A. 车联网应对大数据时代的方法
车联网应对大数据时代的方法
历史的发展势不可挡,互联网、移动互联网、大数据时代以人们应接不暇的速度改变着人们的生活。在物联网、云计算等信息技术的强势推动下,跨界融合成为时下最流行的形式;再者,我国巨大的汽车市场为车联网的发展提供了基础(2012年,我国汽车保有量已经超过1.2亿辆,年增长率达到14.3%)。
未来五年,我国车联网市场规模接近2000亿元,未来有可能成为全球最大的车联网市场,行业钱景的广阔,引得相关厂家纷纷逐鹿车联网行业,一时成为投资界关注的焦点。由此,车联网成为人们绕不开的话题。
被误解的“车联网”
目前,车联网的概念尚无定论,车联网暂以前瞻产业研究院的定义为例,车联网是物联网和智能交通的有效结合,它以车为节点和信息源,通过无线通信等技术手段获取车本身以及车外部等属性,并加以有效利用,从而达到“人--车--路--环境”的和谐统一。广义的车联网涉及到汽车、轮胎、部件、通信、平台等多个模块,通过任何无线的形式进行控制和管理。
目前所说的车联网的类型主要分为:公共服务主导型(智能交通)、乘用整车厂主导型和消费电子主导型(智能驾驶)。前者是政府考虑的事情,在此,暂且讨论智能驾驶这部分:
整车主导型的车联网,侧重于汽车的安全和维护。如丰田G-Book 、通用On-Star、上汽inkaNet等;
消费电子主导型的车联网(即后装厂商主导的车联网),侧重于车主。由于智能驾驶涉及的安全技术比较困难,后装车联网主要提供导航、信息服务、通讯娱乐等等,如声控导航等等。
不同的利益主体形成了博弈格局,产业环境甚是复杂。
总的来讲,目前我国车联网还处于发展的初级阶段。因为对于车联网行业,汽车电子和IT成为核心竞争力,可是我国的整车技术与国外有一定的差距,整个行业创新不足,尤其是汽车电子方面,汽车电子相关的前沿核心技术、用于信息采集的高端传感器的芯片核心技术,和在云计算和超海量数据处理方面的核心技术基本上都被国外企业所掌握。
说到后装厂商主导的车联网,由于花样百出的应用功能凌驾于汽车安全之上,而使很多功能处于“鸡肋”的尴尬境地,一些花拳绣腿的功能势必会在激烈的竞争中黯然退场。
不管是车企还是后装主导的车联网,从互联网的角度来讲,过去10年汽车行业所说的车联网都是在一个相对封闭的产业内被用来增强汽车亮点的概念。未来,汽车平台会越来越开放,而且以后再也不能像后装整天叫嚣的那样,随便来个一键通什么的就是车联网了。因为,既然置身于互联网的大背景下,企业一定要用互联网的思维来经营企业。
互联网是开放的、透明的、利他的,后装的4S店模式便与互联网的开放透明性背道而驰,互联网正引发着汽车行业的产业裂变。互联网的利他特性,决定着企业利益的大小来自于福利大众的大小,如谷歌、360、征途等都是以免费策略发家的,可是目前车主不愿意为互联汽车的服务买单,相信只有互联网能颠覆这样的局面。
建立壁垒,数据是制胜利器
我们早已生活在数字生活时代,用数据说话是数字化时代的特征,互联网的一个重要的贡献是使数据在线,在线数据存在着局限性,特别是人类日常生活的数据,移动互联网的出现使得这类数据更容易被收集。移动互联网和云计算等信息技术的发展又催生了大数据(Big Data)时代的到来。
大数据的特点可以概括为4V,即Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值)。由于通过对数据进行专业性分析所带来的巨大价值是无限的,大数据成为世界各国政策层面鼎力推动的战略计划,社会各界也刮起了大数据的旋风,围绕大数据的“入口卡位”之战也激烈地上演着,搜索、社交、支付等等都成了必争之地,目前这些数据要塞都算是被行业巨头所把守,网络占据着web数据,阿里占据着电商数据,腾讯占据着社交数据,具有短期不可替代性,而且能形成自己的行业壁垒,如淘宝拒绝网络扒数据,所以搜索专家网络只好痛失电商搜索这个吸金领域。
汽车作为未来最大的一个移动终端,比手机还要强大的衍生功能,而且车联网的产业链够长够深,使得车联网成为大数据的集中体现,可谓是大数据的一个缩影。互联网企业早已在大数据武装下闯入汽车领域抢食,众所周知,Google在无人驾驶汽车领域拔得头筹,正是基于大数据的采集与分析,微软给福特全新开发车载嵌入式系统,谷歌也不遗余力的和奥迪合作,而iOS6也开始发力汽车领域。
