导航:首页 > 研究方法 > 矸石分析方法

矸石分析方法

发布时间:2022-03-09 12:15:44

⑴ 煤矸石化学分析前需要灼烧吗

建材用粉煤灰及煤矸石化学分析方法 前言 1 范围 2...8 烧失量的测定——灼烧差减法 9 二氧化硅的测定——氟硅酸钾容量法

⑵ 煤矸石山隔氧防自燃机理分析

根据煤矸石山自燃条件分析可知,其发生自燃的内因是煤矸石中含有的大量可燃物,外因则是煤矸石山的供氧与蓄热条件。良好的通风条件可以使煤矸石在氧化时得到充分的供氧,但同时也会把煤矸石自热阶段产生的热量带走。反之,若处于封闭环境中的煤矸石,虽有良好的蓄热条件,但不能得到充分氧气供应,煤矸石不会进一步氧化,自燃也就无从谈起。因此,阻断煤矸石山良好的供氧条件,是防止煤矸石山自燃的有效途径。

一、煤矸石山自燃的历程及临界温度

煤矸石山发生自燃,是一个极其复杂的物理化学过程,从常温状态转变到燃烧状态,其本质是煤矸石中的可燃物质(即黄铁矿和煤)的低温氧化特性,与空气中的氧发生物理吸附、化学吸附和化学反应。物理吸附氧气的吸附热使得煤矸石温度有一微小上升,导致煤矸石内极易被活化的结构活化而吸收氧气,发生化学吸附和化学反应,使得煤矸石结构表面物理吸附氧量减少,促使空气中的另一部分气态氧与煤矸石表面发生物理吸附,使煤矸石的低温氧化进程继续向前发展,不断释放热量。在一定的蓄热条件下,产生的热量大于散失的热量,使得煤矸石山局部温度不断升高,环境温度的升高加速可燃物质的氧化并引发自燃。如图5-2所示,煤矸石自燃分为三个时期。

图5-2 煤矸石山自燃的三个时期

潜伏期。氧气在煤矸石山表面或通过孔隙和裂缝渗入煤矸石山内部吸附潜伏,煤矸石低温条件下缓慢氧化并开始释放热量,从而造成热量积累。

自热期。热量积累,环境自动升温,从而加速煤矸石的氧化。煤矸石的自燃实际上是煤的自燃,从缓慢升温阶段到自动加速阶段时的温度称为煤矸石自燃的临界温度,它因成分不同,一般在80~90℃之间,煤矸石温度超过临界温度,即具备自燃条件。在煤矸石自热阶段,若所含可燃物不充分,无法提供煤矸石进一步氧化所需的物质基础,或煤矸石山的供氧条件与蓄热条件发生变化,从而使氧化反应产生的热量消散于周围环境中,煤矸石山便不会进入自燃状态。

燃烧期。煤矸石充分氧化自燃。

在初始阶段,煤矸石中的黄铁矿和煤在常温t0下与氧气缓慢反应,放出热量,使煤矸石的温度缓慢上升。当矸石温度达到临界温度t1时,反应的速率随着温度的升高而自动加速。一旦温度达到煤的着火温度t2,即开始激烈的反应,这时若燃料、氧气供应充足,燃烧保持稳定地进行。

t1即为煤矸石的氧化从缓慢升温阶段过渡到自动加速阶段时的温度,称临界温度。临界温度t1和着火温度t2不是煤矸石所固有的物化常数,它是化学动力因素和流体动力因素的综合,与煤矸石的化学活性、煤的燃烧活化能、矸石的导热系数、发热量和对周围的环境散热条件等都有关(主要表现为活化能不同)。不同煤矸石的临界温度可用简易的数学模型导出下列计算公式:

自燃煤矸石山治理与生态重建技术

式中:E——煤矸石的活化能,J/mol;

R——气体常量,取值为8.31 J(/mol·K);

T0——环境的绝对温度,K。

不同的煤矸石有不同的活化能,不同地区的煤矸石山也有不同的环境温度,所以其发生自燃的临界温度也不同。有关文献指出,煤矸石山自燃的临界温度为80~90℃(煤的临界温度一般认为在70℃左右)。在供氧充足的条件下,煤矸石的温度是否达到临界温度是判断其能否发生自燃的重要条件,该温度对指导自燃煤矸石山的灭火也有着重要的意义。

有关研究表明,煤矸石的氧化产热过程遵循以氧气(或燃料)浓度为基础的Arrhenius定律,得出:

自燃煤矸石山治理与生态重建技术

式中:t——氧化产生的热量,J;

q0——氧气的比热容,J/(kg·K);

C——氧气的体积浓度,mol/m3

E——煤矸石的活化能,J/mol;

R——气体常量,取值为8.31 J/(mol·K);

K——反应速率常量;

