析等方面。该方法的优点是:选择性强、灵敏度高、分析范围广、抗干扰能力强、精密度高[9]。其不足之处有多元素同时测定有困难,对非金属及难熔元素的测定尚有困难,对复杂样品分析干扰也较严重,石墨炉原子吸收分析的重现性较差
[10]
。
2.3 电感耦合等离子体发射光谱法
电感耦合等离子体发射光谱是根据被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射的存在及其强度的大小,对各元素进行定性和定量分析[11]。
电感耦合等离子体发射光谱法应用于环境水样、土壤样品中的微量元素进行分析,在元素分析测试中的应用技术具有简便、快速、分析速度快;检出限低,多数可达0.005μg/ml以下[12];测量动态线性范围宽,一般可达5~6个数量级,可同时进行高含量元素和低含量元素的分析,可达到石墨炉原子吸收光谱仪的部分检出水平;可多种元素同时分析,可定性、定量分析金属元素,也可分析部分非金属元素,提高了分析效率,基体效应小,低背景干扰、高信噪比、精密度高、准确性好等优点[13]。 2.4 激光诱导击穿光谱法
激光诱导击穿光谱技术是一种最为常用的激光烧蚀光谱分析技术。其工作原理是:激光经过会聚透镜会聚,高峰值功率密度使未知样品表面物质气化、电离,激发形成高温、高能等离子体(温度可达10 000K),等离子体辐射出来的原子光谱和离子光谱被光学系统收集,通过输入光纤耦合到光谱仪的入射狭缝中,光谱数据通过数据采集控制器传输到计算机, 研究该光谱就可以分析计算出被测物质的成分与浓度[14]。原子光谱和离子光谱的波长与特定元素是一一对应的,而且光谱信号强度与对应元素的含量具有一定的定量关系。因此该技术可以实时、快速地现化学元素的定性和定量分析[15]。
激光诱导击穿光谱可以真正做到现场快速分析,无须进行样品预处理,分析方便,也不受研究对象的限制[16]。但是,其测量仪器成本较高,激光脉冲能量的起伏性,样品的不均匀性,样品的特性会直接影响测量的稳定性,也就是说研究样品的特性对结果的精确性影响较大[17]。
在激光诱导击穿光谱土壤重金属污染物检测的研究中,在光源设计上采用光学反馈减少脉冲间能量波动,在数据处理上采用一系列激光能量起伏归一化校正技术,达到克服由于激光器能量起伏造成的影响;通过选择最佳的采样延迟时间,以保证所采集到信号谱的信噪比最大;选择合适的激光脉冲的峰值功率阈值, 达到克服谱线饱和现象和避免自吸收效应的发生以获得多元素的同时分析;通过研究激光聚焦焦点与样品表面之间的距离与测得信号谱线的信噪比的关系,达到提
高系统的信噪比。通过以上措施克服上述不利影响,实现了利用LIBS 技术对土壤中Cd, Hg,As,Cr,Cu,Zn,Ni,Pb 等成分的同时测量。
2.5 X射线荧光光谱法
X射线荧光光谱技术是一种利用样品对X射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的方法[18]。
X射线荧光光谱仪在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。该X射线荧光光谱法和电感耦合等离子体质谱法、发射光谱法在元素分析结果之间的差异,结果显示它们的差异不显着。从检出限、准确度、精密度和回收率方面均能满足实验要求[19]。
土壤重金属X射线荧光光谱非标样测试方法具有前处理简单,无需标准样品,对样品无污染、无破坏性,检测速度快、稳定性高、再现性好等优点[20]。此方法是对土壤重金属检测和污染评价快速有效的方法。完全能够满足土壤环境受到污染时急需的快速定性、定量排查土壤中有毒有害重金属元素的要求。 3.总结
土壤重金属检测是一项长期的工作,要求各种检测手段向更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决遇到的新的分析问题。上述5种重金属的检测方法的优缺点如表Ⅰ。随着各种分析方法的建立和科学技术的不断进步,分析仪器逐渐由简单化向复杂化的方向发展,可以预见,各种分析仪器会向多功能、自动化、智能化以及小型化的方向发展,并且检测精度、灵敏度得到一定的提高,使得土壤环境检测变得更加简单准确。
9. 求助,关于粮食中农残的检测
农残检测一般检测有机磷类和氨基甲酸酯类,这两种的农药一般常用的农残检测仪都可以检测,另外农药残留还有检测菊酯类农药,不过很少检测。菊酯类农药残留要另外的仪器检测。具体可T:0755-26955559.
10. 农药残留中有没有重金属检测及限量的标准
GB 2763-2005 食品中农药最大残留限量
GB 2762-2005 食品中污染物限量
一个是农残的限量标准
一个是重金属限量标准