车机突围,个性化服务是关键
当前,在国内互联网竞争的开放程度下,想要在大小巨头的产品版图夹缝中再打造一个入口级产品,那是难乎其难的,但是可以掌控的数据新蓝海并不是没有,因为整个世界时刻都在变化,只要有变化,就有新数据诞生。只不过,大部分数据尚处于线下,如何成功地将“线下数据”转变为“线上数据”是关键,这样才能形成自己的数据壁垒,释放出大数据的真正价值,如早期的大众点评网就是通过扫街模式积累大量餐馆和菜品数据,而逐渐形成了一个在线私有数据体系。
在大数据时代的背景下,车机作为车联网的一个小分支,要想开辟自己的新蓝海而成功突围,就要想法设法建立自己的数据壁垒:
开发自有特色的硬件应是一个方向,采用软硬件结合的方式,辅以互联网的思维去运作,最终会建立庞大的数据体系,在这个体系里打通另外一个是打通海量、异构的、持续更新的用户级数据;
另一个方向是打通跨行业数据,国内互联网公司对于跨行跨领域的数据重视程度相对较低,而数据具有“外部价值”的,就像汽车厂商的自动制动数据结合LBS数据则会揭示公共交通路段的安全性。
再者,服务内容的精准性如果单纯靠服务提供商的力量,花费巨大的人力财力和时间也不一定取得最好效果,车机传统的观念也只是提供导航和娱乐,若以社区互动的形式,则能快速采集到相应的数据,由此也可以衍生出很多增值服务,提升用户体验感,增强用户黏性。
实际上在在数据分析、加工、传播等环节,名目繁多的App都充满了商机。在大数据时代,App仍具有长尾特征,云存储的海量数据和大数据的分析技术也使得对消费者的实时和极端的细分有了成本效率极高的可能。车机厂商务要对用户群体进行细分,甚至要时刻以“个人”为中心,将个人的相关信息进行精确描述,在保护隐私的前提下进行智能化和个性化的服务匹配,这也是WEB2.0革命的自然深化和扩展。
当然一切的定制化服务和个性化体验,都要建立在安全的基础上,浮华褪去,真心觉得车联网需要构建的是安全、便捷、舒适的车旅生活。
B. 大数据和云计算,在汽车自动驾驶技术里的作用是什么
数据和云计算,在汽车自动驾驶技术里的作用是什么?可以基于路况、车辆性能、驾驶员操作习惯等因素,提供节能减排、降低驾驶疲劳的驾驶方案。自动驾驶借助汽车上的激光传感器和GPS,车辆通过相对先进的算法进行自我定位。
在道路上行驶是一个处理大量数据并做出决策的过程,而自动驾驶汽车则使用各种传感器来“观察”道路。这个过程也会产生大量的数据,平均1.5小时左右的驾驶时间会产生4TB的数据。在车辆方面,显然不适合处理和储存如此巨大的工作量。所以最好的办法就是使用云计算和云存储来支持自动驾驶汽车。
C. 人工智能与大数据怎样结合
人工智能需要有大数据支撑
人工智能主要有三个分支:
1.基于规则的人工智能;
2.无规则,计算机读取大量数据,根据数据的统计、概率分析等方法,进行智能处理的人工智能;
3.基于神经元网络的一种深度学习。
基于规则的人工智能,在计算机内根据规定的语法结构录入规则,用这些规则进行智能处理,缺乏灵活性,不适合实用化。因此,人工智能实际上的主流分支是后两者。
而后两者都是通过“计算机读取大量数据,提升人工智能本身的能力/精准度”。如今,大量数据产生之后,有低成本的存储器将其存储,有高速的CPU对其进行处理,所以才有了人工智能后两个分支的理论得以实践。由此,人工智能就能做出接近人类的处理或者判断,提升精准度。同时,采用人工智能的服务作为高附加值服务,成为了获取更多用户的主要因素,而不断增加的用户,产生更多的数据,使得人工智能进一步优化。
大数据挖掘少不了人工智能技术
大数据分为“结构化数据”与“非结构化数据”。
“结构化数据”是指企业的客户信息、经营数据、销售数据、库存数据等,存储于普通的数据库之中,专指可作为数据库进行管理的数据。相反,“非结构化数据”是指不存储于数据库之中的,包括电子邮件、文本文件、图像、视频等数据。
目前,非结构化数据激增,企业数据的80%左右都是非结构化数据。随着社交媒体的兴起,非结构化数据更是迎来了爆发式增长。复杂、海量的数据通常被称为大数据。