S——比表面积,m2

T——反应绝对温度,K。

该定律反映了燃烧的速率与反应物浓度的关系,指出反应速率随反应物氧气的浓度增加而增加的规律。这里所指的反应物可以指可燃物的浓度,也可以指氧气的浓度。如果反映的是可燃物中碳的含量,应表示为参与氧化的碳的多少;当指的是氧气的浓度时,则表示此时参与碳氧化的氧气的浓度,这里的S可以表示与氧气发生反应的可燃物(碳)的单位比表面积。由此可见,在可燃物的量充足的条件下,我们可以通过空气的流通量来分析煤矸石自燃条件,也可通过分析和控制煤矸石山的供氧条件来改变其自燃倾向。

二、煤矸石山氧气传输方式

由上分析得出,煤矸石在自热阶段逐渐升温至自燃,需不断从外界得到氧的供应,而氧气的传输是与煤矸石山中的空气流动分不开的。引起空气在煤矸石山中流动的主要因素有:

1)气温变化引起的煤矸石山的“热呼吸”;

2)大气压变化产生的煤矸石山的“气压呼吸”;

3)由煤矸石山表面自然风引起的空气流动;

4)由空气浓度梯度引起的分子扩散;

5)煤矸石山自热后引起的热对流(烟囱效应)。

由气温变化引起的煤矸石山的“热呼吸”,仅能在煤矸石山表面发生效应,因此产生的热量很快就会散失;由大气压变化引起的“气压呼吸”,由于气体量非常的少而不足以维持煤矸石的自热;由空气浓度梯度引起的分子扩散,在煤矸石山自热升温过程中可能起了激发性作用,但仅靠分子扩散也难以维持煤矸石山长时间的燃烧;由自然风引起的空气流动,因流量具有随时间而变化的性质,仅靠煤矸石山表面的微小风压产生的对流,不是煤矸石山发生自燃并维持自燃的主要因素,而煤矸石山自热后产生的空气热对流(即所谓的烟囱效应或热风压),才是煤矸石山维持长时间燃烧的必要条件。一般认为,在煤矸石的自热过程中,首先是依靠分子扩散及自然对流效应供给煤矸石氧化所需的氧气,一旦煤矸石发生较明显的升温后,热对流就会成为主要供氧途径。

煤矸石发生自热后,温度就会升高,并把热量传递给周围空气,使周围空气受热,密度减小。这时候,煤矸石山内部的空气与外部的空气之间就会产生一个压力差:

自燃煤矸石山治理与生态重建技术

式中:Pi——热风压,Pa;

ρ——环境温度中的空气密度,kg/m3

g——重力加速度,9.81m/s2

T0——环境温度,K;

T——煤矸石山内部温度,K;

z——煤矸石山垂直高度,m。

因为煤矸石山内部的温度一般高于煤矸石山周围环境温度,在热风压作用下,煤矸石山内部空气向上流动,而外界空气源源不断流入,给煤矸石的氧化继续提供氧气(图5-3)。此外,热风压的大小,和煤矸石山内部温度与环境温度之差有关,温差越大,热风压也就越大;和煤矸石山的堆积高度也有关系,降低其垂直高度可有效减小热风压的大小。

图5-3 自热区与热对流的示意图

热风压产生的风流在煤矸石堆中流动时遵循达西定律,在一维流场中:

自燃煤矸石山治理与生态重建技术

式中:v——气体在煤矸石堆中的渗透速度,m/s;

K——煤矸石堆的渗透率,m2或darcy;

μ——气体的动力粘性系数,Pa·s;

P——热风压,Pa;

x——风流运动距离,m。

但由于空气的动力粘度也会随着温度的升高而增大,故热对流并非是随着温度升高热风压增大而流速加大,而是在某一温度值附近呈现一个峰值(经试验,阳泉矿区的这一温度值为900K)。

设某煤矸石山环境温度为300K,煤矸石堆内部平均温度为350K,据式(5-3)有:

自燃煤矸石山治理与生态重建技术

风流可近似看作平行于斜坡向上运动,流动的距离为:

自燃煤矸石山治理与生态重建技术

式中:δ——煤矸石山的自然安息角。

阳泉煤矸石的平均比表面积直径为6.36,在松散状态下,测得渗透率为1.69×10-9m2,另27℃时空气动力粘度为1.78×10-6Pa·s,若δ 为45°,则煤矸石山内部因热对流造成的空气流速是:

自燃煤矸石山治理与生态重建技术

自燃煤矸石山治理与生态重建技术

三、煤矸石山不同区域的供氧条件

煤矸石山不同区域的供氧条件因其人工堆积有所不同,而供氧条件对煤矸石的自燃与否起着极为重要的作用。

根据供氧蓄热条件的好坏,煤矸石山从表面到内部可分为三个区域(图5-4):

1)不自燃区;

2)自热区(可能自燃区);

