导航:首页 > 研究方法 > 混合研究方法

混合研究方法

发布时间:2022-02-18 02:00:53

研究方法和有关计算公式

为了便于下文论述,在此部分详细介绍文中研究涉及的测试过程、实验方法、步骤、仪器条件和主要计算公式。

1.样品的前期处理

对野外采集的样品进行手标本照相之后,选取各个矿床具有代表性的样品送河北廊坊市科大岩石矿物分选技术服务有限公司分别磨制薄片、光片和包裹体片;并根据不同的测试目的分别碎样,制备全岩样品和单矿物样品。全岩样品直接粉碎至 200 目,而石英、锆石、硫化物样品则经过碎样→清洗→粗选→电磁选→人工挑选等一系列手段分选出纯度大于98%的单矿物。

2.流体包裹体研究方法

包裹体片的观察、照相、激光拉曼测试和显微测温工作在中国地质科学院矿产资源研究所流体包裹体实验室完成。首先利用光学显微镜观察流体包裹体岩相学特征,划分包裹体类型和共生组合,并圈定包裹体较大且集中区域开展显微激光拉曼测试和显微测温工作。

流体包裹体激光拉曼测试使用仪器为英国Reinshaw公司生产的System—2000型显微共焦激光拉曼光谱仪,有关工作参数为:光源采用Ar+激光器,波长为514.5 nm,激光功率为20 mW,光谱分辨率为1~2 cm-1,内置CCD探测器。

显微测温使用仪器为英国Linkam公司生产的THMSG600型冷热台,可测温范围-198~+600℃,均一温度重现误差±1℃,冰点误差温度±0.1℃。在测温之前利用标准样品对冷热台进行了温度校准,包裹体测温时,设置的升温/降温速率一般为10℃/min,在相变点温度附近,升温/降温速率降到<1℃/min。流体包裹体盐度、密度和压力可通过下列方法获得。

(1)对于NaCl-H2O型两相包裹体,流体包裹体盐度可利用Bodnar(1992)提供的冷冻温度-盐度换算表通过测定的冰点温度获得。流体包裹体密度(ρ)可用刘斌等(1999)提供的公式计算,如下:

北山南带构造岩浆演化与金的成矿作用

式中:ρ为流体包裹体密度(g/cm3),t为均一温度(℃),A、B、C为盐度的函数。当含盐度(s)<30%时,

北山南带构造岩浆演化与金的成矿作用

北山南带构造岩浆演化与金的成矿作用

流体包裹体均一压力可用Bain(1964),Haas(1976)等推倒的公式计算,具体公式可参见刘斌等(1999)。均一压力值也可通过Bischoff(1991)提供的T-ρ相图近似求得,与公式求得的压力值接近。

(2)对于CO2-H2O-NaCl型包裹体,流体包裹体盐度可利用Collins(1979)提供的公式计算,如下:

北山南带构造岩浆演化与金的成矿作用

式中:s为含盐度(%NaCleq),t为CO2笼合物融化温度。

流体包裹体总密度(ρ)的计算公式如下:

北山南带构造岩浆演化与金的成矿作用

式中:ρ为流体总密度(g/cm3);XCO为CO2气液相均一时CO2相的充填度,可在显微镜下目估;ρCO为CO2气液相均一时CO2相的密度,由CO2相均一温度和均一方式决定;ρaq为CO2气液相均一时水溶液相的密度,具体公式可参见刘斌等(1999)。流体包裹体完全均一压力可用Brown et al.(1989)提供的相图近似求得。

包裹体的气液相成分群体分析在中国科学院地质与地球物理所矿物资源探查研究中心完成的,具体操作步骤、试验条件、精确度等如下:

(1)样品清洗。取40~60 目纯石英样品1.5 g,在干净烧杯中加入1∶1 的HNO3 在60~80℃下加热12 h;用蒸馏水清洗4~6 遍,用蒸馏水浸泡,以后每天清洗一次;一周后在60℃恒温下干燥直到把样品烘干。

(2)气相成分的提取和测试(朱和平等,2003)。统一取定量的样品 10~50 mg,将清洗干净的样品放入石英管内,逐渐升温到 100℃抽真空,待分析管内真空度为 6×10-6Pa 以下时测定,以 1/3S℃的速度升温到 500℃,采用加热爆裂法提取气体。然后用四极质谱仪测试包裹体的气相成分,四极质谱的型号为日本真空技术株式会社生产的 RG202 型。工作条件为:SMZ 电压-1.76 V;电离方式 EI;离子电压 50 eV;测量速度 50 ms/amn;真空度 5×10-6Pa。仪器重复测定精密度<5%。

