⑴ 研究DNA结构与功能的方法有哪些
生命科学与化学有着密不可分的联系,我甚至认为生命科学就是用化学来解释生命。然而,仅仅知道一种物质的化学成分是远远不够的,结构才是其功能的基础。我们知道,构成元素相同的物质,由于结构不同,可能在功能上就相去甚远:左、右旋光物质的不同生理作用就是一个很好的例子。但是,我们不能孤立地来阐述生命科学与结构化学的关系,也就是说不能把生命科学看成一块,再把结构化学看成另一块,然后再说明他们间千丝万缕的联系;我认为,结构化学与生命科学是揉合在一起的,很多结构化学家在生命科学领域就有不凡的建树。鲍林就是以化学向生物学渗透的先驱者,他不仅进行了大分子研究,还对镰刀形细胞贫血分子病和大脑化学进行了大量的研究。然而我认为,最能体现结构化学与生命科学揉合一体的历史故事,就是鲍林与沃森和克里克关于DNA结构之争。在这个过程中,我们无法定义他们到底是化学家还是生物学家。而且,结构化学的知识不仅为他们建立模型提供了理论支持,而且在帮助他们判别真理与谬误、为他们的结论提供事实支持等方面起到了至关重要的作用。从这个故事中我们不仅可以看出,解决DNA结构这个世界性的生命科学课题,是许多化学家、物理学家、晶体学家、生化学家共同努力的结果,而且能受到许多在科学研究上的启发。在多学科交叉渗透的今天,我们更不能仅仅只重视专业课的学习,必须同时汲取其他学科的知识,为将来的研究打下基础。
在一九二四年以前,没有一个人真正懂得DNA的重要性。但就在那一年,科学家罗伯特·福尔根发现了一种方法能将DNA染成淡紫色。在这种方法的帮助下,科学家们发现DNA仅存在于细胞核中。到了一九三一年,科学家乔基姆·哈默林用实验证明了植物长成什么样子完全取决于细胞核。随后的一切实验事实都表明,发出遗传信息的正是细胞核里的DNA。
于是,在美洲和欧、亚、非三洲各试验室里的人们都开始研究这个问题。在美国,着名的化学家莱纳斯·鲍林开始了对DNA的研究。在剑桥大学的卡文迪斯实验室里,英国人弗朗西斯·克里克和美国人詹姆斯·沃森也着手进行对奇异的DNA结构的探索。这是一场用结构化学来解释生命科学的竞赛,也是“一个远方传奇大力士被两个无名小卒砍倒的故事”。虽然我们已经知道了这场竞赛的结果,但我认为,这一探索的过程更让人留下深刻的印象。我将双方的研究进行了一些对比,确实从中学到了一些东西,希望和大家一起探讨。
一、双方的开端:
当时的鲍林已经是化学界的“权威”,他致力于蛋白质的研究。1951年夏天,鲍林开始深入研究有关DNA的材料,并常常找人讨论。他认为,与蛋白质相比,弄清DNA的结构不会很难,“这算不上一个最为紧迫的问题”。DNA在重量上是染色体的一种重要成分,但蛋白质也一样。大多数学者认为,蛋白质部分最有可能包含着遗传的信息。相对而言,DNA似乎就比较简单了,它很可能只是一种结构性的成分,只是用来帮助染色体折叠和打开的。鲍林就这样认为。在1952年初,几乎所有重要的遗传学学者都持这一种观点。