A. 判别分析的验证方法
对于判别分析,用户往往很关心建立的判别函数用于判别分析时的准确度如何。通常的效果验证方法如自身验证、外部数据验证、样品二分法、交互验证、Bootstrap法。
B. 判别分析的基本原理
是用于判别样品所属类型的一种统计分析方法,是根据表明事物特点的变量值和他们所属的类,求出判别函数,根据判别函数对未知所属类别的食物进行分类的一种分析方法。
C. 判别分析方法、聚类分析方法、HMM方法简介
三个学分的通选课,A类
曾经作为力学系的限选课开出.
欢迎大二以上有数理基础的同学选修.
《生物信息学算法导论》课程介绍
课程英文名:Introction to Computational Biology
课程号:00331440
开课单位:力学系、理论生物学中心
开课教师:朱怀球
上课时间:每周四晚
上课地点:理教201
选课地点、时间:三教103,9月5日星期五上午8:00~12:00
一、课程设置目的及主要内容
随着人类基因组计划的不断推进,运用理论模型和数值计算研究生命科学,已经成为一门 最吸引人的新兴学科,是当今生命科学和自然科学的核心领域和最具活力的前沿领域之一 。生物信息学/计算生物学以现代分子生物学数据作为主要研究对象,发展理论模型和计算方法,揭示以基因组信息结构为主的生物复性,以及生长、发育、遗传、进化等生命 现象的根本规律。本课程主要为具有数理背景的大学二年级以上本科生(含大二)和相关领域的研究生开设,偏重理论建模和算法的学习。首先介绍当代生命科学的发展和现状, 然后介绍计算生物学中几种主要的研究方法,包括统计学方法、Markov过程模型、信息论方法、机器学习方法等,并结合当今生物信息学领域的最新进展,讨论上述各种方法实际研究中的应用(包括基因序列信息分析、基因预测、分子进化及系统发育树和蛋白质调控网络等重要问题)。 本课程注重学科交叉、融合,以介绍思想、方法为主,深入浅出,避免繁琐、抽象的数学形式,启发学生综合运用数学、物理、工程科学和计算机知识的能力,拓宽知识面,了解学科前沿和最新进展,培养跨越生命科学、计算科学、数理科学等不同领域的“大科学”素质和意识,为今后选择新兴交叉学科领域进行深造奠定基础。
二、课程大纲
第1章 绪论 (1学时)
从人类基因组计划说起
计算生物学——后基因组时代的呼唤
计算生物学主要研究内容和方法
以生命科学为核心的“大科学”
第2章 生物学基础 (5学时)
What is life?——从薛定锷的思考到“双螺旋”的发现
生命的演化和分类
生命的分子组成
遗传的分子基础
基因组与基因结构
第3章 生物信息数据库和计算生物学主要问题 (3学时)
生物信息数据库简介
计算生物学主要问题之一:序列比对
计算生物学主要问题之二:核酸和蛋白质结构与功能预测
计算生物学主要问题之三:基因组序列分析
计算生物学主要问题之四:功能基因组相关信息分析
第4章 计算生物学的统计学方法 (10学时)
统计方法的基本概念
回归分析方法及其应用
判别分析方法及其应用
聚类分析方法及其应用
第5章 计算生物学的Markov过程模型 (6学时)
Markov过程的基本概念
隐Markov模型(HMM)的基本原理
HMM模型的计算生物学应用
第6章 生物学的信息论基础 (6学时)
信源与信息熵
离散信道与平均互信息
编码理论简介
生物遗传信息的传递
第7章 遗传算法和人工神经网络方法简介 (8学时)
遗传算法的基本原理和方法
遗传算法与人工生命模型
人工神经网络的基本概念
人工神经网络的模式识别算法
第8章 生物信息学/计算生物学的若干重要问题 (6学时)
基因预测算法和软件
分子进化与系统发育
基因调控网络
三、本课程考试方式
在老师指导下,结合所讲内容进行学科调研,要求同学在期中、期末分别完成两次调研论 文,论文题目不限。
D. 判别分析的应用
在气候分类、农业区划、土地类型划分中有着广泛的应用。
在市场调研中,一般根据事先确定的因变量(例如产品的主要用户、普通用户和非用户、自有房屋或租赁、电视观众和非电视观众)找出相应处理的区别特性。在判别分析中,因变量为类别数据,有多少类别就有多少类别处理组;自变量通常为可度量数据。通过判别分析,可以建立能够最大限度的区分因变量类别的函数,考查自变量的组间差异是否显着,判断那些自变量对组间差异贡献最大,评估分类的程度,根据自变量的值将样本归类。
应用范围
1)信息丢失
2)直接的信息得不到
3)预报
4)破坏性实验
假设条件
1)分组类型在两种以上,且组间样本在判别值上差别明显。
2)组内样本数不得少于两个,并且样本数量比变量起码多两个。
3)所确定的判别变量不能是其他判别变量的线性组合。
4)各组样本的协方差矩阵相等。
5)各判别变量之间具有多元正态分布。