3)窒息区。

在煤矸石山表面,虽可得到充足的氧气供应,但与外界热交换条件好,氧化反应生成的热量迅速散失到周围环境中,矸石升温幅度很小,不足以引起自燃,此即为不自燃区。在煤矸石山内部,分子扩散或空气流动带入的氧气已经在表面大部分被消耗,气流中的氧浓度很低,煤矸石的氧化反应产生的热量很小,不足以使矸石进一步升温,这一区域也不会发生自燃,称之为窒息区。在不自燃区与窒息区之间,既有一定的氧气供应,所产生的热量又不致全部被带走,煤矸石氧化产生的热量足以使矸石升温,此区即是自热区(也称可能自燃区)。自热区的剖面深度与煤矸石的氧化能力、粒度、堆积形态、空隙率以及外界环境条件等有关。

图5-4 煤矸石山自燃分区

在自热区内的煤矸石,如果能不断得到氧气维持氧化反应持续进行,一定时间后,当煤矸石温度上升到燃点,便发生燃烧。在此阶段内如供氧蓄热条件发生变化,煤矸石的氧化反应不能继续进行,自热就会终止,自燃也不会发生。

四、孔隙率对氧气传输的影响

煤矸石山可以看成是一种由粒径形状各异的粒子组成的多孔介质,具有一定的孔隙率。一般情况下,气体在煤矸石山中的流动速度极为缓慢,属于层流状态。根据几何学可知,直径相同的粒子堆积时具有最大的孔隙率。直径相同的球形粒子在空间以立方体形式排列时,孔隙率为47.6%;以正斜方形式排列时,孔隙率为39.5%;以楔形四面体形式排列时为30.2%;以菱面体排列时,孔隙率最小,为25.9%。当粒径不相同的粒子堆积在一起时,粒径小的颗粒可以充填到大颗粒之间的孔隙里,使得混合物的孔隙率变小。

煤矸石山的孔隙率对其氧气传输有很大影响,表现在对煤矸石堆透气性的影响(一般用渗透率K表征)。通过对煤矸石山氧气传输途径的研究表明,空气在煤矸石山中的流动,一方面取决于风压(包括自然风压与热风压,主要是热风压),另一方面取决于煤矸石堆的渗透率。因此可以认为,用煤矸石山渗透率的大小可表征煤矸石堆供氧条件的好坏,而煤矸石山渗透率的大小与煤矸石的粒径分布、粒度、形状有关,粒度组成在一定程度上决定了孔隙率的大小,颗粒的大小和形状则决定了空气流通孔道的大小和粗糙度。

实验表明,煤矸石堆的渗透率K与堆积煤矸石的孔隙率及它的平均有效直径d有密切关系:

自燃煤矸石山治理与生态重建技术

式中:K——煤矸石堆中的渗透率,m2或darcy;

ε——指煤矸石堆的孔隙率,%;

d——煤矸石的平均粒径,m;

自燃煤矸石山治理与生态重建技术

由于不同的煤矸石具有不同的风化性质,所以在一定程度上影响着煤矸石堆的透气性。资料表明,经一年风化后的煤矸石山,表层煤矸石的粒径有80%以上在45mm的范围之内,可以认为,煤矸石山表层的煤矸石经快速风化后的粒度组成可以代表煤矸石山表层的颗粒组成。从上式可知,由于煤矸石的风化作用使煤矸石粒度减小,空气在煤矸石山堆中的渗透能力会发生变化。也由此可知,如果煤矸石山表层覆盖不同粒径的土质材料,也会改变煤矸石山中空气的渗透能力。

另外,根据流体在多孔介质中流动的达西定律可知,气体在多孔介质中的渗透率由气体的粘度、渗透距离、气体流速和压差所决定:

自燃煤矸石山治理与生态重建技术

式中:K——煤矸石堆的渗透率,m2或darcy;

μ——气体的动力粘度,Pa·s;

L——气体在煤矸石山水平渗透的距离,m;

v——气体在煤矸石堆中的渗透速度,m/s;

ΔP——压差,Pa。

因此,由上述的二式可以求得自燃点所处的位置距煤矸石堆斜面边坡的水平距L为:

自燃煤矸石山治理与生态重建技术

另外,因煤矸石山的自然安歇角为36°~60°不等,所以煤矸石山的潜在自燃点位置距斜坡表面的水平距离L与其临界深度h的关系可近似表示为L/h等于1.2~1.7。假设煤矸石山自燃点的临界深度为3.5~4.5m,则该点距斜坡表面的水平距离应为4.2~7.7m。

综上所述,煤矸石山的自燃,可通过改变煤矸石堆体的孔隙率或改变堆体表层覆盖物的粒径,来改变煤矸石山自燃条件,达到防止煤矸石发生自燃的目的。

五、煤矸石山发生自燃的临界风速

煤矸石氧化需要氧气,只有当外界的供氧速率大于某一临界值时,氧化反应放出的热量大于散热速率,热量才可能被积聚起来,使煤矸石发生升温。若达不到这一临界值,反应放出的热量会通过传导、对流等途径全部散失到周围环境中,不会发生自燃。当反应放出的热量小于散热速率时,煤矸石就会逐渐冷却。这一临界值为临界风速。