我们可以看看后来鲍林自己的话:“我以前就知道DNA是一种遗传物质的论点,然而我没有接受这一论点。你们知道,那时我正热衷于蛋白质的研究,我认为蛋白质最有可能是遗传物质,不可能是核酸 当然,核酸也有作用。在我着述的有关核酸的文字材料中,我总会提到核蛋白的概念。当时,我考虑得更多的是蛋白质,而不是核酸。”虽然如此,鲍林还是着手研究DNA的结构。此时,他需要清晰的DNA X光照片,他曾先后写信给相片持有者物理学家威尔金斯(英国)及其上司,但均遭拒绝。1951年11月,《美国化学学会学报》上刊登了一篇论述DNA结构的文章。鲍林据其深厚的结构化学基础,一下子就看出这篇文章的结果是错的;同时,此事刺激了他开始思考DNA是如何构筑起来的问题。鲍林设想,如果碱基朝外,那么螺旋的内核就应当是由磷酸堆积起来的。磷酸聚集在中间,碱基朝外,这与X射线的资料是“吻合”的。在鲍林的头脑中,DNA结构的问题就已经转化为如何将磷酸堆积在一起的问题了。我们现在知道,鲍林的这一开端是错的,并最终使他败给了沃森和克里克。另外还必须一提的是,鲍林对DNA研究总是被各种事务打断,使他曾多次中断自己的思路。是否是因为鲍林没能看到威尔金斯的相片而导致他的失败呢?暂且不回答这个问题,我们先来看看沃森和克里克是如何开始的。
在战争期间,克里克原来是从事武器方面研究的。后来他决定研究生物。于是他到剑桥大学学习分子学。至于沃森,他本来就一直在研究DNA。他到剑桥大学是为了对此作进一步的研究。他们都是热心探索的人。“沃·克组合”相对于鲍林的地位可以说是“一个在天,一个在地”,他们并没有引起人们多大的重视,也没有引起鲍林的注意。他们就凭着一股劲和对目标的执着追求开始了他们的研究。还必须提到的是另外两位对他们的成功起着至关重要的作用的人:一位是上文提到的物理学家威尔金斯,另一位是青年女晶体学家罗莎琳德·富兰克林。他们拍出了非常漂亮的DNA X光照片,不仅启发了沃森和克里克,而且为他们的发现提供了佐证。
鲍林颇为自信,感到自己有能力解开DNA之谜。唯一的问题是,会不会有人抢先取得胜果,但是,他不会把这一点真正放在心上。他认为威尔金斯和富兰克林两人(更不用说沃森和克里克了),没有谁有足够的化学基础对鲍林产生严重的威胁。
二、对对手的不同看法:
鲍林是自负的,他不相信有人能够在他之前发现DNA的结构,特别是他认为没有人有他那样深厚的化学功底。他“知道”, 沃森是一个好学生,但因成绩还不够突出,因而他到加州理工学院当研究生的申请未被批准。克里克已经三十五六岁了,还在读研究生,年龄是大了一些。况且,卡迪文斯实验室的科学家们至今尚未在任何竞赛中打败过鲍林。甚至有人认为,沃森和克里克看上去就像是一对“杂耍演员”。
而沃森和克里克则不同。对于年方19的沃森来说,鲍林是一位值得仿效的榜样。在卢瓦蒙会议上,沃森就是围聚在鲍林身边的人之一,他十分用心地听了鲍林的讲话。克里克开始并不是鲍林的崇拜者,他是鲍林的竞争对手,因为鲍林曾用阿尔法螺旋表明他们的一篇关于蛋白质结构的论文漏洞百出,让克里克承受了由此而来的屈辱。从此,克里克借鉴了鲍林的研究方法。说实话,他们对鲍林这位怪杰都极为佩服。更重要的是,他们两人都互相倾慕,他们可谓是天生一对。相对于鲍林来说,沃森和克里克谦逊多了。
