导航:首页 > 研究方法 > 试验方法统计分析

试验方法统计分析

发布时间:2022-03-09 07:11:00

Ⅰ 实验数据如何进行统计学分析

分析方法太多了
我替别人做这类的数据分析蛮多的

Ⅱ 如何进行临床试验数据统计分析

统计学方法的正确抉择
一。
统计方法抉择的条件
在临床科研工作中,正确地抉择统计分析方法,应充分考虑科研工作者的分析目的、临床科研设计方法、搜集到的数据资料类型、数据资料的分布特征与所涉及的数理统计条件等。
其中任何一个问题没考虑到或考虑有误,都有可能导致统计分析方法的抉择失误。
此外,统计分析方法的抉择应在科研的设计阶段来完成,而不应该在临床试验结束或在数据的收集工作已完成之后。
对临床科研数据进行统计分析和进行统计方法抉择时,应考虑下列因素:
1.分析目的
对于临床医生及临床流行病医生来说,在进行统计分析前,一定要明确利用统计方法达到研究者的什么目的。
一般来说,统计方法可分为描述与推断两类方法。
一是统计描述(descriptivestatistics),二是统计推断(inferentialstatistics)。
统计描述,即利用统计指标、统计或统计表,对数据资料所进行的最基本的统计分析,使其能反映数据资料的基本特征,有利于研究者能准确、全面地了解数据资料所包涵的信息,以便做出科学的推断。
统计表,如频数表、四格表、列联表等;
统计,如直方、饼,散点等;
统计指标,如均数、标准差、率及构成比等。
统计推断,即利用样本所提供的信息对总体进行推断(估计或比较),其中包括参数估计和假设检验,如可信区间、t检验、方差分析、c2检验等,如要分析甲药治疗与乙药治疗两组的疗效是否不相同、不同地区某病的患病率有无差异等。
还有些统计方法,既包含了统计描述也包含了统计推断的内容,如不同变量间的关系分析。
相关分析,可用于研究某些因素间的相互联系,以相关系数来衡量各因素间相关的密切程度和方向,如高血脂与冠心病、慢性宫颈炎与宫颈癌等的相关分析;
回归分析,可用于研究某个因素与另一因素(变量)的依存关系,即以一个变量去推测另一变量,如利用回归分析建立起来的回归方程,可由儿童的年龄推算其体重。
2.资料类型
资料类型的划分现多采用国际通用的分类方法,将其分为两类:数值变量(numericalvariable)资料和分类变量(categoricalvariable)资料。
数值变量是指其值是可以定量或准确测量的变量,其表现为数值大小的不同;
而分类变量是指其值是无法定量或不能测量的变量,其表现没有数值的大小而只有互不相容的类别或属性。
分类变量又可分为无序分类变量和有序分类变量两小类,无序分类变量表现为没有大小之分的属性或类别,如:性别是两类无序分类变量,血型是四类无序分类变量;
有序分类变量表现为各属性或类别间有程度之分,如:临床上某种疾病的“轻、中、重”,治疗结果的“无效、显效、好转、治愈”。
由此可见,数值变量资料、无序分类变量资料和有序分类变量资料又可叫做计量资料、计数资料和等级资料。
资料类型的划分与统计方法的抉择有关,在多数情况下不同的资料类型,选择的统计方法不一样。
如数值变量资料的比较可选用t检验、u检验等统计方法;
而率的比较多用c2检验。
值得注意的是,有些临床科研工作者,常常人为地将数值变量的结果转化为分类变量的临床指标,然后参与统计分析,如患者的血红蛋白含量,研究者常用正常、轻度贫血、中度贫血和重度贫血来表示,这样虽然照顾了临床工作的习惯,却损失了资料所提供的信息量。
换言之,在多数情况下,数值变量资料提供的信息量最为充分,可进行统计分析的手段也较为丰富、经典和可靠,与之相比,分类变量在这些方面都不如数值变量资料。
因此,在临床实验中要尽可能选择量化的指标反映实验效应,若确实无法定量时,才选用分类数据,通常不宜将定量数据转变成分类数据。
3.设计方法
在众多的临床科研设计方法中,每一种设计方法都有与之相适应的统计方法。
在统计方法的抉择时,必须根据不同的临床科研设计方法来选择相应的统计分析方法。
如果统计方法的抉择与设计方法不一致,统计分析得到的任何结论都是错误的。
在常用的科研设计方法中,有成组设计(完全随机设计)的t检验、配对t检验、成组设计(完全随机设计)的方差分析、配伍设计(随机区组设计)的方差分析等,都是统计方法与科研设计方法有关的佐证。
因此,应注意区分成组设计(完全随机设计)与配对和配伍设计(随机区组设计),在成组设计中又要注意区别两组与多组设计。
