Ⅰ 数据分析师面试题目和答案:动手题
【导读】众所周知,随着社会的发展,数据分析师成为了炙手可热的热门执业,一方面是其高薪待遇另一方面就是其未来广阔的发展前景。一般情况下用人单位会给问答题和动手题来检测应聘者的真实实力,可以说面试笔试是非常重要的一个环节。它可以直接测验你对数据分析具体理论的掌握程度和动手操作的能力。为此小编就以此为例和大家说说2020年数据分析面试解答技巧:动手题,希望对大家有所帮助。
动手题
1. 我给你一组数据,如果要你做数据清洗,你会怎么做?
实际上,这一道题中,面试官考核的是基本的数据清洗的准则,数据清洗是数据分析必不可少的重要环节。你可能看到这个数据存在 2 个问题:典韦出现了 2
次,张飞的数学成绩缺失。
针对重复行,你需要删掉其中的一行。针对数据缺失,你可以将张飞的数学成绩补足。
2. 豆瓣电影数据集关联规则挖掘
在数据分析领域,有一个很经典的案例,那就是“啤酒 +
尿布”的故事。它实际上体现的就是数据分析中的关联规则挖掘。不少公司会对这一算法进行不同花样的考察,但万变不离其宗。
如果让你用 Apriori 算法,分析电影数据集中的导演和演员信息,从而发现两者之间的频繁项集及关联规则,你会怎么做?
以上就是小编今天给大家整理发送的关于“数据分析师面试题目和答案:动手题”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。
Ⅱ 统计学中数据分析题,求大神解答!!
Help me C C Siri what help me。
Ⅲ 如何运用excel进行数据分析课后测试答案
excel进行数据分析的一般套路都是:折线图,散点图,饼图,柱状图,线性回归,非线性回归,数据透视表。
Ⅳ 求数据分析第二版(范金城,梅长林)习题答案
第一题:
这部分内容主要考察的是数据分析的知识点:
用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
分析方法:
1、列表法
将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。
2、作图法
作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。
Ⅳ 网站常用的数据分析方法介绍
网站常用的数据分析方法介绍
本篇文章我们介绍4种网站分析中最常用,也是最有效的分析方法。他们分别是细分分析,对比分析,对比分析,质与量分析。这些分析方法在实际工作中经常组合使用。我们先来看下细分分析。
1,细分分析单一的指标数据或大维度下的指标数据是没有意义的,只有当指标与维度配合使用时才有意义。细分也叫下钻,是网站分析中最常用的一种方法。原理就是通过对汇总数据进行多个维度对指标进行分解。逐步找到有问题的部分。在整个的Google Analytics报告的中,随处都充满了细分方法。
汇总数据是一个极其笼统的大维度数据。而平均数数据则可能会掩盖很多问题。这里是一个平均数的计算方法:访问者A浏览了10个页面,访问者B浏览了2个页面。网站每次访问页面浏览量6个页面。看似表现不错的平均数据其实包含很很多问题。但我们仅从平均数中无法看到这些问题。细分的主要目的就是对汇总数据和平均值数据进行剖析,发现这些问题并加以改进。
1.1如何使用Google Analytics进行细分我们如何使用Google Analytics来对指标进行细分?Google Analytics报告本身的结构就是一个支持细分的结构。不用我们进行特别的设置就可以对指标进行细分。下面我们来看下如何使用Google Analytics报告中的这些简单的默认细分功能和高级细分功能。
默认细分功能在Google Analytics的四类报告中,都提供了细分功能。展开每一类的报告,概述报告,而下面的各个子报告都是对概述报告的一个细分。
同时在子报告中,也提供了更进一步的细分。我们所要做的就是找到感兴趣的维度,并且点进去进一步查看。
自定义细分功能除了Google Analytics的默认细分功能外,还有三种更灵活的自定义细分功能。他们分别是次级维度细分,高级细分和自定义细分。自定义细分与默认细分功能最大的差别在于,默认细分是在一个大的维度下逐级深入细分。例如,流量来源,搜索引擎,Google,自然搜索,关键词。而自定义细分则可以完整更复杂的跨越多个维度的细分。例如:流量来源,搜索引擎,地理位置。
次级维度
