导航:首页 > 研究方法 > 金融数据分析方法

金融数据分析方法

发布时间:2022-02-17 09:56:58

1. 金融数据分析工作内容主要是什么需要具备哪些技能后期是否有发展空间

1维护公司运营指标体系,根据业务线建立数据分析模型2研究用户生命周期用户画像几个人行为习惯,建立数学模型,理清关系的结论,写分析报告3不断完善和优化模型和数据分析结果。需要具备本科以上数学,统计计算机经济相关专业,熟悉统计分析数据挖掘,熟悉SPSS. sad. stata等统计分析平能熟悉操作一种软件3是具备独立编写数据分析报告能力,并能给出建议4具有数据挖掘相关项目实施经验者优先考虑,后期有发展空间

2. 大数据分析的基本方法有哪些

1.可视化分析


不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。


2. 数据挖掘算法


可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。


3. 预测性分析能力


数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。


4. 语义引擎


由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。


5. 数据质量和数据管理


数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

3. 金融数据如何分析以及用到的工具

数据分析分好多种,现行的主要有两种,基本面分析和技术分析。基本面分析又分好多种比如行业分析和公司分析等,所用的数据和处理数据的方式都有不同,技术分析也分很多种,如波浪理论、K线图等,一般只用基本的画线工具和简单的数据处理公式(如ma,macd),普通的交易软件一般自带。

4. 如何进行互联网金融运营数据的分析,都有哪些方法

作者:张溪梦 Simon
链接:https://www.hu.com/question/29185414/answer/110954989
来源:知乎
着作权归作者所有

我们之前做过一期互联网金融的公开课,“互联网金融增长宝典:三大步骤提高转化,搞定用户运营”,主讲人是 GrowingIO 的业务增长负责人徐主峰,曾任职 Criteo、Microsoft 等公司,有丰富的电商、互联网金融客户解决方案经验。 这是公开课的速记整理。
这是一篇互联网金融宝典,我推荐给所有转化率只有 1%、总是为谁可能是你的购买用户而犯愁的互联网金融的高管、PM、市场运营和销售们。本文通过实战案例,手把手教你建立转化指标、 梳理分析思路、提供分析步骤并最终建立用户行为分析模型。

文 / 徐主峰

大部分的互联网金融公司最为纠结的一点是,流量这么大,获客成本这么高,为什么最后的转化率和成单量却这么低?怎样才能提高用户运营效率?用户行为数据分析怎样把处在不同购买决策阶段的用户挑选出来,帮助互联网金融公司做到精益化运营?

我们的客户中很大一部分来自互联网金融,比如人人贷等行业前 10 的互联网金融公司。在服务客户的过程中,我们也积累了大量的数据驱动业务的实践案例,来帮助客户创造价值。

一 、互联网金融用户四大行为特征

互联网金融平台用户有四大行为特征:

第一流量转化率低,下图是某互联网金融公司网站上,新客户过去 30 天整体购买转化漏斗,其转化率只有 0.38%:

而这并非个例,实际上,绝大多数互联网金融公司,在 web 端购买的转化率基本都在 1% 以下,APP购买率在 5% 左右,远远低于电商或者其他在线交易的购买率。
第二,虽然转化率低,但是客单价却很高。一般来说,电商行业客单价在几十到几百,而互联网金融客户,客单价从几千到几万,某些特殊领域甚至高达几十万。而客单价高,就意味着用户购买决策会更复杂,购买周期也会更长。
第三,用户购买行为有很强周期性。电商的客户下次购买时间是不确定的,但是互联网金融平台上,真正购买的用户,是有理财需求的用户,在资金到期赎回产品后,一定还会进行下一次购买,只不过未必发生在你的平台上。
最后一个特点是“很强的特征性”,主要包括两个特征:
A:用户的购买偏好比较容易识别,理财产品数量和品类都很少,所以用户购买的需求或者偏好,很容易从其行为数据上识别出来。
B:用户购买过程中的三个阶段特别容易识别:
用户在购买决策阶段,有大量的交互事件产生,他会看产品,比对不同产品的收益率和风险,比对不同产品的投资期限等等;
但是一旦他完成了产品的购买,就不会有大量的交互行为产生,他可能仅是回来看一看产品的收益率。
当用户的产品资金赎回之后,又有大量的交互事件产生,实际上他处在下一款产品购买的决策期。

二、互联网金融用户运营的三大步骤

针对互联网金融用户行为的四个特征,在用户运营上有三个比较重要的阶段性工作:

