导航:首页 > 研究方法 > 研究兀的方法

研究兀的方法

发布时间:2022-02-12 02:19:55

① π是怎么算出来的

“兀”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。

我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。

π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。

纵观π的计算方法,在历史上大概分为实验时期、几何法时期、解析法时期和电子计算机计算法几种。

实验时期:约产于公元前1900年至1600年的一块古巴比伦石匾上记载了圆周率 = 25/8 = 3.125,而埃及人似乎更早的知道圆周率,英国作家 John Taylor (1781–1864) 在其名着《金字塔》中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。

几何法时期:古希腊大数学家阿基米德(公元前287–212 年)开创了人类历史上通过理论计算圆周率近似值的先河。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他得出3.141851 为圆周率的近似值。

这种方法随后被2位中国古代数学家发扬光大。公元263年,中国数学家刘徽用“割圆术”,求出3072边形的面积,得到令自己满意的圆周率≈3.1416。

而南北朝时期的数学家祖冲之进一步求出圆内接正12288边形和正24576边形的面积,得到3.1415926<π<3.1415927的精确值,在之后的800年里祖冲之计算出的π值都是最准确的。

解析法时期:这是圆周率计算上的一次突破,是以手求π的解析表达式开始的。法国数学家韦达(1540-1603年)开创了一个用无穷级数去计算π值的崭新方向。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。

1706年,英国数学家梅钦率先将π值突破百位。到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

计算机时期:自从第一台电子计算机ENIAC在美国问世之后,立刻取代了繁杂的π值的人工计算,使π的精确度出现了突飞猛进的飞跃。1955年,一台快速计算机竟在33个小时内。把π算到10017位,首次突破万位。

技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。

2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。

和其大写Π混用,后者是指连乘的意思。

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积 。

以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

π在许多数学领域都有非常重要的作用。

π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。

圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。

② π是怎么算出来的请问各位大师

“π”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。

我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。

π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。

(2)研究兀的方法扩展阅读

π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。

圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。

65年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专着,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。

③ 兀是怎么来的

在数学史上,圆周率π的精确度,始终引起人们极大的关注,并成为衡量一个国家数学发展水平的标志.纵观π的计算史,其计算方法大致可分为:几何法、解析法、实验法、电子计算机计算法.

一、几何法 在公元前240年左右,阿基米德在他的《圆的度量》一书中首先采用”穷竭法”求π的值.“穷竭法”即用圆的内接和外切正多边形周长逼近圆周长.他作出了正96边形,并由此得到π的值为

术”即用圆的内接正多边形的面积逼近圆的面积.他算到了正192边形

祖冲之在刘徽工作的基础上,求出圆内接正12288边形和正24576边形的面积,得到

3.1415926<π<3.1415927.

祖冲之的π值纪录,保持了将近一千年.直到公元1427年中亚数学家阿尔·卡西计算了圆内接和外切正3×228边形的周长后,得到π值的17位小数.公元1610年,德国人鲁道夫花费了毕生精力,计算了正262边形的周长后,得到π的35 位小数值.鲁道夫的工作,表明了几何法求π的方法己走到尽头.1630年格林贝格(Grien berger)用几何法计算π至 39位小数.这是几何法的最后尝试,也是几何法的最高纪录.

二、解析法 圆周率计算上的第一次突破,是以手求π的解析表达式开始的.着名法国数学家韦达(1540—1603)做出了开创性的工作.在《数学定律,应用于三角形》一书中,得到了

他计算出3.1415926535<π<3.1415926537.显然他的π精确度不是当时世界领先水平,但利用一个无穷级数去刻划π值却开创了一个崭新的方向.

1671年,英国圣安德鲁大学教学教授格雷戈里(1638—1675)提出了着名的级数:

但他并未注意到,当x=1时,这一级数为:

格雷戈里的工作具有普遍性,成为解析法求π值的基础.在后来的二百多年里,许多人利用这一公式稍作修改并进行大量计算.不断刷新π值的世界纪录,1706年,英国的梅钦(1680—1751)利用格氏级数及其

破π的百位大关.继此之后,利用反正切展开式计算π的公式相继出现,π的位数也直线上升.1948年1月,英国的弗格森(D.F.Fergnson)与美国的伦奇(J.W.Wrench)用解析法得到π的 808位准确值,创造了甲级数方法的最高纪录,结束了用级数方法计算π值的阶段.这也是手工计算π的最高纪录,此后再没有人用手算与他们较量了.

三、实验法 1777年法国自然科学家蒲丰(1707—1788)出版了《能辨是非的算术实验》一书,提出了着名的“蒲丰实验”:在画有一组距离为a的平行线的平面上,随意投下长度为l(l<a)的针.若投

1901年意大利数学家拉兹瑞尼用蒲丰的方法,仅投针3408次就轻松地得到π=3.1415929.这与π的精确值相比,一直到小数点后第七位才出现不同.

尽管这一方法远不如解析法便捷,且π的精确度也大为逊色.但它揭示了分析方法与概率方法之间的联系,向人们暗示了数学本质的某种统一性,促使人们深入探讨π的种种性质.开辟了π研究的新方向.