三、研究方法及进程:
鲍林首先想到DNA的结构可能是螺旋型,因为其他构型与他所看到和掌握的照片资料不相符合。但他认为,DNA是由三条链互相缠绕在一起,磷酸处于中央的位置。之后,他的工作重点就聚焦于找出磷酸分子在中央合理的排列方法。虽然他知道自己提出的构型不能完美地符合实验测算得出的数据和X光衍射照片,但他认为这些都只是细枝末节的东西,就像他发现蛋白质阿尔法螺旋一样 开始的时候也有难以解释的数据,他大胆地将之忽略,而其后的事实证明了他这种策略是明智的。另外,鲍林有些急于求成,他希望能够尽快地发表相关文章,抢在其他科学家之前,宣布自己再次成功地解决了又一世界性的难题。于是,他很快地发表了他“发现”的DNA结构。
鲍林将自己的论文也寄给了沃森和克里克。他们两人虚惊了一场,因为他们发现,鲍林设想的这种构型是他们最初设想的结果,当时他们将这一结果给晶体学家富兰克林看的时候,被她以充足的论据否认,因为水容量问题与这种构型严重不符。也正是因为这次错误,他们两人被认为不适合研究DNA构型问题,被拆散到不同的课题组,从事别的研究。但沃森和克里克并没有就此放弃,他们仍然私下坚持不懈地进行研究和探索。他们在研究方法上一直就有共识:与其推导出复杂的数学模型,直接而又明确地解释X光的衍射结果,还不如借助化学常识构筑结构的一个模型。正如沃森所说,他们决定“仿效鲍林,并在他本人发起的这场竞赛中将他击败”。富兰克林的批评已经促使他们将磷酸放到了分子的外侧;又受到奥地利生物化学家切加夫的启示,得知内侧各对碱基之间存在着一一对应的关系。他们开始设想,在螺旋中,嘌呤和嘧啶以某种方式挨次排列在分子中心下部。之后,他们看到了富兰克林最新的DNA照片,不仅使他们确认了DNA是一种螺旋,而且他们得到了几个主要参数。由此,他们开始着手制造模型,通过不懈的努力,最终获得了成功。
可以看出,不论是成功者还是失败者,他们都用了一种结构化学中重要的研究方法 建模。同时,沃森和克里克不仅受到了多学科领域的科学家的启示和帮助,而且他们自己都承认,他们的研究方法来源于伟大的化学家 鲍林。由此可见,生命科学是集多学科,特别是化学的大成所在,他与化学,乃至物理、数学的揉合可见一斑。
为什么鲍林会失败?
鲍林有着深厚的化学知识作为自己研究的基础。照常理而言,成功的应该是他,但他为什么输给了沃森和克里克呢?鲍林输在浮躁和自负上。他急于求成,因为DNA是当时最大的课题,他要去抢占这一高地。他没有把研究的准备工作做好就想碰碰自己的运气了。同时,他顺利解决阿尔法螺旋给他套上了成功的光环,他的确是世界上解决巨分子结构的最佳人选,但他也从此染上了自负的恶习,他以为自己不再需要做别人需要做的那些研究的准备工作了。他过于相信自己的直觉和运气,结果输掉了这场大比拼。
沃森和克里克为什么会成功?