最常见的错误是将配对或配伍设计(随机区组设计)的资料当做成组设计(完全随机设计)来处理,如配对设计的资料使用成组t检验、配伍设计(随机区组设计)使用成组资料的方差分析;
或将三组及三组以上的成组设计(完全随机设计)资料的比较采用多个t检验、三个或多个率的比较采用四格表的卡方检验来进行比较,都是典型的错误。
如下表:
表1常见与设计方法有关的统计方法抉择错误
设计方法错误的统计方法正确统计方法
两个均数的比较(成组设计、完全随机设计)成组设计的t检验、成组设计的秩和检验
多个均数的比较(成组设计、完全随机设计)多个成组设计的t检验完全随机设计的方差分析及q检验、完全随机设计的秩和检验及两两比较
数值变量的配对设计成组设计的t检验配对t检验、配对秩和检验
随机区组设计(配伍设计)多个成组设计的t检验、完全随机设计的方差分析随机区组设计的方差分析及q检验、随机区组设计的秩和检验及两两比较
交叉设计成组设计的t检验、配对t检验、配对秩和检验交叉设计的方差分析、交叉设计的秩和检验
4.分布特征及数理统计条件
数理统计和概率论是统计的理论基础。
每种统计方法都要涉及数理统计公式,而这些数理统计公式都是在一定条件下推导和建立的。
也就是说,只有当某个或某些条件满足时,某个数理统计公式才成立,反之若不满足条件时,就不能使用某个数理统计公式。
在数理统计公式推导和建立的条件中,涉及最多的是数据的分布特征。
数据的分布特征是指数据的数理统计规律,许多数理统计公式都是在特定的分布下推导和建立的。
若实际资料服从(符合)某种分布,即可使用该分布所具有的数理统计规律来分析和处理该实际资料,反之则不能。
在临床资料的统计分析过程中,涉及得最多的分布有正态分布、偏态分布、二项分布等。
许多统计方法对资料的分布有要求,如:均数和标准差、t和u检验;
方差分析都要求资料服从正态分布,而中位数和四分位数间距、秩和检验等,可用于不服从正态分布的资料。
所以,临床资料的统计分析过程中,应考虑资料的分布特征,最起码的要求是熟悉正态分布与偏态分布。
例如:在临床科研中,许多资料的描述不考虑资料的分布特征,而多选择均数与标准差。
如某妇科肿瘤化疗前的血象值,资料如下表:
某妇科肿瘤化疗前的血象值
指标名例数均数标准差偏度系数P值峰度系数P值
血红蛋白(g/L)98111.9918.820.1800.4590.0250.958
血小板(×109/L)98173.5887.111.3530.0001.8430.000
白细胞(×109/L)986.79302.7671.2070.0001.2020.013
从上结果可见,若只看三项指标的均数和标准差,临床医生也许不会怀疑有什么问题。
但是经正态性检验,病人的血红蛋白服从正态分布,而血小板和白细胞两项指标的偏度和峰度系数均不服从正态分布(P<0.05)。
因此,描述病人的血小板和白细胞平均水平正确的指标是中位数,而其变异程度应使用四分位数间距。
除了数据的分布特征外,有些数理统计公式还有其它一些的条件,如t检验和方差分析的方差齐性、卡方检验的理论数(T)大小等。
总之,对于临床科研工作者来说,为正确地进行统计方法的抉择,首先要掌握或熟悉上述影响统计方法抉择因素;
其次,还应熟悉和了解常用统计方法的应用条件。
二。
数据资料的描述
统计描述的内容包括了统计指标、统计和表,其目的是使数据资料的基本特征更加清晰地表达。
本节只讨论统计指标的正确选用,而统计表的正确使用请参阅其他书籍。
1.数值变量资料的描述
描述数值变量资料的基本特征有两类指标,一是描述集中趋势的指标,用以反映一组数据的平均水平;
二是描述离散程度的指标,用以反映一组数据的变异大小。
各指标的名称及适用范围等见表2。
表2描述数值变量资料的常用指标
指标名称用途适用的资料
均数(X——)
描述一组数据的平均水平,集中位置正态分布或近似正态分布
中位数(M)与均数相同偏态分布、分布未知、两端无界
几何均数(G)与均数相同对数正态分布,等比资料
标准差(S)
描述一组数据的变异大小,离散程度
正态分布或近似正态分布
四分位数间距
(QU-QL)与标准差相同偏态分布、分布未知、两端无界
极差(R)与标准差相同观察例数相近的数值变量
变异系数(CV)与标准差相同比较几组资料间的变异大小
从表中可看出,均数与标准差联合使用描述正态分布或近似正态分布资料的基本特征;
中位数与四分位数间距联合使用描述偏态分布或未知分布资料的基本特征。
这些描述指标应用时,最常见的错误是不考虑其应用条件的随意使用,如:用均数和标准差描述偏态分布、分布未知或两端无界的资料,这是目前在临床研究文献中较为普遍和典型的错误。