(3)液相成分的提取和测试。取清洗干净的样品1 g 在马福炉中爆裂 10 min,石英样品的爆裂温度选择 500℃,然后加入 5 mL 蒸馏水、超声离心(震荡 10 min);最后取离心后的清液到离子色谱中测量阴、阳离子成分。采用的离子色谱(Ion Chromatograph)仪是日本岛津公司(SHIMADZU)生产的 HIC-6A 型 C-R5A色谱处理机;淋洗液是2.5 mM 邻苯二甲酸-2.4 mM 三(羟)甲基氨基甲烷;流速为阴离子 1.2 mL/min,阳离子 1.0 mL/min;重复测定精密度小于5%。

3.氢、氧、硫、铅同位素研究方法

同位素的测试分析在中国地质科学院同位素地球化学开放实验室完成,具体操作步骤、试验条件、精确度等如下:

(1)样品清洗。为消除与石英共生的硫化物连晶,将石英单矿物置入用 60~80℃的稀硝酸溶液浸泡 12 h,然后用去离子水冲洗,并以超声波离心仪清除杂质,重复去离子水冲洗和超声波离心处理 6次,直至 WFX-110 原子吸收光谱仪显示淋液不含离子,最后烘干得到可供分析的石英单矿物样品。硫化物的清洗:用丙酮洗去表面有机物,再用蒸馏水冲洗,最后在烘箱中 60℃烘干。

(2)测试物的制备。①流体包裹体中水的氢同位素:把分选的单矿物在 105℃以下烘干后,在真空系统中逐步加热抽走次生包裹体的水,加热至 600℃使其中的包裹体热爆,释放的水通过收集、冷凝和纯化处理,然后用锌置换出水中的氢,对获得的H2进行质谱分析。②石英的氧同位素:首先用 BrF5在 500~550℃条件下与石英矿物反应15 h,然后用液氮将产生的O2纯化,最后在 700℃将O2转变为CO2而用于质谱分析。③硫化物的硫同位素:首先用氧化亚铜在 980℃条件将硫化物的硫氧化为 SO2(方铅矿为850℃),(用 V2O5石英砂在 980℃条件还原硫酸盐中的S),然后将释放的 SO2用液氮冻入样品管并纯化,获得供质谱分析用的 SO2。④硫化物的铅同位素:首先用 HNO3-HF 混合溶液溶解硫化物,用过阴离子交换树脂提取Pb,以硅胶做发射剂,用单铼带在 MAT261 热离子质谱仪上测试铅同位素组成。

(3)仪器型号及精度 氧、氢、碳、硫同位素组成都是用MAT251EM气体质谱仪对步骤(2)中获得的气体进行测试,以 V-SMOW 标准报出氢氧同位素组成,以 VCDT 标准报出硫同位素组成。测试精度分别为±0.2‰(δ18O),±2‰(δD),±0.2 ‰(δ13C),±0.2‰(δ34S)。铅同位素是以硅胶做发射剂,用单铼带在MAT261 热离子质谱仪上测试的。标样为 NBS981,206Pb/204Pb、207Pb/204Pb 和208Pb/204Pb 的分析精度在 2σ水平上分别为 0.1%、0.09%和 0.30%。

根据测定的石英氧同位素,利用石英-水之间的氧同位素平衡分馏方程,计算得到与之平衡的流体的氢同位素值,公式如下:

北山南带构造岩浆演化与金的成矿作用

式中T为均一温度(单位K)。目前关于流体包裹体中岩浆水和变质水的氢氧同位素组成的区间范围,不同研究者给出了不同的端元值,本文采用的是Hoefs(1997)提供的各成因水的范围。

铅同位素参数238U/232Th比值(μ值)和铅两阶段模式年龄是采用Ludwig(2001)提供的ISOPLOT2.49程序计算。

4.铷-锶、钐-钕同位素研究方法

铷-锶、钐-钕同位素是作者在中国科学院地质与地球物理研究所固体同位素地球化学实验室亲自完成,试验流程如下:在大约100 mg全岩粉末样品中加入适量的87Re-84Sr和149Sm-150Nd混合稀释剂和纯化的HF-HClO4酸混合试剂后,在高温下完全溶解。Rb-Sr和REE的分离和纯化是在装有2 mL体积AG 50W-X12交换树脂(200~400目)的石英交换柱进行的,而Sm和Nd的分离和纯化是在石英交换柱用1 mL Teflon粉末为交换介质完成的。Sr同位素比值测定采用Ta金属带和Ta-HF发射剂,而Rb、Sm和Nd同位素比值测定采用双Re金属带形式,测量仪器为MAT262热电离质谱计。分别采用146Nd/144Nd=0.7219和86Sr/88Sr=0.1194校正测得的Nd和Sr同位素比值。Rb-Sr和Sm-Nd的全流程本底分别为100 pg和50 pg左右。147Sm/144Nd和87Rb/86Sr比值误差(2σ)小于0.5%。化学流程和同位素比值测试可参见Chen et al.(2002)文献。正文中有关参数的计算公式如下:

北山南带构造岩浆演化与金的成矿作用

北山南带构造岩浆演化与金的成矿作用

式中:下标sa、chur、DM、cc分别代表样品、球粒陨石、亏损地幔和上地壳;(λ87Rb)=1.42×10-11/a,(λ147Sm)=6.54×10-12/a,(143Nd/144Nd)chur=0.512638,(147Sm/144Nd)chur=0.1967,(147Sm/144Nd)cc=0.118,(147Sm/144Nd)DM=0.2136,(143Sm/144Nd)DM=0.513151(Faure,1986;郑永飞等,1999)。

5.全岩的主量、微量和稀土元素测试

文中拾金坡岩体的主量、微量和稀土元素均是在国家地质测试中心分析完成。其中,主量元素FeO采用容量法,CO2采用电导法,H2O+采用重量法,其他主量元素采用X射线荧光光谱仪分析;微量元素Au采用原子吸收法,Cr、Ni、Ga、Rb、Th、U、Nb、Ta和Sc采用等离子质谱法,Ba、Sr、V采用等离子光谱法;稀土元素采用等离子质谱法测定。

文中新老金厂矿床地层的主量、微量和稀土元素是在核工业北京地质研究院测试中心完成。其中,主量元素采用X射线荧光光谱法测定;微量和稀土元素采用等离子质谱法测定。

文中用于稀土元素球粒陨石标准化的数值引自Taylor et al.(1985),用于微量元素原始地幔标准化的数值引自Wood et al.(1979)(转引自Rollison H R.1993)。

6.锆石的SHRIMP测试

用于SHRIMP测试的锆石上机前的样品靶制备由北京离子探针中心的实验人员完成,样品靶制备完成后进行透射光、反射光和阴极发光扫描电镜显微照相,以选择合适的测试点位置。测试点原则上选择颗粒较大、自形、清晰锆石的无包裹体、无裂纹区进行分析。SHRIMP上机测试由笔者在北京离子探针中心完成。样品靶的详细制备过程可参见宋彪等(2002)文献,SHRIMP测试的详细流程和原理可参见Williams I S et al.(1987)文献。一次离子流强度约7.4 nA,加速电压10 kV,样品靶上的离子束斑直径约25~30 μm,质量分辨率约5000(1%峰高)。应用澳大利亚国家地质标准局标准锆石TEM(年龄417 Ma)进行元素间的分馏校正,并用澳大利亚国立大学地学院标准锆石SL13(年龄572 Ma,U含量238 μg/g)标定待测锆石的U、Th和Pb含量。数据处理由万渝生研究员采用ISOPLOT3.0程序帮助完成。

❷ 论文研究方法求助 急!在线等

论文研究方法求助急你如果急你就多看别人怎样写论文。把洛聚落在写情书。

❸ 基本原理与研究方法

一、总 体 思 路

本项研究的核心问题,是揭示水循环演化过程中子系统之间水量转化机制,查明分区或子系统界面间地下水补给、径流和更新模式,实现演化量化描述。

针对上述问题,以黑河干流串联的祁连山冰雪区、张掖盆地、金塔-花海子盆地、额济纳旗盆地为重点剖面,自南至北划分为山区水循环子系统、南北部盆地水循环子系统、额济纳旗子系统3个研究分区。在充分研究地下水的形成演变过程及其特征的基础上,通过对各种水体进行调查,选择典型地段,沿剖面线以不同时间和空间间隔采样,以同位素作为示踪剂,根据各种水体不同的特征,采用地下水动态监测资料和同位素监测资料,确定区域地下水及局部地下水补给、径流、排泄机制及其特征值,分析各种水之间在不同时空上的关系及转化规律。在此基础上,确定地下水的补给、径流机制及其演化过程。

最后,根据研究区的水文-气候研究成果,结合地下水测年及同位素反映的补给特征,建立地下水形成演化与区域水文循环的关系。根据不同地下水子系统的特征值及其相互关系,建立不同典型分区地下水补给、径流模式及其与相邻子系统之间水量转化模式。

具体研究流程如图4-1所示。

图4-1 黑河流域水循环演化同位素水文学研究工作流程图

二、理 论 依 据

(一)放射性氚测年

1.氚起源及其放射性

氚是氢元素的一种放射性同位素。水中的氚主要有两种起源:天然氚和人工核爆氚。天然氚主要来源于大气中的核反应:

西北内陆黑河流域水循环与地下水形成演化模式

n是宇宙射线的快中子,大约3%~5%的大气上层中子与氮反应形成氚(Ferronsky,1982)。人工氚主要由大气核试验产生,首次核试验开始于1952年。氚原子生成后,即同大气中的氧原子化合生成HTO水分子,成为天然水的一部分,参与水循环,成为追踪各种水文地质作用的一种理想示踪剂,更重要的是氚的放射性具有计时功能,因而成为水文地质研究中一种测年技术手段。氚的半衰期为12.34年,其衰变过程为:

西北内陆黑河流域水循环与地下水形成演化模式

氚含量以氚单位(TU)表示,天然降水的氚含量只有几个TU。自20世纪50年代开始,由于北半球大气核试验大量的氚释放进入大气圈,到1963年降水中氚含量可达6000 TU,核爆过后,呈指数衰减,目前北半球降水氚含量大约是10 TU。影响降水中氚浓度的作用主要有:纬度效应、大陆效应、高程效应、季节效应、雨量效应。降水中氚含量最大出现在春末夏初,最小出现在秋末冬初。