煤矸石山中风流的作用是双方面的,它既供给煤矸石反应所需的氧,又会带走煤矸石反应生成的热量。所以临界风速有上限与下限值,当风速超过上限时,反应生成的热量会全部带走。对于煤矸石来说,不可能通过增大矸石堆的透气性的方式作为防治自燃的措施,所以关键的是临界风速的下限值。

临界风速与可燃物的物理化学性质及环境条件有关。国内外都有学者对煤堆中的临界风速进行过研究,但研究结果相差极大。经试验,阳泉煤矸石山中空气流速为4.4×10-5m/s时,煤矸石没有发生燃烧,因此可以认为煤矸石山中的空气流速低于它时,不会发生自燃,这是一个比实际值偏小的临界流速。阳泉煤矸石的自燃临界温度为80℃,由前面式(5-3)和式(5-4)分析,此时煤矸石山对应的渗透率应小于4.2×10-10m2。而对于已发生氧化反应并升温的煤矸石山,堆体内部煤矸石温度高,热风压大,要保证热对流速度小于空气的临界流速,对煤矸石山的渗透率要求更为严格。在煤矸石山内部温度为630℃时,煤矸石山的渗透率应小于2×10-10m2

⑶ 煤矸石热量化验公式

http://www.woodcoal.cn/Design/DownBook/Instry_Technology_Electronic_Energy_Chemistry.asp?煤矸石热值检测及燃烧特性分析

⑷ 煤矸石怎么处理

煤矸石是采煤过程和洗煤过程中排放的固体废物,是一种在成煤过程中与煤层伴生的一种含碳量较低、比煤坚硬的黑灰色岩石。

煤矸石可以制沙用,煤矸石经过破碎制沙,可以提高其利用率。,可以用于建筑工地用砂。制砂机广泛运用于大的、冶炼、建材、公路、铁路、水利和化学工业等众多部门。

粗破:煤矸石原料在十几公分,颗粒大的情况下,通过料仓进入振动给料机,通过鄂破进行粗碎。

中细碎:粗破后的成品经过振动筛筛分,输送到反击破,进行中细碎,筛分合格的进入下一道程序,不合格的返回进行破碎。

细碎:中细碎物料进入第三道制砂机进行整形,出料5mm,,之后进入洗砂机进行清洗。

工艺图

⑸ 煤矸石发热量是如何测定的啊

用氧弹仪就可以测定,或者用高温炉测定灰分,在分析灰分的元素含量,然后根据相关公式计算

⑹ 煤矸石、矿坑废水的成因分析

煤矸石、矿坑废水的化学组分是研究其迁移、聚集过程,形成污染的基本出发点。

(1)煤矸石的成分及酸化成因

野外调查和采样结果表明,三号井的煤矸石堆主要由炭质泥岩、炭质页岩、杂砂岩和少量石灰岩的碎块组成。在自然堆放情况下,大小混杂,无分选,其中块径大于10cm 的煤矸石约占29%、块径5~10cm 约占22%、块径3~5cm 约占14%、块径1~3cm 约占22%、块径0.5~1cm 约占8%,其余为块径小于0.5cm 的碎屑。炭质泥岩和炭质页岩占据的比例较高。这类岩块不仅炭质含量高,还有大量肉眼可识别的黄铁矿晶体聚集体和散晶,有些外表呈现硫化物的黄色或磁铁矿的锈痕。除此之外,X 衍射物相分析表明,煤矸石中还含有比例不等的绿泥石、伊利石、石英和黏土类矿物(表4.2)。

利用ICP-AEs仪器测定,煤矸石碎屑混合样所含的化学成分中,铁、硫的含量十分高,其中铁的含量达148.76g/kg,有效态达4.57g/kg;硫的含量达117.82g/kg,有效态达1.45g/kg,其他化学成分远小于铁和硫,详细情况见表4.3。

由此推算,现堆放的煤矸石山约有4.75×104t铁、1.45×104t硫和相当数量的重金属元素。在酸性水环境中可溶解脱出,随渗出液迁移到下游地区,从而形成矿区一个长期的污染源。

表4.2 大峪沟三号井田煤矸石矿物组成

表4.3 大峪沟三号井田煤矸石化学组分含量(单位:mg/kg)

因为煤矸石中普遍含硫量高而且主要以黄铁矿形式赋存,在风化雨淋过程中缓慢氧化成Fe2O3和SO2,与水作用形成Fe2(SO4)3和H2SO4,这样,一部分硫以气态的形式排放到大气中,还有部分以离子方式进入水体和土壤,从而引起酸化。

(2)矿坑废水的化学组分及成因

据2007年8月9日采集的水样测试分析结果(表4.4,表4.5),矿坑废水化学组分有如下特点:

1)总含盐量高,其中矿化度达2400mg/L,相当于咸水-微咸水类型,水中悬浮状固形物为2400mg/L,其成分主要为石膏及非晶质物质。

2)阳离子中以碱金属和碱土金属离子为主。钾、钠、钙、镁离子总量占阳离子总量的90%以上,阴离子中硫酸根含量极高,达1685mg/L,占全部阴离子的90%以上,而重碳酸根离子仅为3.05mg/L。