其实这个问题的答案从前面的叙述中都可以看出,但我觉得最重要的一点是不懈的思索与踏实的努力。克里克不就是在因头疼而不得不休息,却又忍不住开始计算时找到了有关DNA结构的答案吗?他们虽然被拆散到两个不同的研究小组,但仍然踏实地合作与工作,正是这样,幸运之神才降临在他们的头上。另外还有一点,就是他们没有放过看似微不足道的东西。奥地利生物化学家切加夫将碱基一一对应的关系同样告诉了鲍林,但却没有得到鲍林的重视,而沃森和克里克并没有放过这一点,而最终获得启发,找到了DNA的正确结构。
结构化学与生命科学的揉合已无需多说,我相信这种相互融合在将来会愈演愈烈。最后我想总结的是有关鲍林的研究方法,毕竟沃森与克里克的成功也来源于此,相信它对所有的科研者都会有所帮助:
http://www.paper800.com/N66/DD172F26/
参考资料:
⑵ 沃森和克里克研究DNA分子结构时,运用了什么方法
沃森和克里克研究DNA分子结构时,运用了构建物理模型的方法,在思路上则运用了演绎法 、归纳法。
⑶ 沃森和克里克运用什么方法研究dna这句话怎么错了 沃森和克里克运用模型法研究dna的复制方法
是假说演绎法、
沃森与克里克用模型构建法研究的是DNA的结构、
用假说演绎法研究DNA的复制方法为半保留复制、
⑷ 根据DNA结构性质而发展的研究手段有什么
主要在基因工程,比如说转基因可以获得工程细胞和工程菌,在医学上可以进行基因诊断和基因治疗,在环境保护上可以进行基因检测,在生物的进化上可以通过DNA杂交判断生物亲缘关系的远近等等
⑸ 如何研究一个基因的结构或特点
研究基因的实质是研究碱基对的排列情况,这个就要有专门的仪器才能进行操作的, 而且要研究基因的话,前提条件是熟知各类基因的碱基对的排列情况,所以说,非专业人士是无法做到的,即使是专业人士操作起来也是有很大难度的。所以,基本上常人是无法做到的。
⑹ 沃森和克里克运用什么方法研究dna这句话怎么错了
是假说演绎法、
沃森与克里克用模型构建法研究的是DNA的结构、
用假说演绎法研究DNA的复制方法为半保留复制、
⑺ 沃森和克里克研究DNA分子结构时、运用了什么方法
演绎 归纳法
⑻ 可以用构件物理模型的方法研究DNA分子的结构特点吗
可以。美国生物学家沃森和英国物理学家、生物学家克里克通过构建DNA双螺旋结构模型揭示了DNA分子的结构特点,这种模型就是物理模型,他们也因此获得了诺贝尔奖。
⑼ 基因组学研究方法
基因组学(英文genomics),研究生物基因组和如何利用基因的一门学问。用于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题
基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postgenome)研究,成为系统生物学的重要方法。
基因组学能为一些疾病提供新的诊断,治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。
基因组学的主要工具和方法包括: 生物信息学,遗传分析,基因表达测量和基因功能鉴定。
基因组学出现于1980年代,1990年代随着几个物种基因组计划的启动,基因组学取得长足发展。 相关领域是遗传学,其研究基因以及在遗传中的功能。
1980年,噬菌体Φ-X174;(5,368 碱基对)完全测序,成为第一个测定的基因组。
1995年,嗜血流感菌(Haemophilus influenzae,1.8Mb)测序完成,是第一个测定的自由生活物种。从这时起,基因组测序工作迅速展开。
2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。
基因组学是研究生物基因组的组成,组内各基因的精确结构、相互关系及表达调控的科学。基因组学、转录组学、蛋白质组学与代谢组学等一同构成系统生物学的组学(omics)生物技术基础。
基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postgenome)研究,成为系统生物学的重要方法。
基因组DNA测序是人类对自身基因组认识的第一步。随着测序的完成,功能基因组学研究成为研究的主流,它从基因组信息与外界环境相互作用的高度,阐明基因组的功能。功能基因组学的研究内容:人类基因组 DNA 序列变异性研究、基因组表达调控的研究、模式生物体的研究和生物信息学的研究等。
