导航:首页 > 研究方法 > 电商数据分析方法

电商数据分析方法

发布时间:2022-02-14 13:27:56

A. 如何进行电商网站数据分析

一般而言,电子商务网站数据分析包括了流量来源的分析及流量效率的分析,还有网站内部数据流的分析,用户特征分析这四个部分。

首先,电商网站若是想接到单子,肯定要保证流量。可是获取流量是需要成本的,怎么样才能降低流量成本属于电商网站运营最重要的一个部分,其中流量来源分析属于重点,如在对电商网站进行数据分析的时候,要先明白用户都是从哪里点击过来的,哪些网站可谓我们带来更多的订单,哪些流量来源是真实的,哪些属于虚假的等等。弄清楚这些之后,才能稳定老客户,发展新客户,将网站推广的更好。

其次,流量效率分析也是必不可少的一部分,在进行电商网站数据分析的时候流量效率指的是流量达到了网站是否属于真实的流量。那么,在具体分析的时候,要看下它的到达率,PV/IP比还有就是订单转化率等等。其中订单转化率是最重要的一方面,若没有订单转换了一切都没意义。

最后,怎样进行电商网站数据分析也离不开站内数据流分析这个方面。这里所说的站内数据流的分析,主要是用于分析购物流程顺畅程度及网站产品分布合理与否等等,然后再根据这些来分析页面流量排名及场景转化率分析,站内搜索分析及客户为何离开页面分析等问题的分析等等,查看问题所在,然后想办法解决,才能让网站产品得到更好的推广。

B. 电商网站订单数据分析方法

众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。


一、时间维度

从时间维度上来看,除了显示分析周期的数据,最常用的分析方式是同比和环比,时间区间可以是按年、季和月,甚至是周,不过周相对用的少。


自己平台上的上架商品的数量、价格分布情况,作为运营者应该很了解的,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻奢侈品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。

以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!

C. 如何做电商数据分析

1. 网站数据

IP丶PV丶平均浏览页数丶在线时间丶访问深度比率丶访问时间比率。这是最基本的,每项数据提高都不容易,这意味着要不断改进每一个发现问题的细节,需要不断去完善购物体验。

2. 运营数据

总订单丶有效订单丶订单有效率丶总销售额丶客单价丶毛利润丶毛利率丶下单转化率丶付款转化率丶退货;每日数据汇总,每周的数据一定是稳定的,主要比对于上上周的数据,重点分析内部的工作,如产品引导丶定价策略丶促销策略丶包邮策略等。

有关于这方面的需要可以直接联系任拓数据科技(上海)有限公司,该公司通过海量电商大数据分析,提供行业深度观察,产出行业趋势报告,累积行业洞察能量,在多种商业场景中为客户提供数据的价值,,帮助客户公司持续创新和成功。

