A. 原子核物理学的发展
1919年,卢瑟福等人发现用α射线轰击氮核时释放出质子,首次实现人工核反应。此后用射线引起核反应的方法逐渐成为研究原子核的主要手段。初期取得的重大成果是1932年中子的发现和1934年人工放射性核素的制备。原子核是由中子和质子组成的。中子的发现不仅为核结构的研究提供必要的前提,还因为它不带电荷,不受核电荷的排斥,容易进入原子核而引起中子核反应,成为研究原子核的重要手段。30年代中,人们还从对宇宙线的观测发现正电子和“介子”(后称μ子),这些发现是粒子物理学的先河。
20年代后期,开始探讨加速带电粒子的原理。30年代初,静电、直线和回旋等类型的粒子加速器已具雏形,在高压倍加器上实现初步核反应。利用加速器可以获得束流更强、能量更高和种类更多的射线束,大大扩展了核反应的研究,使加速器逐渐成为研究原子核、应用核技术的必要设备。
在核物理的最初阶段已注意它的应用,特别是核射线治疗疾病例如肿瘤的作用。这是它当时受社会重视的重要原因。
B. 牛顿的物理学的分析方法是指什么这一方法产生了哪些重大思想价值
牛顿的物理学三大定律奠定了物理学研究的基础。物体在无外力作用下的惯性定律,物体在外力作用下的牛顿第二定律,物体相互间作用力和反作用力的第三定律。三大定律对静力学到动力学做了全面的归纳。对分析解读物体运动提供了理论依据,这样一切物体的运动都可以用第二定律去分析计算。
C. 有关核物理的考研
核物理的话,国内形势一般,因为现在核能安全的问题,所以短期内不太容易发展起来。不过,现在做核物理的人数也不是很多,所以竞争也不激烈。国内核物理比较强的是兰州大学,四川大学,工程物理研究院,近代物理所,应用物理所,几个单位侧重方向都不同,可以以后了解下。
D. 核物理专业就业前景
核物理是一门小众专业,但其就业前景却相当大众。
提起核物理,绝大多数的人都感觉核物理既神秘而又高深,距离我们又很遥远。其实不然,核物理已走出了实验室和研究室,渗透到我们生活的各个方面,比如核电站、核医学、放射测年法等等。
核物理又称原子核物理学,作为20世纪新建立的一个重要的物理学分支,起源于1896年时贝克勒尔发现天然放射性现象。经过一个多世纪的发展,核物理学已经成为了一门理论意义深刻,实践意义重大的科学分支。它主要的研究范围为原子核的结构与变化规律,射线束的产生、探测和分析技术以及同核能、核技术应用有关的物理问题。
学习核物理专业需要深厚的数学、物理基础。重点掌握的学习内容是核物理专业的基本科学知识和体系,包括原子核物理学、核电子学、核物理实验方法、核技术应用等专业基础知识,能够适应核物理学科个方向发展的基本需要。
物理专业的学生学什么
物理,在大学和中学的学习中,有着明显的差别。大学物理特别注重理论知识的推导和积累,特别是在大一阶段的学习,对高等数学、线性代数、计算机算法一定要掌握得十分深入和熟练。由于物理专业,在大二以后有不同的细化分支,后续进阶的学习都需要良好的数理计算机基础。
以北大物理学院为例,学院设有四个方向:物理类、核物理、天文学、大气科学。北大大一就已经将天文学专业单独设置,大二下分流出大气科学和物理类。在不同专业的细分下还会有研究方向的分类,比如物理类的细分研究方向有:理论物理、凝聚态与材料物理、光学、量子物理等。
由于大二下学期才是真正的专业分流,在此之前,所有专业的学生都需学习严密的物理和数学基础理论,形成扎实的物理和数学功底。而在专业分流之后,不同专业对于学生的要求、目标不同,课程设置也就出现了差异。
所有物理专业的学生,要学习的主干课程为:普通物理、普通物理实验、数据结构与算法或微机原理或计算方法、高等数学、线性代数、数学物理方法、四大力学等。
专业分流后,不同专业方向的学生,要学习不同专业的课程,做不同方面的准备。
总结来说,无论选择什么方向,物理专业的学生最终需要达到的学习目标,都应该包括三块:打下坚实的数学、物理、计算机基础,应用数理计算机知识,解决实际物理方面的问题。
培养要求
通过对原子核物理学、核电子学、核物理实验方法、核技术应用等专业基础知识的学习,掌握核物理专业的基本科学知识和体系,并受到相关专业实验的训练,从而具有良好的数理基础和核物理学科的理论基础,具有较深入的专业知识和熟练的实验技能,能够适应核物理学科各方向发展的基本需要。
职业发展