1.首先,获取可能购买的目标用户,合理配置在渠道上的投放预算,以提高高质量用户获取的比例:
渠道工作的核心,主要是做好两方面的工作:宏观层面,优化整个渠道的配置;微观层面,单一渠道角度来说,根据渠道配置的策略,有针对性地实施和调整。
具体渠道的实施,大家都比较熟悉,但是对于整个渠道组合配置的优化,很多人接触的其实并不多。
以渠道一为例,总体的转化率是 0.02%;在过去 30 天站内总体的流量是 18.9K,漏斗第一级到第二级的转化率是 3.36%,这样一共是五级,我们看到最终渠道一带来总体的成交用户一共是 4 人。
类似的,前 10 的渠道数据都很清晰。不同渠道带来的流量,不同渠道总体的转化率,以及不同渠道在整个转化路径上每步的转化率都可以看到。
这里面有几个渠道很有特点:
渠道一的特点,渠道一带来的流量是所有 10 个渠道里最大的,但是它的总体转化率却是低的;
渠道二和渠道七,渠道二的量很大,但是转化率是零。渠道七量比较一般,转化率也是零;
渠道九和渠道十,这两个渠道是所有渠道里转化率最高的。但是这两个渠道特点,是带来流量不是特别大……
结合典型渠道特点,可以做一个象限图:
第一象限(右上角)渠道质量又高,带来流量又大的,这里面渠道三四五是符合这个特征的,渠道策略应该是继续保持和提高渠道的投入。
第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。
我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。
第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。
根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。
2.接下来就要把高价值的用户——真正有购买需求,愿意付费、购买的用户找出来。
将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户?
其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。
把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括:
用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。
既然用户行为数据这么重要,那么怎样获取呢?GrowingIO 以无埋点的方式,全量采集用户所有的行为数据,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。
这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为:
每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。
这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。
这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。
拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。
这是在把用户在过去 14 天内,由其产生的所有行为数据,按照购买意愿打分的权重,把打分大于 5 的用户找出来,在总体用户里,这部分用户购买意愿排名前 20% ,我们给它起个名字,叫购买意愿强烈的用户。
类似我们还做了购买意愿中等的用户分群,这是购买意愿排名在 20-60% 之间的用户;购买意愿排名在最后 40% 的用户,是购买意愿最弱的用户分群。
分群之后,点击任意一个分群,都会以用户 ID 的形式列出来。因为你要有用户的 ID ,才能对这些用户施加运营策略。每个用户最近 30 天的访问次数,最近的访问地点,最后一次访问时间都可以看到。
接下来针对这些购买意愿强烈的用户,怎样推动用户的转化呢?
3.采取针对性的运营策略,提高高价值用户的转化率。
首先我们来看一下购买偏好,互联网金融平台商品品类是比较少的,用户购买的目的性也比较清晰,一般商品的品类有这么几种:
第一种:债券型理财产品
第二种:股票型理财产品
第三种:货币型理财产品
第四种:指数型理财产品
第五种:混合型理财产品…
我们把用户在不同品类商品上的访问时长占比算出来,就能比较好地了解用户的购买偏好。比如下图,我们用用户访问债券型产品详情页的访问时长,除以用户在站内总体的访问时长,就能够得到用户在债券产品上访问时长占比的指标。
我们还是使用用户分群的工具,把在债券型产品上的访问时长占比大于40%的用户分出来,这是有非常强烈表征的客户,他购买的偏好就是债券型的产品。
同时我们再设定另外一个指标,比如用户购买意愿指标,之前我们做过大于5,也就是购买意愿排名在前 20% 的。
通过这两个条件,我们就可以把购买偏好是债券型产品,同时有强烈购买意愿的用户找出来,这两个指标的关系是并(and)的关系。同样我们可以按照用户的购买偏好,把关注其他品类的用户,都做成不同的用户分群,然后形成不同购买偏好的用户群体。
针对这些用户,其实在运营策略上,我们可以从三个层面来展开来进行做:
从购买阶段的角度,首先我们把所有用户可以分成新客和老客。对于这两个群体来说,运营策略和运营重点是非常不一样的。
新客群体,是从来没有在平台上发生过购买的用户,我们要根据用户的购买意愿,做进一步的运营。
老客群体,也就是在平台上已经发生过产品购买的用户,除了关注用户的购买意愿之外,用户的资金状态(资金是否赎回)也是非常重要的参数。
用户是否购买过产品?购买产品的用户是否已经赎回资金?这两个内容,其实是一个用户当前的属性。在我们分群的工作里,这有个维度的菜单,通过这个维度菜单,我们就可以把具有某种属性的用户找出来:
这里我做了一个分群,我们可以看一下。在维度的菜单里,我们把是否购买过产品的维度值设置成了 1 。把资金是否已经赎回这个维度的值,也设置成了 1 。实际上是把那些资金已经赎回的老用户找出来;同样在指标这个菜单里,我们同时也把有强烈购买意愿的用户找出来,时间是过去 14 天,指标大于 5 。
这样我们就制作了一个用户分群,而这个用户分群里所有用户,要满足下面的三个特征:
特征一:购买过产品的老客。
特征二:他们的资金,目前已经赎回了。
特征三:过去 14 天内的行为数据,表明这个用户有着强烈的购买意愿。
同理我们把所有用户,整理为下面几个不同类别,对应不同的运营策略:
比如新客里,当前有购买意愿的,其实他属于购买决策期的新用户。应该根据用户的购买偏好,推荐这种比较优质的理财产品。并给予一定的购买激励,来促进这些新客在平台上的第一次购买,这个对于新客来说是非常重要的,以此类推。
相比于电商或者其他行业,互联网金融平台结合行业和用户的特点,从用户行为数据分析的角度,驱动产品业务以及提高用户的转化率,有更加重要的意义。