Ⅲ 我的实验应该用什么统计方法检测

方差分析和回归分析

样品越多,分析越准确

Ⅳ 实验心理学 统计分析方法有哪些

统计检验方法很多啊,如参数检验当中的t检验、z检验、非参数检验当中的秩和检验、卡方检验;相关分析、回归分析、logistics回归分析、生存分析等等。

Ⅳ 如何分析三种试验方法结果的相关性

分析:
统计学意义(p值)
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。

如何判定结果具有真实的显着性
在最后结论中判断什么样的显着性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显着性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。

所有的检验统计都是正态分布的吗?
并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。

1统计软件的选择
在进行统计分析时,作者常使用非专门的数理统计软件Excel进行统计分析。由于Excel提供的统计分析功能十分有限,很难满足实际需要。目前,国际上已开发出的专门用于统计分析的商业软件很多,比较着名有SPSS(Statistical Package for Social Sciences)、SAS(Statistical Analysis System)、BMDP和STATISTICA等。其中,SPSS是专门为社会科学领域的研究者设计的(但是,此软件在自然科学领域也得到广泛应用);BMDP是专门为生物学和医学领域研究者编制的统计软件。目前,国际学术界有一条不成文的约定:凡是用SPSS和SAS软件进行统计分析所获得的结果,在国际学术交流中不必说明具体算法。由此可见,SPSS和SAS软件已被各领域研究者普遍认可。建议作者们在进行统计分析时尽量使用这2个专门的统计软件。

2均值的计算
在处理实验数据或采样数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。此时,多数作者会不假思索地直接给出算术平均值和标准差。显然,这种做法是不严谨的。在数理统计学中,作为描述随机变量总体大小特征的统计量有算术平均值、几何平均值和中位数等。何时用算术平均值?何时用几何平均值?以及何时用中位数?这不能由研究者根据主观意愿随意确定,而要根据随机变量的分布特征确定。反映随机变量总体大小特征的统计量是数学期望,而在随机变量的分布服从正态分布时,其总体的数学期望就是其算术平均值。此时,可用样本的算术平均值描述随机变量的大小特征。如果所研究的随机变量不服从正态分布,则算术平均值不能准确反映该变量的大小特征。在这种情况下,可通过假设检验来判断随机变量是否服从对数正态分布。如果服从对数正态分布,则可用几何平均值描述该随机变量总体的大小。此时,就可以计算变量的几何平均值。如果随机变量既不服从正态分布也不服从对数正态分布,则按现有的数理统计学知识,尚无合适的统计量描述该变量的大小特征。退而求其次,此时可用中位数来描述变量的大小特征。