D. 电商数据处理的步骤与技巧

对于电商行业来说,数据分析的核心公式是:销售额 = 流量*转化率*客单价。因此,分析可以从流量、转化率和客单价这三个维度进行:
1、流量
流量分析,可以从中发现用户访问网站的规律,并根据这些规律改进网站设计或营销策略。
类别 指标 备注
流量数量 UV,独立访客数
PV,访问量
流量质量 平均访问深度
平均停留时间
跳出率
分析方法包括对比分析、细分分析等。
(1)对比分析
从点(指标值)、线(时间维度上的指标值,同比、环比等)、面(不同品类的指标值比较)维度对基础指标进行对比分析
(2)细分分析
a. 细分来源,包括免费流量和付费流量,优化渠道质量;
b. 细分访问时间点,分析流量的周访问规律,迎合流量的上行趋势进行营销活动的推广(和商品上新);
c. 细分访问页面,包括首页、列表页、详情页等,第一,优化用户访问页的质量,降低跳出率;第二,热点图分析,通过颜色区分不同区域的点击热度,了解页面设计是否合理、广告位的合理安排等。
2、转化率
转化率分析,检测用户购买路径的转化情况,算出每步的转化率和流失率数据, 优化产品或页面。
分析方法包括对比分析、转化分析等。
(1)对比分析
从点(指标值)、线(时间维度上的指标值,同比、环比等)、面(不同品类的指标值比较)维度对基础指标进行对比分析
(2)转化分析
分析各节点转化率,如首页-列表页转化率,列表页-详情页转化率,详情页-支付页转化率,支付页-支付成功页转化率。
3、客单价
客单价分析,能够了解客单价分布,明确用户定位,优化定价策略,以及有助于促销活动的开展。
分析方法包括对比分析、促销分析等。
(1)对比分析
从点(指标值)、线(时间维度上的指标值,同比、环比等)、面(不同品类的指标值比较)维度对基础指标进行对比分析
(2)促销分析
a. 商品分类:常规款、引流款、利润款
b. 优惠券、包邮规则、多件折扣等
除此之外,电商数据分析分析中还关注用户、订单等维度:
1、用户分析
2、订单分析
根据零售行业的三大重要组成部分:人,货,场,梳理电商数据分析中常涉及的指标:
三基分析法
评判一家电商企业的常用数据指标:
(1)用户数:成交后的买家数,反映品牌对市场的影响力,评估品牌所占领的市场份额;
(2)平均消费金额:每年人均消费金额,评估品牌的消费人群定位,以及盈利期望是否合理;
(3)复购率:衡量用户忠诚度,复购率高说明对新客户的依赖不大,节省更多的市场推广费用。
根据复购率,确定公司的经营重心:
1、用户获取模式:复购率不足40%,说明经营重心应放在新用户的获取上;
2、混合模式:复购率为40%~60%,应兼顾新客户的获取与回头客的招揽;
3、忠诚度模式:复购率大于60%,应将经营重心放在客户忠诚度上。
各种模式间没有优劣之分。
电商运营分析的维度:
1、平台:属性、节奏、规则
2、店铺:流量(流量、用户)、商品(货)、促销(场)
3、竞品:主推、策略、页面
早期的电子商务模式主要通过转化漏斗分析。
现在的电子商务:
1、大多买家通过搜索找到所买物品,而非电商网站的内部导航,搜索关键字更为重要;
2、电商商家通过推荐引擎来预测买家可能需要的商品。推荐引擎以历史上具有类似购买记录的买家数据以及用户自身的购买记录为基础,向用户提供推荐信息;
3、电商商家时刻优化网站性能,如A/B Test划分来访流量,并区别对待来源不同的访客,进而找到最优的产品、内容和价格;
4、购买流程早在买家访问网站前,即在社交网络、邮件以及在线社区中便已开始,即长漏斗流程(以一条推文、一段视频或一个链接开始,以购买交易结束)。

E. 电商数据分析的完整流程是什么

①独立用户访问量: 就是常说到的UV,即有多少台计算机在24小时内访问网站(UV和IP并不等同)。

②积极访问者比率: 如果你的网站针对正确的目标受众并且网站使用方便,你可以看到这个指标应该是不断上升的。

③忠实访问者比率: 每个长时间访问者的平均访问页数,这是一个重要的指标,它结合了页数和时间。

④客户转化率: 转化率指在一个统计周期内,完成转化行为的次数占推广信息总点击次数的比率。转化率是网站最终能否盈利的核心,提升网站转化率是网站综合运营实力的结果。

⑤客单价: 每一个顾客平均购买商品的金额,即平均交易金额。

⑥客户满意度: 客户期望值与客户体验的匹配程度。换言之,就是客户通过对一种产品可感知的效果与其期望值相比较后得出的指数。

⑦用户回访率: 衡量网站内容对访问者的吸引程度和网站的实用性,网站是否有令人感兴趣的内容使访问者再次访问。

⑧投资回报率: 用来衡量营销费用的投资回报,把钱分配给有最高回报率的营销方式。

关于电商数据分析的完整流程是什么,环球青藤小编今天就先和您分享到这里了。如若您对互联网营销有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于文案优化、广告营销文案写作的方法及素材等内容,可以点击本站的其他文章进行学习。

F. 电商数据分析应该从哪些方面进行分析

从8个方面来阐述如何对电商平台进行数据分析:

1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。
3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4.客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售。
6.市场营销活动指标,主要监控某次活动给电商网站带来的效果,以及监控广告的投放指标。
7.风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题。
8.市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整

想要更精准的了解电商平台的数据分析,推荐咨询情报通。情报通全面覆盖国内外主流电商平台全类目电商数据,可进行多重属性交叉分析,通过对不同属性组合进行分析,指导生产、指导订货,指导制定广告投放策略,应用严谨的方法,进行数据爬取、数据计算、数据整理,常规数据日级抓取,直播数据分钟级抓取,每周进行数据更新,可以随时登录系统进行查看。

G. 在电商行业如何进行大数据分析的

电商行业相对于传统零售业来说,最大的特点就是一切都可以通过数据化来监控和改进。通过数据可以看到用户从哪里来、如何组织产品可以实现很好的转化率、你投放广告的效率如何等等问题。
当用户在电商网站上有了购买行为之后,就从潜在客户变成了价值客户。
我们一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里,所以对于这些客户,我们可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户扩展营销的可能性。

H. 电商运营如何做数据分析

一. 电商数据分析架构
首先需要承认的是,数据分析架构模型的前置是需要对业务的日常工作场景及需求有充足的理解,并能提出具有建议的数据分析方法,以释放业务人员在数据分析环节的时效。

二. 线上店铺管理分析
对于一家店铺的用户而言,一个完整的购买流程:看到广告-进入店铺-浏览商品-咨询购买-下单支付。对于店铺运营人员应该如何对各个环节的用户进行流量分析和管理呢?针对此,下面将分别从流量分析、销售分析、商品分析、活动分析四方面进行详细解析。
三. 线下门店管理分析
对于电商企业而言,过去是以线上店铺为主,随着业务的扩张,现在这些企业通过不断拓展线下门店,弥补线上用户体验的缺失,融合线上线下,从而扩大用户规模。为此,永洪咨询专家设计出线下门店管理分析体系,通过线下门店拓展分析、店铺选址分析,帮助电商企业选择最合适的店铺以及对店铺实现高效管理。

I. 电商运营如何做数据分析

什么是数据:所谓数据(data),是描述客观事物的各种符号,数据包括数字、声音、颜色、文字、图像等。

对于电商来说,数据很多时候就是数字,比如:流量、转化率、访问深度、宝贝好评数、客服销售占比等等。

获取这些数据也很容易,基本上我用到的软件也就这几个:生意参谋、生e经、赤兔。

对电商来说,数据统计包括:月度销售统计表、客服销售统计表、单品流量分布表等等。

我们可以根据自身的需要,在后台采集各种数据,做出各种样式的统计表。对我来说,数据统计,有EXCEL就够了,电商没有那么深奥,EXCEL几乎能帮我们搞定所有数据统计的工作。

J. 电商平台 数据分析采用什么方法

电商最重要的指标就是这几个了:

1 、商品数据分析:电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多,比如从时间维度、商品类别、价格维度等;


把电商所有平台数据统一整合到BDP个人版,然后拖拽就可以做出以上可视化图表了,分析不需要重复做!


阅读全文

与电商数据分析方法相关的资料

热点内容
电脑连接文件夹的方法 浏览:970
bim空心放样的方法步骤 浏览:98
阿克苏萝卜种植时间和方法 浏览:296
家用照明线安装方法 浏览:741
苹果电脑加速方法 浏览:775
辟谷养生最佳方法 浏览:185
颈椎椎管狭窄的治疗方法 浏览:808
一加6耳机音效设置在哪里设置方法 浏览:216
章飞一绝祛斑液使用方法 浏览:114
阳台安装净水机的方法 浏览:5
食用蜂蜜柠檬茶制作方法 浏览:915
速度滑冰论文研究方法 浏览:543
酸蒜苗怎么腌制方法 浏览:195
疤克使用方法双眼皮 浏览:821
吊柜爆炸螺丝安装方法 浏览:242
c11探针检测方法 浏览:537
集成墙板安装方法视频 浏览:70
凝血酶冻干粉使用方法 浏览:44
多重共线性解决方法 浏览:675
冰水怎么使用方法 浏览:419