5. 如何用大数据分析金融数据

有大数据分析工具的,免费的,你找一下大数据魔镜。

6. 数据分析架构及方法

数据分析架构及方法
一、以往的数据分析在今天的各类型企业中,数据分析岗位已经基本得到普及和认可,这个岗位的核心任务往往是支撑运营和营销,将企业内部的数据,客户的数据进行分析和总结,形成以往工作情况的量化表现,以及客户的行为趋势或特征等。
如果从更宏观的角度来认识数据分析岗位的话,每一个数据分析人员都明白,其实数据分析岗位要达到的目标就是希望通过数据来发现潜在的规律,进而帮助预测未来,这一点同数据挖掘的目标一致。那么为什么在大多数公司都已经具备的数据分析岗位基础上,今天却还是在反复提到数据挖掘这个概念,我们就需要来看看数据分析都有哪些是没有做到的内容。
1数据分散
多数数据分析岗位在公司中的岗位设置是隶属在单一业务部门中作为一个支撑岗,只有少数的公司是将数据分析作为一个独立的部门。其差异性在于,前者的数据分析所能分析的内容仅限于自身部门所输出的指标,比如投诉部门只看投诉处理过程中的数据,销售部门只看销售过程中的数据,一旦涉及到需要将各类指标汇总分析的情况,这种组织架构就会带来极大的负面影响,由于不同部门具备自己部门指标导出的权限,且与其他部门的配合并不影响绩效任务,所以这种跨部门采集数据的过程往往效率奇低。而数据分析最关键的就在于汇集更多的数据和更多的维度来发现规律,所以以往的数据分析多是做最基础的对比分析以及帕累托分析,少有使用算法来对数据进行挖掘的动作,因为越少的指标以及越少的维度将会使得算法发挥的效果越差。
2指标维度少
在以往的企业中,数字化管理更多的体现在日常运维工作中,对于客户端的数据采集虽然从很早以前就已经开展,CRM系统的诞生已经有很久的时间了,但是一直以来客户端的数据维度却十分缺失,其原因在于上述这些途径所获得的数据多为客户与企业产生交互之后到交互结束之间的数据,但是这段时间只是这个客户日常生活中很少的一部分内容,客户在微博,微信上的行为特点,关注的领域或是品牌,自身的性格特点等,可以说一个客户真正的特点,习惯,仅通过与企业的交互是无从知晓的,因此难以挖掘出有效的结论。
3少使用算法
在上述制约条件下,可想而知数据分析人员对于算法的使用必然是较少的,因为数据分析依赖于大量的指标、维度以及数据量,没有这三个条件是难以发挥算法的价值的,而在排除掉算法后,数据分析人员更多的只能是针对有限的数据做最为简单的分析方法,得出浅显易懂的分析结论,为企业带来的价值则可以想象。
4数据分析系统较弱目前的数据分析多采用excel,部分数据分析人员能够使用到R或SPSS等软件,但当数据量达到TB或PB单位级别时,这些软件在运算时将会消耗大量时间,同时原始的数据库系统在导出数据时所花费的时间也是相当长的,因此对大数据量的分析工作,常规的系统支撑难以到达要求。
二、技术革命与数据挖掘
得益于互联网对于人们生活的影响逐渐增大,我们发现数据正在疯狂的增长。今天一个人一天的时间中有将近一半是在互联网中度过的,一方面这些使用互联网的交互都是能够被捕捉记录的,一方面由于碎片化时间的使用,客户与企业交互的机会也变的越来越频繁,进一步保障了客户数据的丰富。同时在大数据技术的支撑下,今天的系统能够允许对这些大规模的数据量进行高效的分析。
因此数据分析人员也能够开始使用一些较为抽象的算法来对数据做更为丰富的分析。所以数据分析正式进入到了数据分析2.0的时代,也就是数据挖掘的时代了。
三、数据处理流程
数据分析也即是数据处理的过程,这个过程是由三个关键环节所组成:数据采集,数据分析方法选取,数据分析主题选择。这三个关键环节呈现金字塔形,其中数据采集是最底层,而数据分析主题选择是最上层。
四、数据采集
数据采集即是如何将数据记录下来的环节。在这个环节中需要着重说明的是两个原则,即全量而非抽样,以及多维而非单维。今天的技术革命和数据分析2.0主要就是体现在这个两个层面上。
1全量而非抽样由于系统分析速度以及数据导出速度的制约,在非大数据系统支撑的公司中,做数据分析的人员也是很少能够做到完全全量的对数据进行收集和分析。在未来这将不再成为问题。
2多维而非单维另一方面则在于数据的维度上,这在前边同样提及。总之针对客户行为实现5W1H的全面细化,将交互过程的什么时间、什么地点、什么人、因为什么原因、做了什么事情全面记录下来,并将每一个板块进行细化,时间可以从起始时间、结束时间、中断时间、周期间隔时间等细分;地点可以从地市、小区、气候等地理特征、渠道等细分;人可以从多渠道注册账号、家庭成员、薪资、个人成长阶段等细分;原因可以从爱好、人生大事、需求层级等细分;事情可以从主题、步骤、质量、效率等细分。通过这些细分维度,增加分析的多样性,从而挖掘规律。