一般来说,基础理科专业的本科毕业生,每年只有非常少的一部分选择直接工作。作为理论导向强的物理专业,尤其如此,例如2017届北大物理学院毕业生中,只有5%做出了这个选择。
基本而言,本科毕业后选择直接工作的物理专业毕业生,极少有从事本专业对口工作的人。
理由在于,物理专业相关的工作,绝大多数都是研发、研究和分析岗位,需要大量的专业知识,以及扎实的研究能力,本科生专业知识较浅,即使曾经有过科研经历,也并非十分系统、正规,因此经历的学术训练少,在知识、技能方面,都不如研究生,因此无法胜任对口工作。
另外,需要物理专业的工作岗位,硬性要求一般也是“至少硕士学历”,物理本科生在简历筛选第一关,就失去了竞争的资格。因此,物理专业本科生毕业后,大多选择转行工作。
就业方向
通常来说,本科后直接就业的学生,分为两种:无法保研而被迫就业的人,和可以保研却主动就业的人。
前者,由于成绩不够、研究经历不足,而无法在本校保研。又由于考研花费的时间周期长、不确定性强,因此选择进入就业市场。
后者,虽然成绩足够保研,但由于个人兴趣所致,以及有能力凭借本科学历,找到高薪、满意的工作,而选择了本科后直接就业。
有的人选择进入教育行业,比如不要求研究生学历的公立学校,学科培训机构,做物理老师。
进入教育行业,如果是公立学校,对求职者的物理基础功底要求依然较高,还需要有一定师范教育方面的经历,和教师类硬性资格。从这一点来说,非师范类物理专业的人,要比师范背景物理专业的人,适应性相对更弱,后期要补充的知识、经验和能力,也要更多。
而如果进入教育培训机构,则更重要是化学知识基础、研发能力,和讲课能力、沟通能力。
还有一些人,本科毕业后,选择了与物理关联不大的行业,如咨询、快消、广告、金融、证券,做量化分析、数据分析等工作,而这些工作则需要较强的数理基础,物理专业的学生相对较有优势。
要想毕业后进入金融、计算机行业,就要求学生在大学期间做好职业规划,并及早进行相关职业准备。比如修经济、金融双学位,或在大一时期就准备转专业,或自行补充相关知识,并参加该领域的社团、活动,暑期寻找相关实习,提升自己的职业能力。
当然,要进入金融、咨询等行业,同样需要较好的成绩排名、足够的职业准备、丰富的实习经验,以及高水平的英语能力。因此,这部分人也依然需要在大学期间,平衡好学习与活动、实习,获得好的排名同时,做好职业准备,压力并不比选择深造的学生小。
E. 核物理的发展历程
1896年,贝可勒尔发现天然放射性,这是人们第一次观察到的核变化。通常就把这一重大发现看成是核物理学的开端。此后的40多年,人们主要从事放射性衰变规律和射线性质的研究,并且利用放射性射线对原子核做了初步的探讨,这是核物理发展的初期阶段。在这一时期,人们为了探测各种射线,鉴别其种类并测定其能量,初步创建了一系列探测方法和测量仪器。大多数的探测原理和方法在以后得到了发展和应用,有些基本设备,如计数器、电离室等,沿用至今。探测、记录射线并测定其性质,一直是核物理研究和核技术应用的一个中心环节。放射性衰变研究证明了一种元素可以通过衰变而变成另一种元素,推翻了元素不可改变的观点,确立了衰变规律的统计性。统计性是微观世界物质运动的一个重要特点,同经典力学和电磁学规律有原则上的区别。放射性元素能发射出能量很大的射线,这为探索原子和原子核提供了一种前所未有的武器。1911年,卢瑟福等人利用α射线轰击各种原子,观测α射线所发生的偏折,从而确立了原子的核结构,提出了原子结构的行星模型,这一成就为原子结构的研究奠定了基础。此后不久,人们便初步弄清了原子的壳层结构和电子的运动规律,建立和发展了描述微观世界物质运动规律的量子力学。
1919年,卢瑟福等又发现用α粒子轰击氮核会放出质子,这是首次用人工实现的核蜕变反应。此后用射线轰击原子核来引起核反应的方法逐渐成为研究原子核的主要手段。 在初期的核反应研究中,最主要的成果是1932年中子的发现和1934年人工放射性核素的合成。原子核是由中子和质子组成的,中子的发现为核结构的研究提供了必要的前提。中子不带电荷,不受核电荷的排斥,容易进入原子核而引起核反应。因此,中子核反应成为研究原子核的重要手段。在30年代,人们还通过对宇宙线的研究发现了正电子和介子,这些发现是粒子物理学的先河。 20世纪20年代后期,人们已在探讨加速带电粒子的原理。到30年代初,静电、直线和回旋等类型的加速器已具雏形,人们在高压倍加器上进行了初步的核反应实验。利用加速器可以获得束流更强、能量更高和种类更多的射线束,从而大大扩展了核反应的研究工作。此后,加速器逐渐成为研究原子核和应用技术的必要设备。