3)重金属以锌锰为主,分别为2.4mg/L、1.8mg/L,铜、砷、铅、镉、六价铬含量甚微,均小于0.05mg/L。

4)pH值为3.07,属酸性水。这些特点与矿坑废水形成的条件有着直接关系。

现排放的矿坑水大部分来自一1煤围岩的裂隙水、岩溶水,从一1煤和煤矸石的化学成分可知,这些地层含硫、铁极高。在巷道开拓、回采之前,这些物质处于还原环境,大部分以难溶的硫化物形式封存于地下,一旦人工揭露,巷道和采掘面形成氧化环境,矿坑水酸度就会变大。酸度增高的机理有三个方面:

表4.4 矿坑水排水口、矿井口水样测试数据(单位:mg/L)

注:取样地点,矿坑水排水口(N34°43༾.46″、E113°05ཧ.28″);室内编号,856。

矿井口(未加中和剂)(N34°43གྷ.40″、E113°05ཟ.26″);室内编号,857。

取样时间,2007年7月。

表4.5 矿坑水排水口、矿井口水样测试数据(单位:mg/L)

注:取样地点,矿坑水排水口(N34°43༾.46″、E113°05ཧ.28″);室内编号,1323。

矿井口(未加中和剂)(N34°43གྷ.40″、E113°05ཟ.26″);室内编号,1462。

取样时间,2007年11月。

一是煤层和顶底板中含硫化合物在氧气、水共存条件下,氧化形成游离的H2SO4,反应方程式为

煤矿山地质环境问题一体化治理研究

二是式(4.1)中铁等金属的硫酸盐水解释放H+,其反应过程为

煤矿山地质环境问题一体化治理研究

三是地下水中H2CO3的分解。在大峪沟一1煤井巷的条件下,硫化物的氧化和硫酸铁的水解对矿坑水的酸化影响最为突出。此外,H2CO3的分解也将带出一定量的Ca2+、Mg2+。由于H2SO4浸溶又有可能使Ca、Zn等金属转化为硫酸盐,使之从矿物中析出。在上述反应中,硫化细菌起着重要的催化作用,巷道良好的通风条件,适宜的湿度,促使诸如硫杆菌属的细菌大量繁殖,加速Fe2+氧化速度并从中获得自身繁殖所需的能量,与此同时,它们将煤层中所含的单质硫迅速氧化为硫酸,提高了矿坑水的酸度。

⑺ 煤矸石分类体系

一、煤矸石的分类

1.煤矸石分类的意义

我国目前煤矸石堆积量达50×108t以上,每年至少增加1.8×108t。而且煤矸石占用了大量的土地,严重污染环境。因此,世界上许多国家,如美国、德国、波兰、日本、澳大利亚等都很重视煤矸石的资源化利用和对煤矸石的治理。在对煤矸石进行利用或处置之前,掌握煤矸石的组成、特征及分类是基本的前提条件。

对煤矸石进行科学分类的意义具体表现为以下几个方面:①充分合理地利用、处置煤矸石。根据煤矸石的理化特征、化学组成确定其加工利用方向,能最大限度地利用煤矸石中有用成分。②通过煤矸石的科学分类,可初步提出煤矸石的加工利用方向。③对煤矸石进行科学分类,有利于对煤矸石的归类,有利于指导开发煤矸石新的利用途径。通过对煤矸石及煤矸石山进行科学合理的分类,有利于在复垦过程中了解煤矸石表层风化土壤的有关特性,为煤矸石山的综合复垦方向、选择煤矸石山绿化树种及其栽培方式和煤矸石山绿化的后期养护管理等提供依据。④对煤矸石及煤矸石山进行科学分类,有利于了解煤矸石堆积后可能产生的环境效应,特别是煤矸石堆积后是否产生酸性污染、是否自燃,为煤矸石山的环境治理和自燃的防治提供依据和指导。

2.煤矸石分类现状

煤矸石的分类是综合利用煤矸石的基础性工作,也是一项综合性较强的工作。由于不同地区的煤矸石成分、物理化学特性各异,煤矸石不同利用方向对其的化学成分及物理化学特性要求不一样,使得国内外至今对煤矸石的分类和命名没有一个完整统一的方案。目前,我国煤炭生产部门经常用颜色来对煤矸石分类命名,如黑矸、灰矸、白矸、红矸等;也有用煤矸石产出层位来分类命名,如顶板矸、夹矸等;也有用岩石类型来分类命名,如粘土岩矸石、砂岩矸石等。这些分类方案由于不能反映煤矸石自身的化学成分和物理化学特征,因此也不能根据这些分类方案制定煤矸石的利用方向。

