导航:首页 > 研究方法 > 使用数据建立模型是什么研究方法

使用数据建立模型是什么研究方法

发布时间:2022-04-12 09:46:42

1. 数据分析模型和方法有哪些

1、分类分析数据分析法


在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。


2、对比分析数据分析方法


很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。


3、相关分析数据分析法


相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。


4、综合分析数据分析法


层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。

2. 数据处理及建立模型

9.2.2.1 统计量的选取

基于对金刚石/钻石中E型石榴子石包裹体元素含量统计分析来对其产地来源识别,需要预先搜集世界各地已知的前人研究测试的数据,来建立数学模型,以得出产地来源与包裹体元素含量之间的某些联系。表9.1是参与此次统计分析的数据来源及样本数。

参与本文统计分析和绘图等所用的数据,全部来源于该表中对应的文献(附表6)。因此,若下文中无再注明出处或其他特殊说明,其数据均默认来自于该表对应产地的文献,其数字序号也对应相应产地。

表9.1 各产地金刚石石榴子石包裹体电子探针测试数据条数归纳(单位:条)Table 9.1 Statistics of EPMA test data of garnet inclusions in diamonds from different origins (unit: piece of data)

由于判别分析需要从中筛选出能提供较多信息的变量方能使错判概率变小,因此统计变量的选取尤为重要。包裹体的测试数据包含了数十种元素及其对应氧化物的含量,倘若一一研究,不仅计算量大,计算复杂,而且容易出现重复统计造成较大误差等。在此,作者选定了其中的FeO、MgO、CaO三种组分参数作变量,这样选变量基于如下理由(黄进初,1990):

(1)Si组分作为石榴子石硅酸盐矿物的主常量组分,不参与此次的统计研究;

(2)Ti、Ni、K、Na、Cr等组分在石榴子石中的含量较低(测试误差大),且测试数据不全(只有某些产地的测试数据,部分产地的测试数据缺失),因此其数值代入统计研究中会引起较大的误差;

(3)FeO、MgO、CaO三个组分是石榴子石中对其种类成分产生主要制约的组分,也是和地幔性质有明显关联性的组分。对归纳的167条E型石榴子石测试数据的预处理显示,各产地FeO、MgO、CaO三个统计变量的数据全,且其组间方差与组内方差比值较大,是各产地间差异性比较大的三种组分参数(其中,Mn2+含量算入Fe2+含量中)。

9.2.2.2 产地归类

对于金刚石/钻石来说,由于其形成环境和条件较为“苛刻”,且世界各产地间由于“历史上”地理位置靠近、幔源性质相近等原因,某些产地间相关包裹体性质具有很大的相似性,仅仅靠一条信息(石榴子石包裹体元素含量统计分析)也许不能区分到具体的每一个产地。为此,本文将先对相似的产地进行归类,研究石榴子石元素含量差异显着的几个代表产地(石榴子石含量差异不显着的产地间将用其他信息来补充区分,本文不详细讨论)。

在此,作者使用主成分综合评价法(陈述云,张崇甫,1995;叶宗裕,2006;阎慈琳,1998),通过将相关统计变量进行主成分分析得到的若干个主成分按线性加权得到一个综合性评价指标,来观察不同产地间的E型石榴子石包裹体地球化学异同。由此,对搜集的各产地E型石榴子石包裹体数据,通过将统计变量FeO、MgO、CaO进行主成分分析,用将所得到的n(1≤n≤3)个主成分按公式9.1提取一个综合主成分:

联合国金伯利进程框架下的钻石原产地研究

其中,Fi为第i(1≤i≤n)个主成分,λi为主成分Fi对应的特征值,λ为n个主成分的特征值之和。这里取n=2时,其方差累积百分比达99.711%,说明这两个主成分可以很好地综合FeO、MgO、CaO这三个统计变量的信息,且综合主成分值反应产地间的地球化学异同应该具有一定的可靠性。因此,将不同产地综合主成分的平均值作图得到如图9.8。

根据图9.8,将主成分均值相近的产地分为以下四大组,每组内部对应产地E型石榴子石包裹体元素差异较小,而不同组之间差异较明显,可以获得较好的区分度(表9.2)。

图9.8 各产地金刚石E型石榴子石包裹体统计量综合主成分均值图

Figure 9.8 Mean value of comprehensive principle components of garnets inclusions in eclogitic diamonds all over the world