在核物理发展的最初阶段人们就注意到它的可能的应用,并且很快就发现了放射性射线对某些疾病的治疗作用。这是它在当时就受到社会重视的重要原因,直到今天,核医学仍然是核技术应用的一个重要领域。 20世纪40年代前后,核物理进入一个大发展的阶段。1939年,哈恩和斯特拉斯曼发现了核裂变现象;1942年,费密建立了第一个链式裂变反应堆,这是人类掌握核能源的开端。
在30年代,人们最多只能把质子加速到一百万电子伏特的数量级,而到70年代,人们已能把质子加速到四千亿电子伏特,并且可以根据工作需要产生各种能散度特别小、准直度特别高或者流强特别大的束流。
20世纪40年代以来,粒子探测技术也有了很大的发展。半导体探测器的应用大大提高了测定射线能量的分辨率。核电子学和计算技术的飞速发展从根本上改善了获取和处理实验数据的能力,同时也大大扩展了理论计算的范围。所有这一切,开拓了可观测的核现象的范围,提高了观测的精度和理论分析的能力,从而大大促进了核物理研究和核技术的应用。
通过大量的实验和理论研究,人们对原子核的基本结构和变化规律有了较深入的认识。基本弄清了核子(质子和中子的统称)之间的相互作用的各种性质,对稳定核素或寿命较长的放射性核素的基态和低激发态的性质已积累了较系统的实验数据。并通过理论分析,建立了各种适用的模型。
通过核反应,已经人工合成了17种原子序数大于92的超铀元素和上千种新的放射性核素。这种研究进一步表明,元素仅仅是在一定条件下相对稳定的物质结构单位,并不是永恒不变的。
天体物理的研究表明,核过程是天体演化中起关键作用的过程,核能就是天体能量的主要来源。人们还初步了解到在天体演化过程中各种原子核的形成和演变的过程。在自然界中,各种元素都有一个发展变化的过程,都处于永恒的变化之中。
通过高能和超高能射线束和原子核的相互作用,人们发现了上百种短寿命的粒子,即重子、介子、轻子和各种共振态粒子。庞大的粒子家族的发现,把人们对物质世界的研究推进到一个新的阶段,建立了一门新的学科——粒子物理学,有时也称为高能物理学。各种高能射线束也是研究原子核的新武器,它们能提供某些用其他方法不能获得的关于核结构的知识。 在过去,通过对宏观物体的研究,人们知道物质之间有电磁相互作用和万有引力(引力相互作用)两种长程的相互作用;通过对原子核的深入研究,才发现物质之间还有两种短程的相互作用,即强相互作用和弱相互作用。在弱作用下宇称不守恒现象的发现,是对传统的物理学时空观的一次重大突破。研究这四种相互作用的规律和它们之间可能的联系,探索可能存在的靳的相互作用,已成为粒子物理学的一个重要课题。毫无疑问,核物理研究还将在这一方面作出新的重要的贡献。
核物理的发展,不断地为核能装置的设计提供日益精确的数据,从而提高了核能利用的效率和经济指标,并为更大规模的核能利用准备了条件。人工制备的各种同位素的应用已遍及理工农医各部门。新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之一。 20世纪70年代,由于粒子物理逐渐成为一门独立的学科,核物理已不再是研究物质结构的最前沿。核能利用方面也不像过去那样迫切,核物理进入了一个纵深发展和广泛应用的新的更成熟的阶段。
在现阶段,粒子加速技术已有了新的进展。由于重离子加速技术的发展,人们已能有效地加速从氢到铀所有元素的离子,其能量可达到十亿电子伏每核子。这就大大扩充了人们变革原子核的手段,使重离子核物理的研究得到全面发展。
随着高能物理的发展,人们已能建造强束流的中高能加速器。这类加速器不仅能提供直接加速的离子流,还可以提供次级粒子束。这些高能粒子流从另一方面扩充了人们研究原子核的手段,使高能核物理成为富有生气的研究方面。
从核物理基础研究看,主要目标在两个方面:一是通过核现象研究粒子的性质和相互作用,特别是核子间的相互作用;再者是核多体系的运动形态的研究。很明显,核运动形态的研究将在相当长的时期内占据着核物理基础研究的主要部分。
F. 核物理为什么在二战以后得到发展