6)样品量应在所使用的自变量个数的10~20倍以上时,建立的判别函数才比较稳定;而自变量个数在8~10之间时,函数的判别效果才能比较理想。当然,在实际工作中判别函数的自变量个数往往会超过10个,但应该注意的是,自变量的个数多并不代表效果好
spss操作:“分析”~“分类”~“判别”~进入判别分析主对话框。
这里有容易引起歧义的二个变量,最上面的为分组变量。对分组变量的了解需要联系判别分析的原理以及适用范围。因为判别分析是已知分类数目的情况下,进行分析,这个已知的分类数目就是这个分组变量。其实,一般分析步骤中,都是先进行聚类分析,聚类之后得到的分类结果就是这个分组变量,然后再选择这个分组变量,进行分析。也就是,聚类分析是母亲,母亲的孩子就是判别分析。得到的判别函数就是预测想要知道的个案究竟属于哪一类。另一个变量就是选择变量,它位于主对话框的最下面。这个选择变量在回归分析相应的对话框中也有,意思就是选择你需要的变量,这个变量可以为数据窗口的一个整个变量,也可以利用子设置“值”进行选择,所以,它的名字叫做选择变量。
“统计量”子对话框:“描述性”栏,包括“均值”“单变量ANOVA”“BoxsM”
需要特别说明,以后只要见到ANOVA这个单词,它的意思就是方差分析,也就是进一步输出方差分析表,其中最重要的就是P值也就是Sig值。
BoxsM复选框:指的是输出对组协方差矩阵的等同性检验的检验结果。也就是对各类协方差矩阵相等的假设进行检验。
“函数系数”栏:其实就是将判别函数系数进行设置。包括“费雪”和“未标准化”。费雪指的是对每一类给出一组系数,并且给出该组中判别分数最大的观测量。
“矩阵”栏:都是复选框,对应相应的矩阵也就是在结果表中的四种数阵。“组内相关”“组内协方差”“分组协方差”“总体协方差”这个都是计算机自动计算,人工计算是不可能完成的任务。
“分类”子对话框:本文也提到过先验概率,先验概率就是已知一部分信息,来了解未知信息也就是后验概率。
“所有组相等”也就是如果分为几类,这所有的类中的先验概率都相等。
“根据组大小计算”各类先验概率按照和各类样本量呈正比。
“使用协方差矩阵”栏:是二个单选框。“在组内”指使用合并组内协方差矩阵进行分析
“分组”指使用各组协方差矩阵进行分析。
“输出”栏~“个案结果”:对每一个观测量输出判别分数,也就是选定变量的个案的分进哪个组的资格得分。实际类,预测类,也就是根据判别得分计算的古今对比。实际类就是目前实际上分为几类,预测类就是过去对未来预测,它们一对比,就可以知道过去和现在差别在哪里。附属选项“将个案限制在”在后面的小矩形框中输入观测量数,含义为仅输出设置的观测量结果,当个案也就是观测量太多,可以用此法。
“摘要表”输出分类小结,给出正确和错分的观测量数,和错判率。
“不考虑该个案时的分类”这个根据字面就可以理解,不赘述。
“图”栏:“合并组”生成一张包括各类的散点图,该散点图根据前两个判别函数得到,如果只有一个判别函数,则生成直方图。
“分组”复选框:有几类就有几张散点图,和上面一样,如果只有一个判别函数,就生成直方图。
“区域图”复选框:将观测量分到各组中去的区域图。此图将一张图的平面划分出类数,相同的区域,每一类占据一个区,各类的均值在各区中用星号标出,如果仅有一个判别函数,即没有此图。
“保存”子对话框:这个设置是非常重要的,并且特别直观,只要选择,就可以在数据窗口生成相应的新变量。这个新变量分别是:“预测组成员”这个预测组成员是根据判别分数,以及后验概率最大的预测分类。也就是,每个个案的预测分类。
“判别得分”这个根据名字就可以理解。该分数=没有标准化的判别系数×自变量的值+一个常数。每次运行判别过程都给出一组表明判别分数的新变量。有几个判别函数就建立几个判别函数减1的新变量。新变量名称词头为dis-。
举例:1 医学实践中根据各种化验结果,疾病症状等判断病人患有什么疾病。
2 体育人才选拔根据运动员的体形,运动成绩,生理指标,心理素质指标判断是否继续培养。
3 动植物分类
判别分析最主要的分析目的:得到判别函数,对未知个案进行预测分类。
“组成员概率”表示观测量属于哪一类的概率,有几类,就给出几类概率值,新变量默认名为dis预测分类数-判别概率,例如有三类,二个判别函数,则新变量名称可以为dis1-1,dis2-1,dis3-1,dis3-2以此类推。
逐步判别分析:只要在主对话框中选择“使用步进式方法”,就可以筛选变量,同时,方法对话框将激活。
“方法”对话框中“标准”栏的设置和线性回归的一样,不赘述。
“方法”栏:原则就是,负面指标越小越好,正面指标越大越好。负面指标是wilks lambda和未解释方差,正面指标是马氏距离,最小F值,Raos V。马氏距离在回归中越大代表这个个案为影响点可能越大,也就是,只有这个个案为影响点,它越重要,越对判别函数影响越大,把它挑出来,也就是马氏距离最大。