但是,这些大数据的分析并不简单。文本挖掘需要“自然语言处理”技术,图像与视频解析需要“图像解析技术”。如今,“语音识别技术”也不可或缺。这些都是传统意义上人工智能领域所研究的技术。
D. 大数据分析应用领域有哪些
一、广告行业
比方你最近想买一个商品,然后在网络、京东或淘宝中查找了某个关键字,其实这些行为数据都被搜集起来了,因为有很多人的行为数据,一切后台要进行大量的数据剖析,构建用户画像和使用一些引荐算法,然后进行个性化的引荐,当你登录到一些网站上时,你会发现有一些广告,引荐的一些正好是你要买的一些商品。
二、内容引荐
比方你刷今日头条,头条会搜集你曾经的阅读行为数据,然后根据你的喜好构建一个你专属的用户画像或一类人的画像,然后给你引荐你喜欢的新闻,比方你曾经点击过詹姆斯相关的新闻,就给你引荐NAB相关的新闻。因为头条用户很多,要剖析的数据量就非常大,一切要使用大数据的手法来处理。
三、餐饮行业
快餐业的视频剖析。该公司通过视频剖析等候行列的长度,然后主动改变电子菜单显现的内容。假如行列较长,则显现能够快速供给的食物;假如行列较短,则显现那些利润较高但准备时间相对长的食物。
四、教育范畴应用
网络大脑PK人脑:大数据押高考作文题。为了协助考生更好地备考,网络高考作文猜测通过对过去八年高考作文题及作文范文、海量年度查找风云热词、历年新闻热点等原始数据与实时更新的“活数据”进行深度发掘剖析,以“概率主题模型”模拟人脑思考,反向推导出作文主题及相关词汇,为考生猜测出高考作文的命题方向。
五、医疗范畴
智慧淮医。淮安市选用IBM大型主机作为淮安市区域卫生信息渠道根底架构支撑,满意了淮安市在市级区域卫生信息渠道根底渠道建造和居民健康档案信息系统建造进程中的需求,支撑淮安市级数据中心、居民健康档案数据库等一系列淮安市卫生信息化应用,支持淮安成为全国“智慧医疗”的典范。
E. 人工智能与大数据怎样结合使用
首先需要理解人工智能与大数据的区别:
人工智能主要有三个分支:1.基于规则的人工智能;2.无规则,计算机读取大量数据,根据数据的统计、概率分析等方法,进行智能处理的人工智能;3.基于神经元网络的一种深度学习。
大数据分为“结构化数据”与“非结构化数据”。“结构化数据”是指企业的客户信息、经营数据、销售数据、库存数据等,存储于普通的数据库之中,专指可作为数据库进行管理的数据。相反,“非结构化数据”是指不存储于数据库之中的,包括电子邮件、文本文件、图像、视频等数据。
如今,大量数据产生之后,有低成本的存储器将其存储,有高速的CPU对其进行处理,所以才有了人工智能后两个分支的理论得以实践。由此,人工智能就能做出接近人类的处理或者判断,提升精准度。同时,采用人工智能的服务作为高附加值服务,成为了获取更多用户的主要因素,而不断增加的用户,产生更多的数据,使得人工智能进一步优化。
F. 大数据和智慧交通有哪些应用的案例
大数据方面的应用案例
在医疗方面,纽约的mountsinai医院利用数千名患者的数据、历年汇报的流感爆发数据等数据与病毒的变异过程做交叉比对。通过这种工作,科学家和医生可以预测病毒如何传播,以及对抗这些病毒的最佳途径;甚至有可能使用预测分析来判断病毒的传播方式,然后采取行动来限制这一传播。据说这家医院有望在未来阻止流感的发生。
在交通方面,浙江某城市与英特尔合作,安装了1000个数字监控设备,100个智能监测点系统,超过300个检查点的电子警察,和500多个视频监控系统。通过更有效地监测交通和拥堵数据,改善交通流量,减少道路交通事故。
在废物处理方面, 英国曼彻斯特垃圾处理局有一套系统,能够利用数据使得产生的垃圾被尽可能多的再次利用。通过对来自不同地区的卡车进出加工厂时进行称重,能够了解每个地区所产生的垃圾数量。这些数据帮助当局出台了相应的政策,鼓励那些特定的社区更好的垃圾回收和垃圾减量。
在建筑方面, 住房慈善机构hact从400,000座住房中持续不断地收集数据,并进行了各种数据分析。通过数据来发现设计、建造、布局中存在的潜在问题,进而在建造新的楼宇时优化相关的参数,避免这些问题,改进政府保障房的的维修,规划空间合理使用。