针对煤矸石分类存在的上述问题,国内外学者对煤矸石分类进行了尝试。煤炭科学研究院重庆分院提出了煤矸石的三级分类命名法。中国矿业学院1986年曾对华东地区煤矸石进行了分类研究。焦作矿业学院葛宝勋、刘大锰同志对平顶山煤矸石进行了二级分类。在国外也有对煤矸石分类的研究报道。前苏联将煤矸石的来源、特征、成分等不同指标分等级列出“分类符号”。然后根据矸石在工业利用方面的质量要求,填入所需要的分类符号。根据这些分类符号,就可以选择矸石的利用方向了。

3.煤矸石分类

(1)煤矸石大类的划分

依据我国煤矸石来源情况,以煤矸石产出方式作为划分依据,并采用生产中一些习惯叫法命名,将煤矸石分为煤巷矸、岩巷矸、自燃矸、洗矸、手选矸和剥离矸6大类。

1)煤巷矸。煤巷矸为在煤炭开采过程中沿煤层掘进工程所排出的煤矸石。煤巷矸主要由采动煤层的顶板、夹层与底板岩石组成,一般排量大,且含有一定的含碳量及热值。

2)岩巷矸。岩巷矸为在煤矿建设与岩巷掘进过程中,凡是不沿煤层掘进的工程所排出的煤矸石。岩巷矸岩石种类复杂,排出量较集中,基本不含碳,基本无热值。

3)自燃矸。自燃矸为经过自燃的煤矸石。自燃矸一般呈红褐色、灰黄色及灰色。岩石种类以粉砂质泥岩及泥岩居多,其烧失量低,且有一定的活性。

4)手选矸。手选矸是混在原煤中产出,在井口或选煤厂拣出的煤矸石。手选矸具有一定的粒度,排量小,热值变化较大。

5)剥离矸。剥离矸为煤矿在开采或基建时,煤系上覆岩层因剥离而排出的矸石。剥离矸的特点是岩石种类复杂,一般无热值,目前多用来填沟造地。

(2)煤矸石亚类的划分

亚类的划分主要依据煤矸石的化学组分、矿物成分及其理化特性来确定。划分的目的是确定煤矸石的利用方式,使煤矸石物尽其用。根据全国的煤矸石资料,采用煤矸石类型、岩石类型、有机碳含量、全硫、Al2O3/SiO2的比值、Fe2O3的含量、灰熔点等项指标作为亚类划分的依据,并使用不同的代号表示,同时将此七项指标用阿拉伯数字表示等级次序,然后根据煤矸石的综合利用方向选择合适的数值列为一个亚类,这样共划分20多个煤矸石亚类(表2-1)。

1)煤矸石的岩石学特性及矿物组成特征。按此标准将煤矸石分为:高岭石泥岩(高岭石含量大于50%)、伊利石泥岩(伊利石含量大于50%)、砂质泥岩(或粉砂岩)、砂岩及灰岩。

2)有机质碳含量。有机质碳含量决定了煤矸石工业利用方向。按照煤矸石中有机质碳量,将煤矸石分为四类:一类碳含量4%,二类为4%~6%,三类为6%~20%,四类为20%。碳含量大于20%时,煤矸石具有较大的能源潜力(>8.36 MJ/kg),可以用作燃料;有机碳含量在6%~20%时,其发热量介于3.34~8.86MJ/kg,可以作为矿物燃料掺和料。

3)全硫量。全硫量决定了热加工的工艺方式及工业利用范围。煤矸石在综合利用时,有两条界线是需要考虑的。一是硫资源回收的最低界线;另一是煤矸石在利用过程中,多数制品对矸石硫含量的最高允许值。基于这两条界线,可将硫含量分为:①<0.5%;②0.5%~3%;③3%~5%;④>5%。全硫含量达5%的可从洗矸中回收硫铁矿。

4)铁含量。铁含量也影响煤矸石的热加工工艺方式和工业利用范围。按铁化合物含量分为:①少铁的>0.1%;②低铁的0.1%~1.0%;③中铁的1.0%~3.5%;④次高铁的3.5%~8.0%;⑤高铁的8%~18%;⑥特高铁的>18%。

5)煤矸石无机成分。煤矸石无机成分中铝硅比可以作为矸石亚类划分的主要依据。铝硅比不仅反映了煤矸石无机成分特征,也可决定着一般煤矸石的综合利用方式。

铝硅比大于0.5。这类煤矸石含铝量高,含硅量相对较低,矿物成分主要为高岭石,有少量伊利石、石英等。此类煤矸石可塑性好,具有膨胀现象,可作为陶瓷、4A分子筛的原料。