3相关分析中相关系数的选择
在相关分析中,作者们常犯的错误是简单地计算Pearson积矩相关系数,而且既不给出正态分布检验结果,也往往不明确指出所计算的相关系数就是Pearson积矩相关系数。常用的相关系数除有Pearson积矩相关系数外,还有Spearman秩相关系数和Kendall秩相关系数等。其中,Pearson积矩相关系数可用于描述2个随机变量的线性相关程度(相应的相关分析方法称为“参数相关分析”,该方法的检验功效高,检验结果明确);Spearman或Kendall秩相关系数用来判断两个随机变量在二维和多维空间中是否具有某种共变趋势,而不考虑其变化的幅度(相应的相关分析称为“非参数相关分析”,该方法的检验功效较参数方法稍差,检验结果也不如参数方法明确)。各种成熟的统计软件如SPSS、SAS等均提供了这些相关系数的计算模块。在相关分析中,计算各种相关系数是有前提的。对于二元相关分析,如果2个随机变量服从二元正态分布,或2个随机变量经数据变换后服从二元正态分布,则可以用Pearson积矩相关系数描述这2个随机变量间的相关关系(此时描述的是线性相关关系),而不宜选用功效较低的Spearman或Kendall秩相关系数。如果样本数据或其变换值不服从正态分布,则计算Pearson积矩相关系数就毫无意义。退而求其次,此时只能计算Spearman或Kendall秩相关系数(尽管这样做会导致检验功效的降低)。因此,在报告相关分析结果时,还应提供正态分布检验结果,以证明计算所选择的相关系数是妥当的。需要指出的是,由于Spearman或Kendall秩相关系数是基于顺序变量(秩)设计的相关系数,因此,如果所采集的数据不是确定的数值而仅仅是秩,则使用Spearman或Kendall秩相关系数进行非参数相关分析就成为唯一的选择。

4相关分析与回归分析的区别
相关分析和回归分析是极为常用的2种数理统计方法,在地质学研究领域有着广泛的用途。然而,由于这2种数理统计方法在计算方面存在很多相似之处,且在一些数理统计教科书中没有系统阐明这2种数理统计方法的内在差别,从而使一些研究者不能严格区分相关分析与回归分析。最常见的错误是,用回归分析的结果解释相关性问题。例如,作者将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2(拟合度,或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。这些情况在国内极为普遍。

相关分析与回归分析均为研究2个或多个随机变量间关联性的方法,但2种数理统计方法存在本质的差别,即它们用于不同的研究目的。相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析。这是相关分析方法本身所决定的。对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(规范的叫法是“固定变量”,有确定的取值)也可以是随机变量。如果自变量是普通变量,采用的回归方法就是最为常用的“最小二乘法”,即模型Ⅰ回归分析;如果自变量是随机变量,所采用的回归方法与计算者的目的有关---在以预测为目的的情况下,仍采用“最小二乘法”,在以估值为目的的情况下须使用相对严谨的“主轴法”、“约化主轴法”或“Bartlett法”,即模型Ⅱ回归分析。显然,对于回归分析,如果是模型Ⅰ回归分析,就根本不可能回答变量的“相关性”问题,因为普通变量与随机变量之间不存在“相关性”这一概念(问题在于,大多数的回归分析都是模型Ⅰ回归分析!)。此时,即使作者想描述2个变量间的“共变趋势”而改用相关分析,也会因相关分析的前提不存在而使分析结果毫无意义。如果是模型Ⅱ回归分析,鉴于两个随机变量客观上存在“相关性”问题,但因回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此,若以预测为目的,最好不提“相关性”问题;若以探索两者的“共变趋势”为目的,建议作者改用相关分析。

Ⅵ elisa试验结果数据怎么统计分析

可以分析
1.不同时期抗体水平的变化(OD值),即对照组与实验组有无区别(统计学上的区别)。
2.分析个体动物抗体水平达到明显高于对照组的时间差异,用方差分析先看总体上有无差异,然后两比较,看出现差异的每对之间是否由于一些相同的因素而导致了差异的出现,如年龄、性别、体重。
3.影响抗体产生的因素很多,如注射的部位、注射时的情况(准确与与否,量的多少等)、有无使用佐剂、佐剂的配制好坏、免疫的频率、动物的健康状况等均可影响抗体的产生,细致的分析需要做好这些详细的记录,这样在后面的分析当中才能排除一些技术上的因素,随机误差等,真正的分析出动物怎样的本身性质因素导致了抗体的产生差异。