结果:1 sig值小于0.05,说明可以继续分析,函数具有判别作用,也就是有统计学意义。
2 数据窗口对话框,将在“保存”子对话框设置的新变量和在主对话框的分组变量进行对比,每个个案被分到哪类,以及判别得分,都一目了然。
3 根据输出表中的系数,可以写出判别函数,进行以后的预测。
E. MATLAB数据分析方法 判别分析 matlab
数据分析是用适当的统计方法对各种数据加以详细研究和概括总结的过程,已成为当代自然科学和社会科学各个学科研究者必备的知识。matlab是一套高性能的数值计算和可视化软件,是实现数据分析与处理的有效工具。本书介绍数据分析的基本内容与方法,应用matlab软件既面向对象又面向过程地编写实际数据分析程序。全书共分7章,主要内容包括:matlab基础、数据描述性分析、回归分析、判别分析、主成分分析与典型相关分析、聚类分析、数值模拟分析。
每章末精心编写习题供读者练习,此外每章还安排了紧密联系实际的综合性、分析性实验内容。
《matlab数据分析方法》适用于计算机科学与技术、信息与计算科学、统计学等专业的本科生,还可作为相关专业本科生选修课程教材,并可供硕士研究生以及科技工作者参考。
F. 判别分析法用逻辑判断,属于定型分析是对还是错
判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。
其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。
当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。
G. 判别分析方法
判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。
H. 判别分析的判别方法
判别方法是确定待判样品归属于哪一组的方法,可分为参数法和非参数法,也可以根据资料的性质分为定性资料的判别分析和定量资料的判别分析。此处给出的分类主要是根据采用的判别准则分出几种常用方法。除最大似然法外,其余几种均适用于连续性资料。
1)最大似然法:用于自变量均为分类变量的情况,该方法建立在独立事件概率乘法定理的基础上,根据训练样品信息求得自变量各种组合情况下样品被封为任何一类的概率。当新样品进入是,则计算它被分到每一类中去的条件概率(似然值),概率最大的那一类就是最终评定的归类。
2)距离判别:其基本思想是有训练样品得出每个分类的重心坐标,然后对新样品求出它们离各个类别重心的距离远近,从而归入离得最近的类。也就是根据个案离母体远近进行判别。最常用的距离是马氏距离,偶尔也采用欧式距离。距离判别的特点是直观、简单,适合于对自变量均为连续变量的情况下进行分类,且它对变量的分布类型无严格要求,特别是并不严格要求总体协方差阵相等。
3)Fisher判别:亦称典则判别,是根据线性Fisher函数值进行判别,通常用于梁祝判别问题,使用此准则要求各组变量的均值有显着性差异。该方法的基本思想是投影,即将原来在R维空间的自变量组合投影到维度较低的D维空间去,然后在D维空间中再进行分类。投影的原则是使得每一类的差异尽可能小,而不同类间投影的离差尽可能大。Fisher判别的优势在于对分布、方差等都没有任何限制,应用范围比较广。另外,用该判别方法建立的判别方差可以直接用手工计算的方法进行新样品的判别,这在许多时候是非常方便的。
4)Bayes判别:许多时候用户对各类别的比例分布情况有一定的先验信息,也就是用样本所属分类的先验概率进行分析。比如客户对投递广告的反应绝大多数都是无回音,如果进行判别,自然也应当是无回音的居多。此时,Bayes判别恰好适用。Bayes判别就是根据总体的先验概率,使误判的平均损失达到最小而进行的判别。其最大优势是可以用于多组判别问题。但是适用此方法必须满足三个假设条件,即各种变量必须服从多元正态分布、各组协方差矩阵必须相等、各组变量均值均有显着性差异。
I. 常用的判别分析方法有哪些
按照习惯大类分成化学分析法,电化学分析法和仪器分析法
1.化学分析里面包括滴定法(氧化还原滴定,酸碱滴定,络合滴定等),重量分析法等等
2.电化学分析里面包括循环伏安,极谱,电解等等方法
3.仪器分析就更多了,紫外可见分光光度法(UV-Vis),原子发射光谱法,色谱法(包括气相色谱GC,高效液相色谱HPLC),毛细管电泳(CE),核磁共振(NMR),X粉末多晶衍射(XRD),质谱(MS)等等
J. 如何用spss进行判别分析预测
spss进行判别分析步骤
1.Discriminant Analysis判别分析主对话框如图 1-1 所示
图 1-8 Save 对话框
6.选择好各选择项之后,点击“OK”按钮,提交运行Discriminant过程。