1939年,O.哈恩和F.斯特拉斯曼发现核裂变,1942年,E.费米建立了第一个裂变反应堆,开创了人类掌握核能源的新世纪。核能几乎是取用不竭的能源,为了有效利用核能源、发展核武器,需要解决一系列很复杂的科学技术问题,而核物理和核技术是其中心环节。因此,核物理飞跃发展,成为竞争十分剧烈的科技领域。这一阶段持续30年左右,是核物理的大发展时期。在此期间,粒子的加速和探测技术有很大发展:30年代,最多只能把质子加速到1×106电子伏特(eV)的数量级;70年代,已达到4×1011eV,可产生能散度特小、准直度特高或流强特大的各种束流。在探测技术方面,半导体计数器的应用大大提高了测定射线能量的分辨率。核电子学和计算技术的飞速发展,从根本上改善了获取和处理实验数据的能力,也大大扩展了理论计算的范围。这一切有力地促进了核物理研究和核技术应用。对原子核的基本结构和变化规律也有更深入的认识,基本弄清了核子之间的相互作用的各种性质;对稳定核素和寿命较长的放射性核素的基态和低激发态(具核能级)的性质积累了较系统的实验数据;并通过理论分析,建立了各种适用的原子核模型,成功地解释了各种核现象和核反应。此外,还开展了高能核反应和重离子核反应的研究。
G. 运用辩证否定观分析于敏及其团队是如何推动我国核物理事业发展的
运用变达观察敏感的团队和我国的事业发展不断的进步。
H. 中国核物理的发展未来。以及以后会向哪个方向发展,核能将会运用到什么程度
中国核能发展的规划是 先进轻水反应堆-快中子反应堆-核聚变堆。海水中能提炼出聚变需要使用的核素氘和氚,几乎可以完全满足人类的所有能源要求。
I. 物理发展的三个阶段
1. 古代物理学时期
这一时期是从公元前8世纪至公元15世纪,是物理学的萌芽时期。无论在东方还是在西方,物理学还处于前科学的萌芽阶段,严格的说还不能称其为“学”。物理知识一方面包含在哲学中,如希腊的自然哲学,另一方面体现在各种技术中,如中国古代的科技。 这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢,社会功能不明显。 这一时期的物理学对于西方又可分为两个阶段,即古希腊-罗马阶段和中世纪阶段。〖1〗古希腊-罗马阶段(公元前8世纪至公元5纪)。主要有古希腊的原子论、阿基米德(Archimedes,公元前287-公元前212)的力学、托勒密(Claudius Ptolemaeus,约90-168)的天文学等。〖2〗中世纪阶段(公元5世纪至公元15世纪)。主要有勒·哈增(AL-Hazen,约965-1038)的光学、冲力说等。
2. 近代物理学时期
(又称经典物理学时期) 这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。物理学与哲学分离,走上独立发展的道路,迅速形成比较完整严密的经典物理学科学体系。 这一时期的物理学有如下特征:在研究方法上采用实验与数学相结合、分析与综合相结合和归纳与演绎相结合等方法;在知识水平上产生了比较系统和严密科学理论与实验;在内容上形成比较完整严密的经典物理学科学体系;在发展速度上十分迅速,社会功能明显,推动了资本主义生产与社会的迅速发展。 这一时期的物理学又可细分为三个阶段。〖1〗草创阶段(16世纪至17世纪)。主要在天文学和力学领域中爆发了一场“科学革命”,牛顿力学诞生。〖2〗消化和渐进阶段(18世纪)。建立了分析力学,光学、热学和静电学也取得较大的发展。〖3〗鼎盛阶段(19世纪)。相继建立了波动光学、热力学与分子运动论、电磁学,使经典物理学体系臻于完善。
3. 现代物理学时期
这一时期是从19世纪末至今,是现代物理学的诞生和取得革命性发展时期。物理学的研究领域得到巨大的拓展,实验手段与设备得到前所未有的增强,理论基础发生了质的飞跃。 这一时期的物理学有如下特征:在研究方法上更加依赖大规模的实验、高度抽象的理性思维和国际化的合作与交流;在认识领域上拓展到微观(10-13)与宇观(200亿光年)和接近光速的高速运动新领域,变革了人类对物质、运动、时空、因果律的认识;在发展速度上非常迅猛,社会功能十分显着,推动了社会的飞速发展。 这一时期的物理学又可大致地分为两个阶段。〖1〗革命与奠基阶段(1895年至1927年)。建立了相对论和量子力学,奠定了现代物理学的基础。〖2〗飞速发展阶段(1927年至今)产生了量子场论、原子核物理学、粒子物理学、半导体物理学、现代宇宙学、现代物理技术等分支学科。