2.地下水氚测年模型计算

定量估算地下水的年龄可以通过模型来计算,通常应用的模型是活塞流模型和全混合模型。

当地下水系统的信息传输关系符合线性规则,并且与地下水平均驻留时间相比,地下水径流速度的变化可以忽略(Zuber et al.,1986)时,可以将地下水系统概化为线性稳定流集中参数系统。则地下水系统中氚输入和输出浓度的关系表示为

西北内陆黑河流域水循环与地下水形成演化模式

式中:t——氚输出时间系列(年代);

τ——氚传输时间,即年龄;

λ——氚衰变参数,λ=ln2/T1/2,T1/2为氚的半衰期;

cout(t)——氚输出函数,即输出氚浓度随时间变化的函数;

cin(t-τ)——氚输入函数,即输入氚浓度随时间变化的函数;

g(τ)———系统响应函数或称地下水年龄分配函数。

已知氚输入系列和年龄分配函数,就可以利用(4-3)式求出输出浓度与年龄的关系,然后采用配线法获得采样点地下水年龄。

根据不同的水文地质条件可以确定地下水年龄分配函数,常采用的模型有:活塞流模型(PFM)、指数模型也称全混合模型(EM)、弥散模型(DM)、线性模型(LM)、指数-活塞流模型(EPM)等。一般活塞流模型或弥散度很小的弥散模型只能识别出1954年以来补给的地下水,典型弥散系统可识别年龄上限可达100~200年,而指数模型最大可识别出1000年的地下水(Maloszewski 和 Zuber,1996)。

黑河流域地下水系统自山前戈壁带以下均包括侧向径流和垂向入渗补给,由指数型和活塞流型两部分联合组成,因此,选用指数-活塞流模型比较适合。EPM模型的年龄分配函数为:

西北内陆黑河流域水循环与地下水形成演化模式

式中:τm——地下水平均驻留时间(平均年龄);

η——系统中流动水总体积与指数型水体积之比,η=1时为指数模型,η越大活塞流模型占的比重越大。

将(4-4)式代入(4-3)式,可得EPM的数学模型。

(二)放射性14C测年

14C是碳的放射性同位素,其半衰期为5730年,是由大气中氮产生的:

西北内陆黑河流域水循环与地下水形成演化模式

式中:n——中子;

p——质子。

14C在初始补给水中的浓度一般设定为核试验前大气中CO2的水平,即大约100 PMC,PMC(Percent Modern Carbon)是现代碳百分数,等于美国国家标准局(NBS)草酸标准的放射性碳浓度的94%。

Munnich(1957)首先把14C方法应用于地下水的测年,并建立了基本方法。地下水14C测年是应用地下水中的溶解无机碳(DIC)作为示踪剂,以14C测定地下水中溶解无机碳的年龄。一般认为地下水的无机碳与土壤CO2隔绝后便停止了与外界14C的交换,所以地下水14C年龄一般指地下水和土壤CO2隔绝至今的年代。“年龄”是根据地下水的14C浓度和补给时浓度(源项)之间的差别来计算的:

西北内陆黑河流域水循环与地下水形成演化模式

式中:t——距今的年(a.B.P.);

A——测试的总溶解无机碳的14C含量;

A0——补给时初始总溶解无机碳的14C含量。

在大气中,由于地球磁场和太阳活动可造成14C浓度大于或者小于100%,气候变化也可以影响全球不同储库中(大气圈,生物圈,海洋)14C浓度,因此,地下水的14C“年龄”可能偏离地下水的实际年龄。然而,对于地下水14C测年,这种差别与其他不确定性相比是可以忽略的。较为严重的影响是1963~1966年北半球的大气核爆试验,其峰值接近于200 PMC(Moser and Rauert,1983)。

测年模型都要产生一个初始的14C浓度A0,该值是考虑所有影响后的放射性初始起点。地下水中大多数碳起源于包气带的CO2气体,但是,这种含有高浓度14C的碳常常在地下水补给过程中被低14C 浓度的碳酸岩矿物的溶解所稀释。一些模型可以校正这种“死碳”的稀释,包括Vogel(1970)模型、Tamers(1975)模型、Pearson和White(1967)模型,Mook(1976)模型、Fontes 和 Garnier(1979)模型等,某些模型如NETPATH(Plummer et al.,1994)联合考虑了同位素混合和地下水化学演化(Plummer et al.,1990,1993,1994)。所有模型都分别考虑了不同的地球化学过程。

❹ 心理学实验设计问题:2×2×3混合实验设计分析方法

分析多个变量的关系一般使用ANOVA(ANalysis Of VAriance)