Ⅶ 如何对两种不同实验方法测定同一指标的数据进行统计学分析

首先要判断两组数据是否是正态分布资料,两组是否方差齐,
然后可以计算两组的均数进行t检验
如果不满足正态分数,需要进行数据变换
实在不行的话,最后用秩和检验

Ⅷ 请问试验设计与统计学的关系是什么

试验设计是统计学中数理统计的一个分支。

从20世纪20年代费希尔(R.A.Fisher)在农业生产中使用试验设计方法以来,试验设计方法已经得到广泛的发展,统计学家们发现了很多非常有效的试验设计技术。

20世纪50年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化,在方法解说方面深入浅出为试验设计的更广泛使用作出了众所周知的贡献。

(8)试验方法统计分析扩展阅读

一个实验的设计,即对实验的一种安排,需要考虑实验所要解决的问题类型、对结论赋予何种程度的普遍性、希望以多大功效作检验、试验单元的齐性、每次试验的耗资耗时等方面,选取适当的因子和相应的水平,从而给出实验实施的具体程序和数据分析的框架。

所谓试验的统计设计,就是设计试验的过程,使得收集的数据适合于用统计方法分析,得出有效的和客观的结论。如果想从数据作出有意义的结论,用统计方法作试验设计是必要的。当问题涉及到受试验误差影响的数据时,只有统计方法才是客观的分析方法。

参考资料来源:网络-试验设计

Ⅸ 请教一个统计学方面的问题:旷场试验数据的统计方法

可以做最简单的假设检验,测试,实验前和后,两组数据的平均水平是相同的

Ⅹ 常用统计分析方法

数据分析师针对不同业务问题可以制作各种具体的数据模型去分析问题,运用各种分析方法去探索数据,这里介绍最常用的三种分析方法,希望可以对您的工作有一定的的帮助

文中可视化图表均使用DataFocus数据分析工具制作。

1.相关分析

相关分析显示变量如何与另一个变量相关。例如,它显示了计件工资是否会带来更高的生产率。

2.回归分析

回归分析是对一个变量值与另一个变量值之间差异的定量预测。回归模拟依赖变量和解释变量之间的关系,这些变量通常绘制在散点图上。您还可以使用回归线来显示这些关系是强还是弱。

另请注意,散点图上的异常值非常重要。例如,外围数据点可能代表公司最关键供应商或畅销产品的输入。但是,回归线的性质通常会让您忽略这些异常值。

3.假设检验

假设检验是基于某些假设并从样本到人口的数理统计中的统计分析方法。主要是为了解决问题的需要,对整体研究提出一些假设。通常,比较两个统计数据集,或者将通过采样获得的数据集与来自理想化模型的合成数据集进行比较。提出了两个数据集之间统计关系的假设,并将其用作理想化零假设的替代方案。建议两个数据集之间没有关系。

在掌握了数据分析的基本图形和分析方法之后,数据分析师认为有一点需要注意:“在没有确认如何表达你想要解决的问题之前,不要开始进行数据分析。”简而言之,如果您无法解释您试图用数据分析解决的业务问题,那么没有数据分析可以解决问题。

阅读全文

与试验方法统计分析相关的资料

热点内容
纹身转印纸怎么使用方法 浏览:243
预防衰老的方法有哪些 浏览:241
倾角传感器测量的方法 浏览:111
鹿盘的用食用方法 浏览:199
中药商品特定部位的检测方法 浏览:70
冬天的菠萝蜜树怎么种植方法 浏览:613
语言功能锻炼方法图片 浏览:993
闪频仪使用方法 浏览:750
倒刺扎得太深怎么办最简单方法 浏览:6
高中学霸刷题技巧和方法 浏览:827
手机内存占用方法 浏览:23
华为l900安装方法 浏览:291
玉树人参果的作用和食用方法 浏览:822
玛塔龟捕食方法视频 浏览:250
照度检测仪使用方法 浏览:836
在酒店怎么去除血渍最好方法 浏览:277
鲜荷花食用方法 浏览:766
小米手机9008模式进入方法 浏览:964
脸部下垂怎么恢复最简单的方法 浏览:34
睑黄瘤最新治疗方法 浏览:865