智能应用服务,Google提供的大数据分析智能应用包括客户情绪分析、交易风险(欺诈分析)、产品推荐、消息路由、诊断、客户流失预测、法律文案分类、电子邮件内容过滤、政治倾向预测、物种鉴定等多个方面。据称,大数据已经给Google每天带来2300万美元的收入。例如,一些典型应用如下:
(1)基于Map Rece,Google的传统应用包括数据存储、数据分析、日志分析、搜索质量以及其他数据分析应用。
(2)基于Dremel系统, Google推出其强大的数据分析软件和服务 — BigQuery,它也是Google自己使用的互联网检索服务的一部分。Google已经开始销售在线数据分析服务,试图与市场上类似亚马逊网络服务(Amazon Web Services)这样的企业云计算服务竞争。这个服务,能帮助企业用户在数秒内完成万亿字节的扫描。
(3)基于搜索统计算法,Google推出搜索引擎的输写纠错、统计型机器翻译等服务。
(4)Google的趋势图应用。通过用户对于搜索词的关注度,很快的理解社会上的热点是什么。对广告主来说,它的商业价值就是很快的知道现在用户在关心什么,他们应该在什么地方投入一个广告。据此,Google公司也开发了一些大数据产品,如“Brand Lift in Adwords”、“Active GRP”等,以帮助广告客户分析和评估其广告活动的效率。
(5)Google Instant。输入关键词的过程,Google
Instant 会边打边预测可能的搜索结果。
谷歌的大数据平台架构仍在演进中,追去的目标是更大数据集、更快、更准确的分析和计算。这将进一步引领大数据技术发展的方向。
在竞选方面,直到2012年,奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。只要数据量够大,够及时,挖掘够深刻,就可以洞悉每个选民的投票几率。
在教育方面,"以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策。以某集团最新出版的全球少儿美语旗舰课程为例,引入了首款应用于少儿英语学习领域的MyEnglishLab在线学习辅导系统(以下简称MEL),应用大数据技术全程实时分析学生个体和班级整体的学习进度、学情反馈和阶段性成果,从而及时找到问题所在对症下药,实现对学习过程和结果的动态管理。
智慧交通的应用案例
根据ITS114的不完全统计,截至2015年12月31日,包括城市智慧交通和高速公路机电市场的全年千万项目统计规模为182.5亿,其中主要分为四大市场1.交通管控市场千万项目规模为84.24亿。2.智慧交通/智能运输市场千万项目规模为20.33亿。3.高速公路机电市场千万项目规模为75.8亿。4.平安城市千万项目规模为56.6亿。以上四个市场都有着很多的智慧交通方面的应用案例。
具体的在交通管控市场方面, 当前各个省积极构建的交通运行监测与应急指挥系统,还有围绕着视频、图像分析,从而实现在治安、交通、工业制造、汽车、人工智能等等诸多领域的应用亦是智慧交通的典型案例。如深圳榕享的"交通仿真与智能管控机器人"可实时采集视频检测数据与线圈检测数据,将采集的交通流数据、信号配时等数据输入到建立的仿真路网模型中,进行实时的交通系统仿真。通过一体化交通仿真模型,机器人能快速找出路网拥堵点以及分析路网的常发性拥堵点,并对交通流运营状况的演变进行预测和分析。在交通仿真与智能管控机器人平台上,还可对城市的任意交叉口的交通环境进行设置,周边居民可将相关建议"告知"机器人,实时模拟交叉口改良效果,实现全民参与、全民实践、全民创新的交通管理新模式。
智慧交通/运输方面各种“专车”“快车”“拼车”“代驾”平台类和软件数据类的实例比比皆是,如我们都熟知的“滴滴快递”“uber"“e代驾”等app应用。
交通工具新型技术案例方面:如无人驾驶、自动驾驶、智能车等等;在2015年12月互联网大会上李彦宏展示的无人车,李书福展现的自动驾驶技术都体现了当前智能交通工具的发展。 更近一点的是,汽车电子标识、ETC、车路协同。2015年的新能源客车市场呈爆发性增长,新能源客车销量达到37363辆,同比增长213.19%,同时2015年国务院印发《新能源公交车推广应用考核办法(试行)》、《电动汽车充电基础设施发展指南》等等政策文件,可预见的是新能源汽车将会造就一个巨大的市场,建立在新能源汽车之上的车联网也将搭上顺风车。