分析每一个变量的个体作用(main effect)时,对比其他变量控制相同的那几组
分析两个或三个变量的相互作用(interaction)时,参考下面的
2x2x3
A
B
C
AxB
AxC
BxC
AxBxC

可以使用一些软件辅助,比如SSPS,用ANOVA去对比组内和组件差异

❺ 社会科学的研究方法具体有哪些

社会科学研究的三大方法:

1、定性与定量相结合的系统研究方法;

2、个体论与整体论相结合的综合研究方法;

3、实证性与评价性相结合的集成研究方法。

三大方法是对社会科学中三个基本关系(定性与定量、个体与整体、事实与价值)的辩证解决,是既体现马克思主义辩证思想精神,又与社会现象的复杂性相结合的,因而,它们可以构成适应现代社会整体化趋势的方法论基础。

(5)混合研究方法扩展阅读

马克思曾预言:“科学只有从自然科学出发,才是现实的科学。历史本身是自然史的,即自然界成为人这一过程的现实部分。自然科学往后将包括关于人的科学,正像人的科学包括自然科学一样:这将是一门统一的科学”(《马克思恩格斯全集》第42卷第128页)。

一百多年来,人类在自然科学和社会科学两个方面均已取得了突飞猛进的发展,特别是自然科学的发展尤为突出,不仅深入到了自然界的宏观领域、宇观领域和微观领域,还深入发展到了人类机体(包括大脑)和人类社会领域,而且这两个方面仍在不断地进行相互渗透、相互整合。

社会科学(包括思维科学)越来越多地受到自然科学的影响,许多自然科学的研究方法已经卓有成效地应用于社会科学的研究过程之中,有力地推动了社会科学的发展。社会科学的这种不断地采用自然科学的研究方法的发展趋势,称之为社会科学的“自然科学化”。

❻ (求助)如何使用正确的研究方法

第一,调查法。

调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。

调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。

第二,观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识。②启发人们的思维。③导致新的发现。

第三,实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:①主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。②控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。③因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。

第四,文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮助确定研究课题。②能形成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。④有助于了解事物的全貌。

第五,经验总结法

经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法。总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一。

什么是混合回归模型(mixture regression model)

混合回归模型:过程开发模型又叫混合模型(hybrid model),或元模型(meta-model),把几种不同模型组合成一种混合模型,它允许一个项目能沿着最有效的路径发展,这就是过程开发模型(或混合模型)。实际上,一些软件开发单位都是使用几种不同的开发方法组成他们自己的混合模型。

❽  主要研究方法

研究金属矿床成矿时代的常用方法有三种,一是矿石铅同位素年代学方法,二是蚀变矿物的同位素测年方法,三是据赋矿围岩、控矿构造及与矿化有关岩脉的时代间接推断矿脉形成时代。本书主要应用这三种不同的年代学方法确定矿床成矿时代,同时注意不同方法所得年龄的对比分析与相互验证。近年来发展起来的铼-锇同位素年代学方法能直接测定辉钼矿等矿石矿物的形成时代,然而这种方法在我国目前尚处在试用阶段,在燕山地区尚未全面展开该项测年工作。

一、普通铅同位素的演化模式与年龄计算公式

矿石铅同位素年代学方法是直接测定成矿时代的重要研究方法,被广泛用于世界各地的金属矿床。目前常用的铅同位素演化模式包括单阶段模式如Holms-Houtermans模式,二阶段模式如正常铅混合模式、瞬间增长模式与连续增长模式,多阶段模式如简单的三阶段铅混合模式等。但这些模式都存在严格的应用条件。单阶段模式只适合于封闭体系、无后期铅混染的少数几个整合矿床;简单的二、三阶段模式要求体系相对封闭,各阶段异常铅只能来自于单一的且铀、钍、铅同位素比值均一的源区,还要求体系在各阶段的铅同位素均匀分布。这些模式在一般的造山带与地盾、地台区,都能有效地用于确定矿床成矿时代。然而,燕山陆内造山带具有十分复杂的地质过程,矿质具有两种以上的复杂来源;成矿体系多属开放体系,铀-钍-铅同位素混合过程也颇为复杂,存在多种不同的情况;上述几个特殊的铅同位素模式不足以概括本区常见的开放体系铅的混合过程,以至于使本区已积累的近百组铅同位素资料长期以来得不到充分利用,求不出有地质意义的成矿时代。为此,笔者首先从理论上分析常见开放体系铅同位素混合过程,建立开放体系铅同位素演化模式,推导其年龄计算公式。这些模式在燕山地区成岩成矿时期的研究中,取得了良好的应用效果。

1.基本假设

(1)同一来源的206Pb、207Pb、208Pb、204Pb以相同的概率进入同一样品。不同铅同位素化学性质的相似性,使这一假设在各种地质过程中都能成立。

(2)同一时代地质体的N(238U)/N(204Pb)(即μ值)与N(235U)/N(204Pb)(v值)可以变化;铀的丢失与加入常造成这种结果。

(3)当铅混合时,铅同位素可来源于两种以上不同的铅源,包括正常铅铅源与放射成因异常铅铅源;同一铅源对不同样品的贡献可以不一样,即同一体系不同样品的铅同位素来自于任一源区的概率可以不一样。