表9.2 产地分组表*Table 9.2 Groups of diamond origins

表格中的数字序号对应表9.1中的相应产地

9.2.2.3 判别模型的建立

通过判别分析找出各组间的差异性,并建立一个判别模型,作为识别未知产地来源的依据之一。这里使用Fisher判别法,通过坐标变换的方式将数据点投影到另一个坐标系,再用一元方差分析的检验手段将新坐标系中水平差异显着的不同组区分开来,将待判别样本归入离新坐标系中质心最近的组。本文的判别分析过程在统计软件SPSS中进行。

由此,将这4组的FeO、MgO和CaO含量作为统计量,根据表9.2的分组进行判别分析。分析结果部分显示如表9.3所示。

从以上3个表中得到的有用信息如下:

表9.3显示,判别的总判别正确率为67.1%,其中组Ⅰ和组Ⅳ的判别正确率都在80%以上,区分效果较好;但组Ⅱ的正确率仅为50%左右,显示第二组归类样品FeO、MgO和CaO含量的信息与其他几个组之间相关信息的区分度不够明显。

表9.4显示,非标准化的判别方程系数,可以得到一个判别方程组如下:

联合国金伯利进程框架下的钻石原产地研究

其中Ex为判别得分,C为对应物含量。

从表9.5显示,依判别方程,将各组统计量的均值代入可得相应组的质心。若将某个未知来源产地的金刚石E型石榴子石相应FeO、MgO和CaO含量分别代入判别方程9.2组得到的结果E1、E2、E3离哪组的质心距离最近,则认为该金刚石/钻石来源于该产地。图9.9显示,各组质心在同一平面直角坐标系中的位置有显着距离,且各组样本共167条数据作相应转换后的投点归属基本正确,正确率应为67%左右。

图9.10更为直观地显示出不同产地的特征差异:通过四个大组的统计量求氧化物对应的阳离子含量,投Fe-Mg-Ca三元原子百分比图。由于不同组样本数不均,且同组不同产地间仍存在不可避免的部分差异,在以组为单位投点后,为作图的美观性和结果的直观性,每组又再取了一个代表产地的统计量参与对比作图(图9.10)

如图9.10所示,相同产地金刚石/钻石E型石榴子石包裹体Fe、Mg、Ca成分有较好的集聚,而不同产地间又有一定分散的分布,因此具有好的区别性,其中:

表9.3 分组结果Table 9.3 Regrouping results

*总的判别正确率为67.1%

表9.4 典则判别式函数系数Table 9.4 Coefficients of Canonical discriminant function

表9.5 组质心处的函数Table 9.5 Functions at Group Centroids

图9.9 E型石榴子石包裹体产地来源典则判别函数图

Figure 9.9 Canonical discriminant function of garnet inclusion sourcing of eclogitic diamonds

图9.10 金刚石E型石榴子石包裹体Fe-Mg-Ca 原子百分比图

Figure 9.10 Percentage diagram of Fe-Mg-Ca atoms of garnet inclusions in eclogitic diamonds

(1)第一组,加拿大Jericho产地,其平均Mg含量较高,但平均Ca含量较低,Fe含量则分布较散(这里的Fe含量是指Fe2+含量,下同)。

(2)第二组,相应产地的投点则相对分散(图9.9左),这与判别分组结果(表9.2):组Ⅱ的判别正确率较低相吻合;但其中南非Venetia产地,以其最低的平均Fe含量和最高的平均Ca含量与其他产地有着明显区别(图9.9右);造成此结果的可能原因将在下文中分析。

(3)第三组,相应产地的投点虽然也有部分分散,但大部分集中在与委内瑞拉Guaniamo产地相近的区域:其特征是各端元含量都居于三个产地之间,这和该组的综合主成分均值也居于所有产地之间结果相吻合。

(4)第四组南非Finsch产地,其特征是平均Fe含量最高,而Ca和Mg含量都相对偏低,与其他组区别明显。

由此可见,不同产地来源的金刚石/钻石E型石榴子石包裹体地球化学性质确存在有较明显的差异性,应该可作为判断未知产地来源的依据之一。

3. 根据数据建立分析模型是什么意思

这是数据分析的一般思路。
但是通常都是在建立分析模型前,一般都是有预先假设的,比如说我假设 销售人员的学历、工作经验、薪资待遇、年龄这几个方面会对其销售额产生影响。
之后我就会根据我的假设来收集数据,然后针对数据进行分析,找出一个合适的数据模型,比如说是线性模型的的话 就用线性回归,如果是非线性模型的话,则建立相应的非线性模型。然后通过模型创建 可以验证假设中哪些是正确的,同时可以找出影响因素的影响大小等