平安城市也有很多已经成型的智慧交通案例。平安城市是基于GIS数字地图技术,高度整合治安监控、智能交通、数字城管、应急指挥等子系统,改变传统的静态管理和单点管理,实现实时、动态的联动管理新模式,实现了整个城市的治安、交通、城管、应急联动等各个职能部门的联动,建立了高效的城市部门联动机制,提高了城市的集成化、智慧化管理水平。根据高清视频监控系统的特点和应用需求,结合当前与今后一定时期内图像监控系统与图像应用系统的发展需要,建设一套先进的平安城市综合应用平台,为指挥调度、调查取证、应急处置、交通管理等多种后台应用提供及时、可靠的视频图像信息,服务于实战。市面上常见的平安城市系统具备的主要功能大部分都有:人脸卡口功能;交通事件检测功能;智能检索功能;道路违法抓拍功能;车辆稽查布控功能;非现场执法;分析研判功能;交通事态监控功能;视频质量检测功能;智能应用管理功能;数据格式及通信功能;远程控制功能;指挥调度功能;勤务管理功能; 设备运行状态监测功能。
G. 智能网联汽车智能驾驶的核心技术
1、环境感知技术
2、智能决策技术
3、控制执行技术
4、V2X通信技术
5、云平台和大数据技术
6、信息安全技术
7、高精度地图和高精度定位技术
H. 汽车智能联网关键技术内容有哪些
一、信息网络技术
信息联网技术主要是在传统的车机系统中增加能够实现无线联网功能的相关硬件,并与车机的软件功能相匹配。硬件方面,需要一个5G网络终端、CPU、通信单元和GPS定位模块。在软件方面,将网络功能与车辆功能融合,使车辆具备网络定位、网络控制、网络数据采集等功能,从而进一步丰富车辆的软件功能。
I. 大数据分析&人工智能 技术内容价值观辨析
随着技术的不断发展,技术的种类越来越多,人们不可能掌握全部的技术,但是技术对于人们的选择有了太多太多,这时候在选择什么技术的时候,人们往往就会陷入迷茫,不知道应该选择什么样的技术,不清楚自己应该从什么技术下手,甚至说会怀疑技术的作用,认为有些技术没有意义,不知道有什么用。今天我们探讨一下数据科学领域内的技术存在的意义,分析一下大数据分析是否鸡肋,在数据科学技术体系中,最高价值技术到底是什么,以及在人工智能领域中反对派的声音越来越大的时候,人工智能是否还能走下去,还能走多远? 大数据技术:计算资源无限,世界将会是怎样
大数据分析并不鸡肋
在计算机诞生的70年后,单台计算机的计算性能逼近物理极限,伴随计算机发展的摩尔定律逐渐失效。在这70年的发展过程中,刚开始是可以用摩尔定律进行准确的描述的,1965年,英特尔创始人之一戈登摩尔在考察计算机硬件的发展规律后,提出了着名的摩尔定律:
该定律认为,同一面积芯片上可容纳晶体管的数量,每隔16-24个月将翻一倍,计算性能也将翻一倍。换而言之,也就是每隔16-24个月,单位价格可购买到的计算能力将翻一倍。在随后的几十年内,摩尔定律被无数次的被印证。而直到现在,计算机性能已经逼近极限的情况下,摩尔定律似乎已经失效了。
发展的期间伴随着摩尔定律不断的生效,在计算机方面同步发展的还有网络宽带和物理的存储容量,半个多世纪以来,存储器的价格几乎下降到原来价格的亿分之一。
而网络宽带的的速度也在不断的突破极限。
随着这些物理硬件的升级,计算机领域内便产生了OTT式的技术革新,诞生了分布式计算和量子计算机技术,而这两者的出现,也必将决定性的改变计算机资源供给端的情况。
分布式计算机技术,已经逐渐成为大数据领域底层IT架构的行业标准,分布式计算可以实现一个计算目标可以调配无限计算资源并予以支持,解决了大数据情境中运算量过大、超出单台物理机运算承受能力极限的问题,并且同物理计算资源协同调配,为后续的云计算奠定了基础。客观 的讲,分布式计算机技术使计算资源趋于无限。
而量子计算机技术将使单体计算能力拥有质的飞跃。但是在量子计算机核心技术尚未突破之时,人类面对呈现爆发式增长的数据束手无策….