(4)体系中的铅可以来自于一个至数个放射性成因铅源,将N(238U)/N(204Pb)=μi的源区叫μi源。

(5)铀、铅及其同位素在地幔中均匀分布。

(6)铅在最后一阶段混合后,保持其同位素比值,直至现代。

2.二阶段铅混合的系统模式

设样品来自于t1时形成正常铅的概率为α1,来自于T至t2时期形成的放射成因铅的概率为α2。t2混合时,设有m个μi源,样品中混合铅来自于μi源的概率为βi。t2混合之后,样品铅同位素组成可表示为:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

式中:

为第二阶段(t2)体系的铅同位素组成;

为第一阶段(t1)体系铅同位素组成,由H-H模式确定:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

a0、b0为T=4550Ma时地球的初始铅同位素组成;α1+α2=1,

;T为地球年龄。

模式Ⅰ当α1=1,α2=0时,由(3.1.1)、(3.1.2)式知,二阶段铅退化为单阶段铅。这时为正常铅,样品点在N(207Pb)/N(204Pb)—N(206Pb)/N(204Pb)坐标图中分布于一点。据(3.1.3)、(3.1.4)式得:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由(3.1.5)式与(3.1.3)、(3.1.4)式可计算成岩或成矿年龄t1与源区μ,v值。该模式相当于H-H模式(G.福尔,1983)。

模式Ⅱ0<αi<1,i=1,2;β1=1,βj=0(2≤j≤m),μ1=μ;这时(3.1.1),(3.1.2)式可简化为:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由(3.1.6)、(3.1.7)式得:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

当αi对不同样品取值不一样时,样品点呈线性分布,直线斜率为R,如图3-1所示。样品点分布于增长曲线的弦上,等时线与增长曲线的两交点对应时代t1与t2相当于两次普通铅的形成时代。该模式相当于前述已有的正常铅与正常铅混合二阶段模式。当已知t1与t2之一时,可据R求出另一时代。

模式Ⅲ-1当i=1,2时,0<αi<1,0<βj<1(1≤j≤m),βj

(βj·μj)对不同样品不取恒定值,但αi对所有样品取恒定值。这时,由(3.1.1)、(3.1.2)式导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

(3.1.8)式中,

为混合铅同位素比值。这时样品点分布在一条直线上,直线斜率较大(图3-2),据(3.1.8)式能求出t2。当其它条件相同,而βj对所有样品取定值(1≤j≤m)时,由(3.1.1)、(3.1.2)式可知,样品点的铅同位素组成均匀分布,在坐标图中分布于一点;在这种情况下,难以求出t1或t2值。

模式Ⅲ-20<αi<1,i=1,2;0≤βj<1,1≤j≤m;α1对不同样品皆非恒定值,βj对不同样品非定值;这时,若

(βj·μj)趋于μ,则由(3.1.1)、(3.1.2)式导出:

图3-1模式Ⅱ图解

Fig.3-1Lead-isotope evolution of modelⅡ

图3-2模式Ⅲ-1图解

Fig.3-2Lead-isotope evlution of modelⅢ-1

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由于

(βj·μj)趋于定值μ,所以X′t1与Y′t1近为定值。代入(3.1.9)、(3.1.10)式,得:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时,样品点呈线性分布,据直线斜率能求出t1与t2之一。

,则由(3.1.9)、(3.1.10)式可以看出,当μ′<0时,样品点靠近t1分布,甚至会落在t1左侧;当μ′≥0时,样品点靠近t2点分布,部分样品点会落在t2右侧。增长曲线如图3-3。当t1与t2相差较大时,该模式相当于连续增长模式;当t1与t2近似相同时,则等时线由弦而渐趋于切线,这时相当于瞬间增长模式。

模式Ⅲ-3当0<αi<1,0≤βj<1(i=1,2,1≤j≤m),βj、αj对不同样品皆非常数时,若样品的α1值仅取几个定值之一,当样品点足够多时,样品点呈图3-4所示分布状态,即分布于一组平行直线上。据直线斜率能求出t1或t2,斜率R可表示为:

图3-3模式Ⅲ-2图解

Fig.3-3The first lead-isotope evolution of model Ⅲ-2

图3-4模式Ⅲ-3图解之一

Fig.3-4The first lead-isotope evolution of model Ⅲ-3

(βj·μj)为定值时,

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

(βj·μj)不为定值时,

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

若αi对不同样品都不一样时,样品点呈星散状分布(图3-5),这时无法求出t1或t2的真实值。

图3-5模式Ⅲ-3图解之二

Fig.3-5The second lead-isotope evolution of model Ⅲ-3

3.三阶段铅混合的系统模式

设一阶段铅的分离时代为t1,二阶段铅的混合时代为t2,三阶段铅的混合时代为

为二阶段普通铅源i的同位素比值,

为t3体系中铅同位素比值;设有m个放射成因铅源μi,有n个普通铅源;t3时刻混合时,体系铅来自于普通铅i源的概率为εi,来自于放射成因铅的概率为εn+1;当εn+1>0时,μj源铅进入样品的概率为βj,则

