Ⅰ 自激振荡的条件是什么
产生自激振荡必须同时满足两个条件:
1、幅度平衡条件|AF|=1
2、相位平衡条件φA+φF=2nπ(n=0,1,2,3···)
其中,A指基本放大电路的增益(开环增益),F指反馈网络的反馈系数。
同时起振必须满足|AF|略大于1的起振条件。

(1)求解自激振动用什么方法扩展阅读:
自激振荡原理是接通电源瞬间,由于电路的扰动,放大器输入端得到一个信号,到输出端就被放大了许多倍,输出端的这个大信号又被送到输入端,到输出端就变得更大,如此周而复始,信号越来越大,大到放大器的非线性出现,信号才会稳定在一定的幅度输出。如此就得到稳定的自激输出了。这就是自激震荡产生的过程。
自激振荡常用补偿方法有电容滞后补偿:在放大电路中选择时间常数最大的回路内对地并联一个小电容,这样当相移处于180度时,其高频放大倍数幅值下降到0以下,由于这种补偿是该频率所对应的相位滞后,故称滞后补偿。其他还有RC滞后补偿和密勒效应补偿。
振荡器几种分类:
根据频率有:低频振荡器,中频振荡器,高频振荡器等。
根据原理有:自激振荡器,他激振荡器,压控振荡器,变频振荡器,石英、RC、LC、....等。
根据输出有:正弦波振荡器,脉冲波振荡器,X射线、激光、....。
当然电路有许多形式。为了效率高脉冲更有优越性。
在放大电路中,为了改善电路性能,通常引入负反馈(中频区)。当电路附加相移(高频区或低频区)改变了反馈信号的极性时,电路中的负反馈就会变成正反馈。此时,若反馈环路增益满足一定条件,电路就会产生自激振荡。这是有害的,应当消除。
在振荡电路中,人为地引入正反馈,并使反馈环路增益满足一定的条件,那么,电路在没有外部激励的情况下会产生输出信号,即产生自激振荡。无论在放大电路还是在振荡电路中,自激振荡的本质是相同的。即振荡时电路中的反馈一定是正反馈,并且反馈环路增益必须满足一定的条件。
Ⅱ 消除和减小自激振动的途径有哪些
自激振荡的产生大致上由下列两方面产生:
一、产生自激振荡的原因是因为在负反馈过程中,由于电路内部电容的作用输入信号在被放大输出后,产生了180度的相移,使本来的负反馈变成了正反馈,如果电路增益与反馈系数之积又大于1,那么将会产生振荡.消除振荡的方法大致有:1.在电路的反馈支路上并接电容实现超前相位补偿,使得输出反馈回输入端信号的相位与输入信号相位的差尽量在135度以下(即相位裕量大于等于45度).2.滞后相位补偿:通过在输入端并接电容,减小电路的增益,使得增益与反馈系数的乘积小于1即可防止振荡产生.
二、另外,由于电源内阻不为0,所以可能从输出端通过电源内阻反馈回输入端并且在相位合适的条件下产生自激.消除方法是在输入级的偏置电路与电源之间接上合适阻值的电阻,减小通过电源内阻的反馈信号,只要电阻足够大,就可以防止自激震荡的产生.
Ⅲ 自激振动的详细内容
自激振动系统为能把固定方向的运动变为往复运动(振动)的装置,它由三部分组成:①能源,用以供给自激振动中的能量消耗;②振动系统;③具有反馈特性的控制和调节系统。
振动系统和控制系统间的联系,有纯机械的联系,也有力学的或物理特性的联系。分析自激振动时,必须研究这种联系和反馈过程,才能更好地了解自激振动的特性,提出改进措施。
自激振动的稳定状态由能量平衡确定,即从能源送入振动系统的能量等于系统所消耗的能量。在这一点上可分为两种情形:如果自激振动的频率是给定的,那么能量平衡的条件就确定自激振动的稳定振幅;如果自激振动的振幅是给定的,那么能量平衡的条件就确定自激振动的频率。

Ⅳ 哪位大侠知道自激震荡的消除方法啊
自激振荡分很多种,请问您是什么情况请说清楚 。做分立元件的还是芯片自激了还是什么情况自激了
Ⅳ 什么是自激振动有何特点
自激振荡(英语:Self-exciting oscillation)是出现在工程、经济及生物学中的现象。自激振荡的理论基础是由亚历山大·安德罗诺夫在1928年提出。
自激振荡是一个以时间延迟微分方程闭回路来描述系统的的自然结果。其变数N的变动是由变数N+1所造成,但其中存在一时间差,其变数N+1的变动是由变数N+2所造成,但其中也存在一时间差……,其变数N的变动是由变数N+x所造成,而其中仍存在一时间差。
自激振动是机械系统内部流体由非振动性的激发转变为振动性激发而引起的振动。例如管壳式换热器内由于某根管子偏离原先位置且产生位移,就会引起周围流场改变,并破坏邻近管子力的平衡,使它们受到波动力作用并在自振频率下发生振动。振动一旦开始,振幅将急剧增大,振动率不仅与流速有关,还与周围管子的共振率有关。流体诱发的这种振动是流体流动与管子运动相互之间动力作用的结果,属于一种流体弹性激振。