在经过这漫长的探索后,人类现在决定先借助分布式计算技术实现新的一轮OTT式技术革新,而此举将不仅解决了海量数据存储与计算问题,还有希望帮助人类彻底摆脱计算资源瓶颈的束缚。计算资源无限,世界将会怎样….
但是从大数据技术的发展现状来看,真正的难点还是在于底层工具的掌握,由于发展尚处于初级阶段,还需要人们掌握大量的底层工具,这条道路因为走得人少所以才会显得泥泞不堪,只有将基础工具发展和掌握成熟之后,才可以降低使用者的门槛。
对于我们而言,这条路难么?真的很难!但是是值得我们客服这条路上的困难的,因为收益会非常的划算,这条路的难处在于要掌握很多底层工具,为什么?因为走这条路的人少,现在还是一条泥巴路,很难走,但是为什么是值得我们克服困难也要走下去呢,是因为只要量子计算机不出现、随着摩尔定律的失效、数据量还在增加,大量过路的需求会催生一条又一条高速公路,然后铺路的大公司设卡收税,泥巴路迟早会变成高速公路,但只要你先过去,就能看到别人看不到的风景。
从计算机由DOS系统到桌面系统,Python机器学习由源码到算法库,不一直都是这样么。
机器生产释放脑力,机器学习释放脑力
数据革命的本质
大数据分析技术有价值、数据分析技术更有价值,那整个数据科学知识内容体系中,最有价值的到底是什么?
如果从发现技术的角度看待问题确实很有意思,那我们不妨再来探讨一个问题,那就是从技术层面而言(非工作是否好找的角度),数据科学中最有价值的技术模块是哪个?
人工智能是数据养育的智能,其决策的核心是算法,人工智能的发展与十八世纪工业革命通过机器生产代替手工劳动从而释放人类的劳动力类似,数据智能将通过参与、代替人类决策的方式,释放人类脑力。而机器学习就是提供人工智能决策的算法核心。
机器学习算法的核心用途是挖掘事物运行内在逻辑和规律,就是把数据作为接受外部信息形式,用数据还原外部事物的基本属性和运行状态,用机器学习算法对其规律进行挖掘,还原客观规律。再应用规律辅助决策。
机器学习可以使得人工智能在人类基础重复决策领域代替人类参与决策。
算法的核心方法论,是取法其上,仅得为中,数据分析核心价值要有技术核心价值这杆大旗;不管小数据还是大数据,都是重分析。而伴随着Python的星期,催生出了进一步完善的基础设施,Python依然成为了标准的工具。
而Python最核心的技能就可以说是利用众多强大的算法库进行算法建模分析
强人工智能、弱人工智能,还是人工智障
数据、算法、计算能力这三架马车所推动的人工智能技术发展,是否已经遇到了瓶颈
2018年1月我国国家标准化管理委员会颁布的《人工智能标准化白皮书》对人工智能学科的基本思想和内容作出了解释。认为人工智能应该是围绕智能活动而构造的人工系统,是一项知识的工程,是机器模仿人类利用知识完成一定行为的过程。
相对来说我国的人工智能的起步还是较晚,人工智能的发展阶段可以分为三个阶段,第一阶段是从20世纪50年代—80年代,在这一阶段人工智能刚诞生,但由于很多事物不能形式化表达,建立的模型存在一定的局限性。第二阶段是从20世纪80年代—90年代,专家系统得到快速发展,数学模型有重大突破,但由于专家系统在知识获取等方面的不足,人工智能的发展又一次进入低谷期。第三阶段是从21世纪初—至今,随着大数据的积聚、理论算法的革新、计算能力的提升,人工智能在很多应用领域取得了突破性进展, 迎来了又一个繁荣时期。