=1,且

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

(3.1.12)、(3.1.13)式为一般情况下三阶段铅混合时的定量关系式。不同条件下,三阶段混合铅具有不同特征,对应于不同的铅演化图,下面分别予以讨论。

(1)ε1=1,εi=0,2≤i≤n+1,这时三阶段铅退化为二阶段铅。

(2)0<ε1<1;εi=0,2≤i≤n;0<εn+1<1,这时(3.1.12)、(3.1.13)式可写成:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

模式Ⅳ当β1=1,βj=0,2≤j≤m时,(3.1.14)与(3.1.15)式可写成:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

若放射性铅与普通铅在T到t2期间有相同的演化过程和成分,即

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时相当于G.福尔提出的简单三阶段模式;且样品点或呈线性分布(图3-6),或分布于一点。据等时线斜率R能求出t2与t3之一:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

模式Ⅴ-1当所有样品的ε1、Xt2、Yt2取相同值时,则ε1·Xt2、ε1·Yt2为常量。若βj对所有样品取相同值,0≤βj≤1,1≤j≤m;这时三阶段样品铅同位素构成一点。据(3.1.14)、(3.1.15)式,有

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

只有当ε1及Xt2、Yt2都已知时,才能求出t3;一般情况下,若上述三参数未知,则无法计算出真实年龄t3

模式Ⅴ-2当ε1及Xt2、Yt2为常量,而不同样品βj不同时,1≤j≤m,若

不为恒定值,则据(3.1.14)、(3.1.15)式,可推导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时,样品点呈线性分布(图3-7),直线斜率一般较大。据R能求出t3

图3-6混合铅模式Ⅳ图解

Fig.3-6Lead-isotope evolution of model Ⅳ

图3-7模式Ⅴ-2图解

Fig.3-7Lead-isotope evolution of model V-2

模式Ⅵ当所有样品点的Xt2、Yt2恒定时,若0≤βj≤1,1≤j≤m,βj非常数;而Xt2

,则据(3.1.14)、(3.1.15)式,可导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

近为常量。据(3.1.16)、(3.1.17)式可导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时,样品点呈线性分布,分布特征类似于模式Ⅲ-2,如图3-8所示。

模式Ⅶ当Xt2、Yt2恒定,ε1、β,对不同样品取不同值时,若

不恒定,且ε1仅有几个可能的值,则混合铅样品点分布于几条平行直线上,直线斜率

据之能求出t3,否则,样品点呈星散状分布。混合铅演化如图3-9所示。

图3-8模式Ⅵ图解

Fig.3-8Lead-isotope evolution of model Ⅵ

(3)当不同样品的Xt2、Yt2不同,0≤εi<1,1≤i≤n+1时,有下列模式:

模式Ⅷ若Xt2、Yt2呈线性分布,不同样品点εi相同(1≤i≤n),0≤βj<1(1≤j≤m);则有几种可能性:

模式Ⅷ-1若βj恒定,1≤j≤m,则(3.1.12)、(3.1.13)式可写成:

图3-9模式Ⅶ图解

Fig.3-9Lead-isotope evolution of model Ⅶ

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

由于βi为常量,对所有1≤j≤m都成立,所以

c与d皆为常数;样品点仍呈线性分布,其斜率与二阶段等时线相同,如图3-10示。据R能求出t1与t2之一,而求不出t3

图3-10模式Ⅷ-1图解

Fig.3-10Lead-isotope evolution of modelⅧ-1

模式Ⅷ-2若

相同,但βj不同时,则任一(Xt2,Yt2)点都对应一条三阶段等时线,所有样品点沿两组平行直线分布(图3-11),r1一般大于r2

,据之能求出t2与t3之一;r1为二阶段等时线斜率,据之能求出t1与t2之一。只有当样品点足够多时,才有可能据该模式求出t1、t2或t3,否则,r1与r2难以确定,无法计算年龄。

图3-11模式Ⅷ-2图解

Fig.3-11Lead-isotope evolution of modelⅧ-2

模式Ⅸ若(Xt2,Yt2)呈线性分布,不同样品εj值相同,βj值不同,

亦因样品不同而不同,这时(3.1.12)、(3.1.13)式中

为常数,由(3.1.12)、(3.1.13)式可导出:

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

这时样品点沿两组斜率较大的平行直线分布。当样品点足够多而能求出r1,与r2时,则可据此求出t1、t2或t3

模式X若(Xt2,Yt2)呈线性分布,但εi,βj对不同样品不取恒定值时,则据(3.1.12)、(3.1.13)式,样品点呈星散状分布,或呈线性沿两组平行直线分布。后一种分布状状只有当εi对不同样品点仅取几组确定值时才能出现,据平行直线的斜率能求出t3,斜率r2为:

非定值时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

恒定值时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

模式Ⅺ当(Xt2,Yt2)不呈线性分布,而呈星散状分布时,则三阶段铅样品点仍呈星散状分布,这时无法求出t3与t2的真实值。

模式Ⅻ当(Xt2,Yt2)分布于数条平行直线上,而βj、εj恒定时,由(3.1.12)、(3.1.13)式可得出样品点的(Xt3,Yt3)仍呈线性分布,斜率与二阶段等时线相同(图3-12);据斜率r1可求出t1或t2,详见模式Ⅲ-3,但无法求出t3

模式ⅩⅢ当(Xt2,Yt2)呈线性分布于数条平行直线上(其斜率为r1),若ε1恒定,βj对不同样品取值不尽相同,则由(3.1.12)、(3.1.13)式可导出:当样品点足够多时,样品点分布于一个菱形区域内,类似于图3-11所示的三阶段铅样品点的分布状态;据两组直线斜率r1、r2能求出t1、t2或t3,r2表达式为:

非常数时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

为常数时

燕山陆内造山带金-多金属成矿作用与构造-成矿关系

以上从理论上分析了开放体系多种情况下铅同位素的演化模式。可以看出,混合铅样品点呈同一或类似分布状态时,可对应一个至数个不同的地质过程。因此在应用铅同位素研究地质问题时,应尽量取足够多的样品;在样品点足够多的前提下,结合其它地质与地球化学资料进行综合分析,以便合理地解释铅同位素的演化,求出成岩、成矿时代。这些模式在燕山地区成岩成矿时期研究中,取得了较好的应用效果。

图3-12模式Ⅻ图解

Fig.3-12Lead-isotope evolution of modelⅫ

二、其它研究方法简介

1.据矿石蚀变矿物的K-Ar法、Rb-Sr等时线法、裂变径迹法确定成矿时代

上一章已述,燕山地区大部分类型的矿化都伴有强烈的蚀变,蚀变阶段性与矿化阶段性存在良好对应关系,两者形成时间相近。因此,蚀变矿物的同位素年龄能代表成矿时代。

蚀变矿物绢云母、白云母、钾长石等适合于K-Ar法年龄测定,白云母、绢云母的K-Ar法年龄能较好地反映同期矿化时代。

近矿蚀变矿物绢云母、白云母等的单矿物Rb-Sr等时线法年龄也能准确地反映成矿时代,是确定矿床形成时代的良好方法。

蚀变矿物的裂变径迹法年龄常较实际成矿时代偏小,其上限能大致代表成矿时间(杨应平,1985,硕士论文)。

2.据赋矿围岩时代与矿区岩脉时代间接推断成矿时代

当有充分的资料说明矿化与围岩成岩作用存在成因联系时,围岩时代能代表成矿时代下限。表3-1说明燕山地区中生代赋矿岩体时代与矿化时代的一致性。

当矿区内存在大量岩脉时,根据岩脉时代及岩脉与矿体相互穿切关系,也能较好地推断成矿时代。

表3-1岩体与其中金矿时代对比表

3.据同成矿期控矿构造的成生、活动时间推断成矿时代

任何控矿构造都属于某一个或某些构造体系,皆有一定的形成与活动时期;因此据同成矿期控矿构造的时代能定性推断部分矿床的成矿时代。古构造筛分有助于这方面的研究工作。

❾ 求教混合有限元方法

上网找一些论文看看吧。这个目前不成熟,还没有商用有限元软件采用混合有限元方法,主要是学者们在研究。个人感觉传统有限元和混合有限元的本质差别只有一个点。有限元解决的问题一般都是二阶偏微分方程,传统有限元直接解决该二阶问题,或者采用分部积分得到弱解积分形式;而混合有限元方法则将一阶偏导数也作为求解变量,使得系统的阶次降为一阶,但是求解规模扩大一倍。所谓混合,即混合了原求解变量和其一阶偏导数。

阅读全文

与混合研究方法相关的资料

热点内容
常用说明方法讲解 浏览:413
脚气怎么办用什么方法最好 浏览:334
生物钟快速调节方法 浏览:14
免费买水方法视频教程 浏览:970
多海域训练方法 浏览:797
怎么用好的方法教导孩子 浏览:376
泡澡的方法视频 浏览:329
教学方法含义及区别 浏览:775
格力空调冬季使用方法 浏览:53
肠胃癌治疗方法 浏览:53
家庭教育中有哪些好的教育方法 浏览:772
解决分析方法应用中的技术问题 浏览:869
双时间步方法的应用分析 浏览:570
测量血压的方法与流程 浏览:847
雕花胶使用方法图解 浏览:283
暖风机散热器堵塞解决方法 浏览:900
盘式曝气器安装方法 浏览:301
38度6锻炼方法 浏览:407
用化学方法鉴别苯丙醇苯乙醇 浏览:593
书法拼接方法技巧图解 浏览:217