第一个自定义细分功能是次级维度,在大部分Google Analytics报告中,都可以实现次级维度的细分。以下是次级维度的截图。我们可以很容易的使用次级维度来查看同一个指标在两个不同维度中的表现如何。例如:北京地区的Google搜索引擎。
高级细分
第二个自定义细分是自定义报告,使用自定义报告进行细分要比次级维度灵活的多。细分的层级也要深入的多。自定义报告的的实质是对指标和维度的重组。
自定义报告
第三个自定义细分是高级细分,与自定义报告相比,高级细分的主要优势在于细分结果的广度。当我们设置了一个自定义细分的维度后,这个维度将应用于整个Google Analytics报告中。
2,对比分析除了使用细分以外,我们还可以使用对比分析来观察指标的变化趋势,例如,本月的访问量是300万,那么和上个月相比怎么样呢?和去年同一时期又如何呢?这就是我们介绍的第二个方法,对比分析。对比分析的设置很简单,在时间里设置好要对比的时间段,报告会自动给出指标的变化结果。这里有一个需要注意的问题是,当使用Google Analytics自带的与上一个时期进行对比时,时间段内周末的数量可能会不相同。而这也将直接影响指标的对比结果。
3 ,聚合分析第三种分析方法是聚合分析,聚合分析常用于对网站内容的分析上。网站有大量的页面访问数据,而每一个页面又都拥有自己的指标数据。对于如此庞大和细碎内容数据,我们该如何下手呢?答案是使用聚合分析。
3.1应用场合聚合分析通常用来对网站的分类和导航系统进行分析。例如:关注A频道的访问者是否也浏览了B频道的信息?他们如何在这两类信息间流动。使用列表筛选的功能是否中途也会使用站内搜索?这些在基于页面的数据中是很难发现的,因为数据的颗粒度太细小了。需要我们对网站中不同的内容进行聚合。
3.2内容组介绍聚合内容的方法很简单,就是将内容相关,或者你关注的信息进行分类,我们称为内容组。而分类的粒度取决于你分析的最终粒度。
聚合内容的维度也有很多种,完全看我们的分析需求。最简单的方法,我们可以按网站的频道划分内容组,或者按网站的功能来划分。例如首页,站内搜索功能,列表筛选功能,产品展示功能,购物结算功能。注册登录功能。等等。
3.3路径分析创建的内容组主要用于进行访问者路径分析。也就是Google Analytics的访问者流报告,和导航摘要报告中。通过访问者在各内容组间的路径来验证网站逻辑和不同产品间的设计是否合理。
4,质与量分析最后介绍的质与量的分析方法。质与量与细分一样,也始终贯穿于Google Analytics的各个报告中。
在流量来源报告中,访问次数是一个量的标,跳出率是一个质的指标。通过这两个指标可以有效的衡量不同渠道流量与网站内容的匹配度。
在内容报告中,浏览量是一个量的指标,退出百分比是一个质的指标,通过这两个指标可以衡量页面的质量。
4.1什么是量什么是网站的量?通常来说,量是一个绝对值,用来衡量事物的多少。例如,网站来了多少人,访问了多少次,看了多少个页面,产生了多少订单等等。这些绝对值数据都可以归为网站的量指标。但也并不绝对。
4.2什么是质什么是网站的质?通常来说,质是一个比率。用来衡量效果。例如:跳出率,转化率,平均停留时间,每次访问浏览页面数,平均订单价值等等。这些比率都可以归为网站的质指标。
4.3主要应用场景及报告质与量在网站分析中的应用比较广泛,任何的流量,网站页面及访问者行为都可以通过质与量两个维度进行有效的分析。例如,进入次数与跳出率,页面浏览量与关键行为点击率,等等等等。
以上是小编为大家分享的关于网站常用的数据分析方法介绍的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅵ 《数据分析方法》梅长林版的课后习题答案 请发给我 [email protected] 非常感谢!
请给我也发一份,谢谢。QQ372744896
Ⅶ 如何运用excel进行数据分析答案时代光华
首先要对数据进行一次大清洗!将多余重复的数据筛选清除,将缺失数据补充完整,将错误数据纠正或删除。
这个时候要用到一系列函数:
数据重复【(COUNTIF函数),删除重复项】
缺失数据【IF And Or 嵌套函数等】
数据抽样【Left,Right,CONCATENATE(文本1,文本2....),VLOOKUP】
数据计算【AVERAGE、SUM、MAX、MIN,Date,If】
数据分组【VLOOKUP函数,采用近似匹配,SEARCH函数】
数据抽样【RAND函数,RAND()】