根据人工智能的发展定义,以及国家颁布的《人工智能白皮书》,人工智能可以分为两种,强人工智能和弱人工智能。
弱人工智能是并不能真正实现推理和解决问题的智能机器,这些机器表面看像是智能的,但是并不真正拥有智能,也不会有自主意识。但是这仍是目前的主流研究仍然集中于弱人工智能,并取得了显着进步,如语音识别、图像处理和物体分割、机器翻译等方面取得了重大突破,甚至可以接近或超越人类水平。
强人工智能是真正能思维的智能机器,并且认为这样的机器是有知觉的和 自我意识的,这类机器可分为类人与非类人两大类。从一般意义来说,达到人类水平的、能够自适应地应对外界环境挑战的、 具有自我意识的人工智能称为“通用人工智能”、“强人工智能”或“类人智能”
一般来说,在我们认为强人工智能的时代已经来临,只是尚未流行起来,但这时候,却还有一些有意思的观点,他们持反对的声音,认为人工不智能或者说是人工智障。
他们认为当我们在开车的时候,大脑在飞速的处理各种信息:交通信号、标志物、路面的井盖、积水;看到马路中央有一只狗在过马路时,我们会踩刹车;看到中央有一只鸟,我们会判断鸟会快速飞走,不用减速;如果是塑料袋,我们可以直接压过去;如果是大石头,我们就需要避让。这些都是我们通过经验的累积以及生活常识构成的。但是,人工智能却做不到这些。
目前人们所研究的人工智能是“狭义”人工智能。“真正的”人工智能需要能够理解食物之间的因果关系,比如警方在路上设置的锥标,哪怕是倒了,或是被压扁了,也要能够被识别出来。但目前的图形识别能力,哪怕是把障碍物换个角度,计算机识别起来都会很困难。而“狭义”人工智能走的是机器学习路线,换句话说,计算机会把路上所有物体(包括够、其他车辆、标志物、行人、塑料袋、石头等)都简单的看做是障碍物,同时计算和预测这些障碍物的移动路线,判断是否会和汽车的路线发生冲突,然后执行相应的动作。
那么问题来了……
当计算机无法理解物体的时候,也就意味着不可能100%准确预测物体的移动轨迹。比如,马路中央的狗。你很难预测它下一秒的位置,即使它目前正在向前狂奔。如果马路中央是一个孩子呢?同时,让计算机识别路边的交通指示牌也是一件十分困难的事情。当指示牌有破损、遮挡物等等,都会影响计算机的识别。
所以,目前的人工智能都属于“狭义”的人工智能,它的核心是基于大数据进行的学习。但在瞬息万变的现实世界里,由于计算机无法真正理解事物的相互关系,因此并不能处理出现的意外情况。
我们可以将无人驾驶分为五个级别:
辅助性自动驾驶(如自动刹车、保持车道、停靠辅助系统等) 满足一定条件下,汽车可以自动驾驶,但需要驾驶员进行实时监控(如特斯拉的自动驾驶技术) 满足一定条件下,汽车可以自动驾驶,驾驶员不需要实时监控,但要随时准备好接管驾驶。 满足一定条件下,可实现无人看管的自动驾驶。 完全实现无人看管的自动驾驶。
就目前来看,我们距离第五个级别的无人驾驶的距离还有非常遥远的一条道路要走,当然这条道路的未来,并没有人会知道是什么样子的。
在我看来,随着技术的发展,人工智能这条道路并非是走不下去的,只是这条道路比较困难,而且并不是说在人工智能完全达到强人工智能的时候才能造福人类,目前人工智能已经用于我们身边的多个领域,并且在不断的帮助我们,我们可以通过人工智能不断的帮助我们完善人工智能,达成一个不断的循环,只是需要很多对数据科学领域感兴趣的人,来不断的完善它们。
希望你看完这篇文章能够有所收获,如果有一些想法,希望可以一起讨论一下,谢谢。