(1)基因组表达及调控的研究。在全细胞的水平,识别所有基因组表达产物mRNA和蛋白质,以及两者的相互作用,阐明基因组表达在发育过程和不同环境压力下的时、空的整体调控网络。
(2)人类基因信息的识别和鉴定。要提取基因组功能信息,识别和鉴定基因序列是必不可少的基础工作。基因识别需采用生物信息学、计算生物学技术和生物学实验手段,并将理论方法和实验结合起来。基于理论的方法主要从已经掌握的大量核酸序列数据入手,发展序列比较、基因组比较及基因预测理论方法。识别基因的生物学手段主要基于以下的原理和思路:根据可表达序列标签(STS);对染色体特异性cosmid进行直接的cDNA选择;根据CpG岛;差异显示及相关原理;外显子捕获及相关原理;基因芯片技术;基因组扫描;突变检测体系,等等。
(3)基因功能信息的提取和鉴定。包括:人类基因突变体的系统鉴定;基因表达谱的绘制;“基因改变-功能改变”的鉴定;蛋白质水平、修饰状态和相互作用的检测。
(4)在测序和基因多样性分析。人类基因组计划得到的基因组序列虽然具有代表性,但是每个人的基因组并非完全一样,基因组序列存在着差异。基因组的差异反映在表型上就形成个体的差异,如黑人与白人的差异,高个与矮个的差异,健康人与遗传病人的差异,等等。出现最多基因多态性就是单核苷酸多态性(SNPs)。
(5)比较基因组学。将人类基因组与模式生物基因组进行比较,这一方面有助于根据同源性方法分析人类基因的功能,另一方面有助于发现人类和其他生物的本质差异,探索遗传语言的奥秘 。
结构基因组学是继人类基因组之后又一个国际性大科学热点,主要目的是试图在生物体的整体水平上(如全基因组、全细胞或完整的生物体)测定出(以实验为主、包括理论预测)全部蛋白质分子、
蛋白质-蛋白质、蛋白质-核酸、蛋白质-多糖、蛋白质-蛋白质-核酸-多糖、蛋白质与其他生物分子复合体的精细三维结构,以获得一幅完整的、能够在细胞中定位以及在各种生物学代谢途径、生理途径、信号传导途径中全部蛋白质在原子水平的三维结构全息图。在此基础上,使人们有可能在基因组学、蛋白质组学、分子细胞生物学以致生物体整体水平上理解生命的原理。
对疾病机理的阐明、对疾病的防治有重要应用意义。
发展回顾1998年4月,由美国国家医学科学院(NIGMS)和Wellcome Trust发起在英国召开了第一次国际结构基因组会议,美国、法国、英国、德国、加拿大、日本、荷兰、意大利以及以色列的9国科学家参加了会议。2000年9月,美国NIGMS决定首批投入1.5亿美元,在美国建设7个研究中心(目前已经发展成为10个),争取在未来10年内解出1万个蛋白质的三维结构,建立蛋白质的氨基酸残基序列、三维结构和生物功能之间的有机联系,同时也支持结构基因组方法学的研究。2002年,10家大型国际制药公司宣布启动结构基因组研究。2000年11月,日本组织召开国际会议讨论结构基因组计划的有关问题,确定了完成测定3000个蛋白质三维结构的“Protein3000计划”。2001年4月,在美国召开了第二次国际结构基因组会议,表明新一轮大规模的国际合作研究已经开始。主要进展我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。在国际结构基因组研究刚露端倪之时,我国科学家就敏感地抓住了这一新动向,2000年我国开展了结构基因组学的研究。近来,国家863计划、973计划、中国科学院知识创新工程、国家重大攻关项目、自然科学基金先后重点资助了结构基因组学的研究工作和相关技术平台的建设。相关研究工作既有分工、又有交叉合作,并充分地考虑到了我国基因组水平研究的特点和我国在结构解析方法研究在国际上的地位。并计划在参加国际合作的基础上,在逐步建立基因组研究技术平台的同时,五年之中完成200-300个蛋白质三维结构的测定。
我国的结构生物学研究队伍近年来不断发展壮大,中国科学院生物物理所、中国科技大学、北京大学、清华大学以及中国科学院物理所、高能所、上海生命科学院、福州物质结构所、上海复旦大学等单位均是我国开展结构基因组研究的重要基地。
我国结构基因组学研究虽然启动时间较短,但已经获得了不少重要进展。 据初步统计,已经完成了近千个克隆,已表达出210个蛋白质,其中有100多个可溶或部分可溶;获得近30个结晶和NMR样品,已经测定出5个结构。