(5)求解自激振动用什么方法扩展阅读:
工程中的例子
1、铁路和火车车轮
火车车轮的蛇行振荡及车辆轮胎的加快摆动会产生令人不适的摆动效应,严重时甚至会造成火车脱轨或轮胎失去抓地力。
2、中央供暖恒温器
早期中央供暖的恒温器因为反应太快,会有自激振荡的情形,后来此问题是用迟滞现象来克服,也就是当温度偏离目标值达到一定数值后才允许切换状态。
3、方向修正
有许多例子是因为方向修正延迟造成的自激振荡,从在强风中的轻航机到不熟练或是酒醉驾驶人的不稳定驾驶等。
4、SEIG(自激感应发电机)
若异步马达连接一个电容,而轴旋转超过临界速度,会出现电机的振荡,结果就像在端子上有线电压一様,而且可以有实用的用途,例如有开源的发电机都以这种原理来运作[1]。
Ⅵ 自激振动与自由振动的区别
我是学力学的,自由振动部分老师详细的讲了,包括振动的解,但自激振动太复杂,只讲了理论性的部分,计算没有详细讲。 下面是我的回答:
自激振动:激励是受系统振动本身控制的,在适当的反馈作用下,系统将自动的激起定幅的振动。但是,一旦系统的振动被抑止,激励也就随着消失。
自由振动:系统受初始激励作用(以后不再受外界激励),也就是在特定的初始位移或初始速度下的振动。
以上摘自国防工业大学的《振动力学》,是我们力学系的教材。
自由振动和自激振动的本质区别在于,自由振动的激励来自外界,并且只在初始受激励;而自激振动的激励来自自身,并一直存在。
自由振动很简单,比如一根弹簧受初始拉力,拉力卸载后的振动;自激振动如夯土机,机器里有偏心转子,利用自身转动时的偏心力产生振动。
以上~
Ⅶ 什么叫自激振动有什么特点
自激振动,是系统受到一个微小的干扰信号时,可以在系统内部形成不同形式能量间的自动重复性转化过程。
自激振动的形成依赖于初始振动的存在,因为若没有初始振动,也就没有可以反馈的信号,系统不能“起振”。
Ⅷ 自激振动有什么特点
自激振动又称为负阻尼振动。也就是说振动本身运动所产生阻尼力非但不阻止运动反而将进一步加剧这种运动。这种振动与外界激励无关,完全是自己激励自己,故又称为自激振动。
Ⅸ 自激振荡原理是什么
自激震荡是指不外加激励信号而自行产生的恒稳和持续的振荡。
从数学的角度出发,它是一种出现于某些非线性系统中的一种自由振荡。
一个典型例子是范达波尔(VanderPol)方程所描述的系统,方程形式为mx¨-f(1-x2)x·-kx=0(m>0,f>0,k>0)。
其中x·和x¨为变量x的一阶和二阶导数。
分析表明:当x的值很小时,阻尼f是负的,因而运动发散;当x的值很大时,阻尼f是正的,因而运动衰减。

(9)求解自激振动用什么方法扩展阅读:
一、产生自激振荡条件
1、幅度平衡条件|AF|=1
2、相位平衡条件φA+φF=2nπ(n=0,1,2,3···)其中,A指基本放大电路的增益(开环增益)。
F指反馈网络的反馈系数同时起振必须满足|AF|略大于1的起振条件基本放大电路必须由多级放大电路构成,以实现很高的开环放大倍数。
然而在多级放大电路的级间加负反馈,信号的相位移动可能使负反馈放大电路工作不稳定,产生自激振荡。
负反馈放大电路产生自激振荡的根本原因是AF(环路放大倍数)附加相移.单级和两级放大电路是稳定的,而三级或三级以上的负反馈放大电路。
只要有一定的反馈深度,就可能产生自激振荡,因为在低频段和高频段可以分别找出一个满足相移为180度的频率(满足相位条件),此时如果满足幅值条件|AF|=1,则将产生自激振荡。
因此对三级及三级以上的负反馈放大电路,必须采用校正措施来破坏自激振荡,达到电路稳定工作目的。
二、正弦波振荡电路的组成
从上述分析可知,正弦波振荡电路从组成上看必须有以下四个基本环节。
(1)放大电路:保证电路能够由从起振到动态平衡的过程,是电路获得一定幅值的输出量,实现能量的控制。
(2)选频网络:确定电路的振荡频率,使电路产生单一频率的振荡,即保证电路产生正弦波振荡。
(3)正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号。
(4)稳幅环节:也就是非线性环节,作用是使输出信号幅值稳定。
在不少实用电路中,常将选频网络和正反馈网络“合二为一”;而且,对于分立元件放大电路,也不再另加稳幅环节,而依靠晶体管特性的非线性起到稳幅作用。
正弦波振荡电路常根据选频网络所用元件来命名,分为RC正弦波振荡电路、LC正弦波振荡电路和石英晶体正弦波振荡电路3种类型。
RC正弦波振荡电路振荡频率较低,一般在1MHz以下;LC正弦波振荡电路振荡频率较高,一般在1MHz以上;石英晶体正弦波振荡电路也可以等效为LC正弦波振荡电路,其特点是振荡频率非常稳定。
Ⅹ 自激振荡是利用什么反馈工作的
自激震荡是指不外加激励信号而自行产生的恒稳和持续的振荡。如果在放大器的输入端不加输入信号,输出端仍有一定的幅值和频率的输出信号,这种现象就是自激振荡。