铝硅比在0.5~0.3之间。这类煤矸石铝、硅含量适中,矿物成分主要为高岭石、伊利石,含有少量的石英、长石、方解石等。此类煤矸石可作为生产聚合铝的原料。

铝硅比<0.3。这类煤矸石硅含量比铝含量相对高得多,矿物成分主要是石英、长石、方解石、菱铁矿等,含少量粘土矿物。质点粒径大,可塑性差。

总之,煤矸石的科学分类,为其综合利用与处置提供了方向。

表2-1 煤矸石分类大类

二、煤矸石山分类

1.煤矸石山的分类现状及意义

目前在煤矸石山的分类方面的理论和实践研究较少,而且大部分都是局域性煤矸石山分类,例如刘青柏等通过调查阜新地区煤矸石山的植被,根据煤矸石山的排矸年限、堆放高度和土壤风化层厚度对煤矸石山进行了分类,认为煤矸石山随着停止排矸年限增加,风化物养分状况逐渐改善。认为在排矸年限7年之内的煤矸石山上先锋植物处于优势地位;在排矸年限7~15年的煤矸石山上除生长先锋植物外,又出现适于山坡或草地生长的糙隐子草、丛生隐子草等多年生中旱生草本植物;在排矸年限15~25年的煤矸石山上先锋植物逐渐减少,逐渐出现了适合中生立地类型的植被。但是这种分类方式只是针对阜新地区的煤矸石山,根据煤矸石山已有的植被覆盖状况来研究的,对煤矸石山的地理位置、区域条件、山体构成等影响煤矸石山生态重建的因素缺乏综合的考虑。

张军等对阜新矿区煤矸石山的调查与分析,以能全面反映煤矸石山生态环境的三个主要因子——停止排矸年限、表层风化碎屑厚度、植物群落组成及盖度作为其生态分类的依据,将这一半干旱地区的煤矸石山的生态环境分为I度风化、Ⅱ度风化、Ⅲ度风化、Ⅳ度风化四种生态类型,并对各类型的特点进行描述,丰富了煤矸石山的分类理论。

通过对煤矸石山进行科学分类,可以掌握煤矸石山基质的物理化学性质和自然环境条件,为有效控制煤矸石环境污染和植被恢复和生态重建,乃至推动煤矸石资源化利用,都具有十分重要的理论和实际意义。

2.分类原则

煤矸石山分类的主要目的是植被恢复和生态重建。因此,在煤矸石山分类中应遵循了以下四个原则。

(1)综合性原则

由于影响煤矸石山生态重建的因素较多,对于煤矸石山的分类要综合考虑影响植物成活和生长的各种因素,使煤矸石山类型的划分能代表煤矸石山的主要特点,并能够在煤矸石山生态重建中指导规划和实践。

(2)可操作性原则

在煤矸石山分类指标选择中,为了能够合理地评价和分类煤矸石山,要选择具有代表性的指标。另外选择的指标要容易获得,以方便确定煤矸石山的类型和在规划中确定煤矸石山生态重建目标,并利于选择合理的工程技术方法。

(3)因地制宜原则

煤矸石山的分类坚持因地制宜的原则,就是要根据各地煤矸石山的实际情况和不同煤矸石山的特点,综合煤矸石山立地条件对植物成活和生长限制因子,结合煤矸石山的地形地貌和景观特色,划分煤矸石山的类型。

(4)景观协调原则

生态重建不仅是恢复煤矸石山的生态环境,还要结合煤矸石山的景观环境、人文环境和矿区的发展等创建煤矸石山的风景。因此,煤矸石山的景观特点和协调性作为与煤矸石山生态重建目标有关的重要因素,在分类中要有所体现。

3.煤矸石山分类体系

煤矸石山的分类体系的构建是以煤矸石山的生态重建为最终目标,通过煤矸石山分类体系的建立,能够为制定煤矸石山的生态重建目标、选择合理的工程措施和技术提供理论的支持。我们认为应主要根据煤矸石山的地域分布、堆积和积存过程中的变化、煤矸石山限制植物成活和生长的因素等对煤矸石山进行综合分类。

本书的煤矸石山的分类体系包含四个层次,即:以地域分布为依据的分类、以环境条件为依据的分类、以煤矸石山物理化学性状和地形特点为依据的分类和以煤矸石山生态重建限制因子为依据的分类。

第一层是以地域分布为依据的分类。地域的不同决定了不同区域有着不同的植被区划、自然环境条件、社会经济和人文环境条件。因此煤矸石山分类体系的第一层次是以煤矸石山的地域分布划分,可以划分为干旱地区煤矸石山、半干旱地区煤矸石山、半干旱半湿润地区煤矸石山、湿润地区煤矸石山(图2-1)。

图2-1 煤矸石山地域分布的分类

第二层次是以山体状况为依据的分类。煤矸石山自身的山体状况是煤矸石山生态重建的基础,决定了煤矸石山生态重建和景观创建的目标,并对煤矸石山生态重建技术措施的选择起着主导作用,影响煤矸石山生态重建工程的施工。因此,第二层次是以煤矸石山在堆积积存过程中发生的与植物定居和重建工程有关的变化为依据划分的。第二层包含了煤矸石山的自燃状况、堆积状况、风化层状况、地形状况等(图2-2)。