4. 建立模型是科学研究的重要方法

考点:心脏的结构 专题: 分析:图中表示在一个心动周期中,心脏的活动规律是心房收缩,同时心室舒张;心房舒张,同时心室收缩;心房舒张,同时心室舒张. A、心房的收缩时间是0.1秒,心室的收缩时间是0.3秒,可见:心房的收缩时间短于心室,原因是心房只需要把血液压入心室,而心室需要把血液压入通往全身的动脉,A正确;B、心房的收缩时间是0.1秒,心房的舒张时间是0.7秒;心室的收缩时间是0.3秒,心室的舒张时间是0.5秒,总体上心脏的舒张时间大于收缩时间,这样可以保证血液的充分回流与心肌休息,B正确;C、在整个心动周期中,心房与心室没有出现同时收缩的情况,但有0.4秒同时舒张的时间,C正确;D、该心动周期后的下一个0.1秒,心房心室舒缩状态是心房收缩,心室舒张,D错误;故选:D 点评:理解心脏舒张和收缩过程是解题的关键.

5. 数学建模是什么

数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

(5)使用数据建立模型是什么研究方法扩展阅读:

从基本物理定律以及系统的结构数据来推导出模型。

1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。

2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。

从大量的观测数据利用统计方法建立数学模型。

1. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

3. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

6. 论文用数据是什么研究方法

论文用数据是数学方法。

数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。

要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。

论文的作用:

1、提高研究者的研究水平

撰写科研论文,不仅是反映科研成果的问题,而且也是个深化科研成果和发展科研成果的问题,在撰写科研论文过程中,对实验研究过程所取得的大量材料进行去粗取精,实现由感性认识向理性认识的飞跃和升华,使研究活动得到深化,使人们的认识得到深化。

2、推动教育科研活动自身不断完善

教育科研活动是个探索未知领域的活动,并无既定模式和途径可循,在一定意义上可以讲,教育科研活动均属创造性活动。为了保证教育科研活动越发卓有成效,为了给进一步开展教育科研活动提供可靠依据,在每一科研活动终端都撰写报告或论文是十分必要的。

7. 什么是数据建模

数据建模是一个用于定义和分析在组织的信息系统范围内支持商业流程所需的数据要求的过程。简单来说,数据建模是基于对业务数据的理解和数据分析的需要,将各类数据进行整合和关联,使得数据可以最终以可视化的方式呈现,让使用者能够快速地、高效地获取到数据中有价值的信息,从而做出准确有效的决策。

之所以数据建模会变得复杂且难度大,是因为在建模过程中会引入数学公式或模型,用于确定数据实体之间的关联关系。不同的业务逻辑和商业需求需要选择不同的数学公式或模型,而且,一个好的数据模型需要通过多次的测试和优化迭代来完成,这就使得数据建模的难度变得很高。但是,数据分析中的建模并没有想象中的那么高深莫测,人人都可以做出适合自己的模型。

数据建模总归是为了分析数据从而解决商业问题。如下图数据建模的流程图,数据建模核心部分是变量处理和模型搭建。

8. 常见的建立数学模型的方法有哪几种各有什么特点

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.

模型准备 首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.

模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.
模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.

模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.
模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.
模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.
模型应用 应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式

9. 数学建模有哪些方法

一、机理分析法 从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方 法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。

二、数据分析法 从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2… n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

三、仿真和其他方法
1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验
① 离散系统仿真--有一组状态变量。
② 连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

阅读全文

与使用数据建立模型是什么研究方法相关的资料

热点内容
引入新知的教学方法 浏览:875
初一英文完形填空的技巧和方法 浏览:996
cad问号怎么解决方法 浏览:410
腰椎间盘痛疼能锻炼的方法 浏览:966
用什么方法可以快速的去除牙结 浏览:938
淼淼淼瘦腿霜使用方法 浏览:982
亚硝酸钠检测方法 浏览:591
量具使用方法 浏览:636
2014退休工资计算方法 浏览:247
共集放大电路输出电阻计算方法 浏览:210
两位除以一位数计算方法 浏览:965
天麻下种方法和技巧 浏览:64
安卓怎么跳转界面方法 浏览:546
烫鸡的正确方法视频 浏览:620
高炮解决方法 浏览:489
贴地砖与踢脚线最正确的方法 浏览:176
微信检测雾霾的方法 浏览:754
痛经用什么方法缓解 浏览:533
有什么能给大脑降温的方法 浏览:262
生料带怎么缠绕方法 浏览:409