五、数据分析方法选取数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。
数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。
其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。
那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。
1常规分析方法常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。
2统计学分析方法统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。
其中有指导的学习算法简单说就是有历史数据里边已经给出一个目标结论,然后分析当各个变量达到什么情况时,就会产生目标结论。比如我们想判断各项指标需要达到什么水平时我们才认定这个人患有心脏病的话,就可以把大量的心脏病人的各项指标数据和没有心脏病的正常人的各项指标数据都输入到系统中,目标结论就是是否有心脏病,变量就是各项指标数据,系统根据这些数据算出一个函数,这个函数能够恰当的描述各个指标的数据与最终这个是否是心脏病人之间的关系,也就是当各个指标达到什么临界值时,这个人就有心脏病的判断,这样以后再来病人,我们就可以根据各项指标的临界值。这个案例中的函数就是算法本身了,这其中的算法逻辑有很多种,包括常见的贝叶斯分类、决策树、随机森林树以及支持向量机等,有兴趣的朋友可以在网上看看各种算法的逻辑是怎么样的。
另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括Apriori等关联规则、聚类算法等。
另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水平、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。
统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。
3自建模型自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。
六、数据分析主题选取
在数据分析方法的基础上,进一步是将分析方法应用在业务需求中,基于业务主题的分析可以涉及太多的领域,从客户的参与活动的转化率,到客户的留存时长分析,再到内部的各环节衔接的及时率和准确度等等,每一种都有独特的指标和维度的要求,以及分析方法的要求,以我个人的经验来看,主要分析主题都是围绕着营销、运营、客户这三大角度来开展的。
1营销/运营分析营销运营分析多从过程及最终的成效上来进行分析,包括营销活动从发布到客户产生购买的过程的分析,运营从客户开始使用到停止使用为止的过程中的分析,前者更倾向于分析客户行为的变动趋势,以及不同类型的客户之间的行为差异,后者更倾向于分析在过程中服务的及时率和有效率,以及不同类型的客户之间对于服务需求的差异。
在针对这部分分析主题时,多采用常规分析方法,通过同环比以及帕累托来呈现简单的变动规律以及主要类型的客户,但通过统计学分析方法,营销分析可以根据有指导的学习算法,得出营销成功与营销失败之间的客户特征的差异,而运营分析则可以根据无指导的学习算法,得出哪些特征的客户对哪些服务是有突出的需求的,另外营销和运营分析都可以通过回归分析来判断,各项绩效指标中,哪些指标是对购买以及满意度有直接影响的。通过这些深入的挖掘,可以帮助指导营销及运营人员更好的完成任务。
2客户分析客户分析除了与营销和运营数据关联分析时候使用,另外单独对于客户特征的分析也是有很大价值的。这一部分分析更多需要通过统计学分析方法中的有指导和无指导的学习算法,一方面针对高价值客户,通过有指导的学习算法,能够看到哪些特征能够影响到客户的价值高低,从而为企业锁定目标客户提供指导;另一方面针对全体客户,通过无指导的学习算法,能够看到客户可以大概分为哪几种群落,针对每个群落的客户展开焦点讨论和情景观察,从而挖掘不同群落客户之间的需求差异,进而为各个群落的客户提供精准营销服务。 通过以上这些的操作,一个企业的数据分析或者说数据挖掘工作的完整流程就呈现了出来。可以看到,无论是数据采集,还是分析方法,亦或是分析主题,在大数据和互联网的支撑基础上,在未来都将有大幅度的增加,数据分析人员将成为下一个阶段的关键企业支撑人员,也即是在未来,在各个领域中,都将产生大量的宽客,或者增长黑客这样的数据分析人员,来带动企业的发展。