图2-2 煤矸石山山体状况的分类

第三层是以煤矸石山物理化学性状和地形特点为依据的分类。其中自燃状况包括发生自燃、部分自燃和无自燃;堆积状况包括堆积方式、位置、年限、高度等;风化层状况包括风化层厚度、土壤养分、土壤水分、酸性、重金属污染等;地形特点包括坡度、山体形状、景观状况等(图2-3)。

图2-3 煤矸石山分类体系的第三层次

第四层是以煤矸石山生态重建限制因子为依据的分类。该层的限制因子是在分类体系第三层的基础上,找出影响生态重建的各项重要因子,根据生态重建和景观设计的要求,提出相应的量值分类煤矸石山,以便于在生态重建规划和工程技术选择时作为依据。该层主要包括煤矸石山自燃状况的分类(表2-2)、堆积状况的分类(表2-3)、煤矸石山风化层状况的分类(表2-4)、煤矸石山地形地貌状况的分类(表2-5)。

对煤矸石进行分类后,有助于我们根据不同煤矸石山的特点,因地制宜地治理与复垦煤矸石山。如对于干旱地区的煤矸石山,由于地温高、极易蒸发,需要覆土复垦绿化,其他地区的煤矸石山都具有无覆土复垦绿化的可能。自燃是煤矸石山矿区环境污染和限制植物生长的主要因素,分类中将煤矸石山分为自燃、部分自燃和无自燃煤矸石山,煤矸石山的自燃与煤矸石山生态重建的立地改良和植物选择有关。对于正在自燃的煤矸石山往往需要先考虑灭火再考虑绿化措施;有自燃潜能的煤矸石山是指暂没自燃但有很大的自燃可能,甚至有的区域出现自燃前兆,对这类煤矸石山的绿化需要先采取措施防止自燃,做好防火措施,然后采取绿化措施;不自燃煤矸石山是指基本没有自燃可能的煤矸石山,这种立地条件可以直接复垦绿化。煤矸石山的堆积方式、位置、地形地貌等因素与煤矸石山生态重建的风景景观有密切的联系,可为煤矸石山的生态重建规划目标和风景景观规划设计提供依据。煤矸石山风化层的厚度、土壤养分、酸度等理化性质直接决定这煤矸石山的立地改良措施和植被恢复时植物种类的选择。煤矸石山坡度的大小是考虑植物生长、水土流失、地形整理工程等因素确定的。

表2-2 煤矸石山自燃分类

表2-3 煤矸石山堆积状况类型

续表

表2-4 煤矸石山风化层类型

表2-5 煤矸石山地形类型

总之,不同地区、不同的自燃情况、不同的风化程度和不同的地形条件,对煤矸石山治理与生态重建的技术要求是不同的,在进行煤矸石山治理与生态重建可行性分析和规划设计时,必须首先确定煤矸石山的类型。

4.煤矸石山实用分类体系

根据煤矸石山治理多年的实践,发现煤矸石的酸碱性对煤矸石山的治理起着举足轻重的作用。因此,我们将煤矸石山分为酸性和非酸性两类。酸性煤矸石山不仅污染严重,而且容易氧化产酸,极易引发自燃,是最难治理的一种,往往需要用覆盖、碱性处理、防灭火等特殊的措施进行治理;对非酸性煤矸石山,由于不容易自燃和产酸污染,治理的方法相对容易,甚至可以进行无覆盖土壤的植被恢复。

⑻ 煤质分析中,煤渣或者煤矸石与煤炭的发热量检测方法什么不一样的地方急求煤渣发热量检测方法!

发热量的测试方法一样,但煤渣发热量测试的样品发热量一般较低,应采用低热值物质的测试方法

⑼ 古冶矸石山的矸石成分

你可以到当地的地矿局叫他们帮你标定

由于学校一般没有那些设备,而且煤矸石成分复杂

用EDTA,滴定等方法得出的答案都不很准

⑽ 煤矸石的化学成分怎么分析啊要用什么仪器分析

GC-MS

阅读全文

与矸石分析方法相关的资料

热点内容
纹身转印纸怎么使用方法 浏览:243
预防衰老的方法有哪些 浏览:241
倾角传感器测量的方法 浏览:111
鹿盘的用食用方法 浏览:199
中药商品特定部位的检测方法 浏览:70
冬天的菠萝蜜树怎么种植方法 浏览:613
语言功能锻炼方法图片 浏览:993
闪频仪使用方法 浏览:750
倒刺扎得太深怎么办最简单方法 浏览:6
高中学霸刷题技巧和方法 浏览:827
手机内存占用方法 浏览:23
华为l900安装方法 浏览:291
玉树人参果的作用和食用方法 浏览:822
玛塔龟捕食方法视频 浏览:250
照度检测仪使用方法 浏览:836
在酒店怎么去除血渍最好方法 浏览:277
鲜荷花食用方法 浏览:766
小米手机9008模式进入方法 浏览:964
脸部下垂怎么恢复最简单的方法 浏览:34
睑黄瘤最新治疗方法 浏览:865