7. 如何快速上手使用Python进行金融数据分析

所说所有的变量都是对象。 对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。

对象通常就是指变量。从面向对象OO的概念来讲,对象是类的一个实例。在python里很简单,对象就是变量。

class A:
myname="class a"
上面就是一个类。不是对象
a=A()
这里变量a就是一个对象。
它有一个属性(类属性),myname,你可以显示出来
print a.myname

所以,你看到一个变量后面跟点一个小数点。那么小数点后面

8. 如何用大数据分析金融数据

"现今查询个人网贷大数据报告的话,在微信就能很快地查询到,不仅全面详细,还很安全方便,不用担心会造成隐私泄露。

​查询个人网贷大数据:

只需要打开微信首页,搜索:深查数据。点击查询,输入信息即可查询到自己的征信数据,该数据源自全国2000多家网贷平台和银联中心,用户可以查询到自身的大数据与信用情况,可以获取各类指标,查询到自己的个人信用情况,网黑指数分,黑名单情况,网贷申请记录,申请平台类型,是否逾期,逾期金额,信用卡与网贷授信预估额度等重要数据信息等。"

9. 如何用Python做金融数据分析

所说所有的变量都是对象。 对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。 对象通常就是指变量。从面向对象OO的概念来讲,对象是类的一个实例。在python里很简单,对象就是变量

10. 金融行业有哪些领域需要运用数据分析

您好,我也是金融行业的,之前在做数据采集和分析的时候也是找了很多方法,后来是找的前嗅,他们公司自己的数据分析系统,还是很好用的,你不妨试试,他是从几方面给我分析的:

1.宏观经济分析:国内外宏观经济数据分析、政策走势分析、经济形势分析。
2.证券数据分析:通过建立数据模型,分析股票指数数据,预测股票走势。
3.财务报表分析:通过建立分析模型,分析财务状况,关联公司之间的经济往来情况。
4.投资项目评估:多维度分析投资项目,通过数据进行投资决策支持,减少投资风险。
希望对你有用。

阅读全文

与金融数据分析方法相关的资料

热点内容
盘式曝气器安装方法 浏览:301
38度6锻炼方法 浏览:407
用化学方法鉴别苯丙醇苯乙醇 浏览:593
书法拼接方法技巧图解 浏览:217
外伤大拇指摁住哪里止血方法 浏览:805
量测血压的正确方法 浏览:410
菠萝种植方法视频 浏览:1002
知到使用方法 浏览:749
桥架压板的正确固定方法图片 浏览:604
宝宝去风的方法是什么 浏览:350
大熊猫饲养方法简单 浏览:11
北海烤虾的食用方法 浏览:116
手工花瓶的制作方法图片 浏览:362
拷贝文件u盘到电脑最快方法 浏览:98
马宁的锻炼方法 浏览:17
初一数学课堂讲解简便方法 浏览:561
画蜻蜓最简便的方法 浏览:336
如何瘦脸两侧的方法 浏览:963
男生如何提高颜值有什么方法 浏览:868
红米手机最流畅的设置方法 浏览:685