四、电子计算机计算法

自从第一台电子计算机ENIAC在美国问世之后,立刻取代了繁杂的π值的人工计算,使π的精确度出现了突飞猛进的飞跃.1949年,美国人赖脱威逊利用ENIAC计算机花了70个小时把π算到2034位,一下子就突破了千位大关,1955年,一台快速计算机竟在33个小时内。把π算到10017位,首次突破万位,1996年东京大学的一组数学家曾花了36个小时,在计算机上算出了π的32.3亿位小数.但是将前纪录保待了4年之久的美国数学家丘德诺夫斯基兄弟采用了新方法又获得了超过40亿位数的π.现在人们利用电子计算机将π算到了小数点后42.9亿多.如果把这一串数字打印出来,每厘米打印六个数字,那么整个数字的长度接近7200千米.比从德国柏林到美国芝加哥的距离还长.

不过电子计算机只是工具,它仍需用解析法的公式,可算是解析法的延伸和发展.其实这时π的计算变成了算法的精巧构思和机器速度的较量.除了显示电子计算机威力和检验机器效果之外,π的位数已无任何现实价值.

从π的计算可以看出,计算方法的每一次创新,都带来π的位数的巨大突破,但每一种方法都有上限:几何法因人们测量误差而不可能超过百位;解析法又因计算量聚增而局限于千位之内;实验法的指导意义大于它的实用价值;电子计算机同样受机器速度的影响,而不可能无限制地算出π值.

④ 科学家研究兀的故事

科学家研究祖冲之兀的故事
祖冲之(429~500) 南北朝时期杰出的数学家和天文学家。
祖冲之少传家业,青年时代入华林学省,从事学术研究。此后,历仕刘宋、南齐,官至长水校尉。他在数学、天文历法、机械制造等方面都有重大成就。
在数学方面,祖冲之推算出圆周率π的不足近似值(朒数)3.1415926和过剩近似值(盈数)3.1415927,指出π的真值在盈、朒两限之间,即3.1415926<π<3.1415927,并用以校算新莽嘉量斛的容积。这个圆周率值是当时世界上最先进的数学成就,直到15世纪阿拉伯数学家阿尔·卡西(al-kāshī)和16世纪法国数学家韦达(1540~1603)才得到更精确的结果。祖冲之还确定了两个分数形式的圆周率值,约率π=22/7(≈3.14),密率π=355/113(≈3.1415929),其中密率是在分母小于1000条件下圆周率的最佳近似分数。

⑤ π的计算方法有哪些

中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取

(5)研究兀的方法扩展阅读:

圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π(读音:pài)表示。中国古代有圆率、周率、周等名称。(在一般计算时π=3.14)


圆周率的历史:


古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。

历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。

第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积。

以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

π在许多数学领域都有非常重要的作用。

⑥ π怎么计算出来的

“兀”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。

我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。

π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。

(6)研究兀的方法扩展阅读

π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。

圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。

我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。

祖冲之算得的π值在绝大多数的实际应用中已经非常精确了,这一伟大成就直到一千多年后才被欧洲的数学家追平。太空中有以祖冲之命名的小行星。

⑦ 人类为什么要坚持研究π,它的秘密是什么

每年3月14日,像我(原作者)这样的数学家就会开始四处活动。没错,又到了圆周率日。今年的圆周率日不同以往。他们将它称作本世纪的圆周率日:3.14.15(15年3月14日)。精确到5位数的圆周率日,一生仅遇到这一次。

我有点担心。在圆周率日这一天,数学家们不会解出任何方程序,他们会参加吃派比赛,争论2π(有数学家认为真正的圆周率应该是2π,他们呼吁人们用希腊字母t来表示“正确的圆周率”)的优点,并相互攀比谁能背诵π小数点后更多的数字。晚上9:26:53还待在街头,因为这时候最接近π小数点后十位数字:3.141592653。

π确实值得庆祝,但庆祝的原因人们却甚少提及。在高中,我们只学过π与圆有关。π是圆的直径与周长之比,圆的面积等于π乘以半径的平方。我们在高考之前记过这些类似的公式,接着就再也用不到它了,除非我们从事技术领域的工作或直到我们的孩子学习几何学我们才会再次见到它。

那么,为何π这么重要?因为数学家对圆有某种癖好吗?并非如此。π的部分迷人之处在于它无穷无尽。就连小孩子都知道这一点。π小数点后面的数字永远不会有终点,它们出现的方式也没有规律。它们将看似随机地永远持续下去,它们体现了一个完美圆的固有秩序。π最撩人的一方面在于它秩序和随机性之间的张力。

π在其它方面接近无穷。在一些惊人的公式中,越来越小的数字相加其结果等于π。早期被发现的无穷级数之一表示,1-1/3+1/5-1/7+1/9-1/11+……的总和等于4π。仅这个公式的出现就值得庆祝。它将所有的奇数与π联系到了一起,因此数论也被它与圆及几何学联系到一起。π在这方面将两个看似分隔的领域连接到一起,就像一个宇宙虫洞。

其它着名的无理数,比如e(自然对数的底数)和2的平方根,也将两个不同的数学领域连接到了一起,它们也无穷无尽,数字的出现也很随机。

将π与其它无理数区分开的正是它与圆之间的关系。对于我们这些对将数学应用到现实世界感兴趣的数学家来说,这令π在我们心中占据了不可或缺的地位。无论何时,只要我们想到周期性重复的一些规律比如心率或行星绕太阳旋转的周期,我们就会遇到π。比如傅里叶级数公式中的π:

这个公式的基石是π,其中的sin和cos来自三角函数。虽然在傅里叶级数中,π出现在用来形容婴儿的呼吸频率以及统治着我们身体的昼夜作息,但结构工程师在设计能抵抗地震的建筑时,π也会出现在他们的计算中。π不可避免,因为周期是圆暂时的表兄;周期表示时间而圆表示空间。π是二者的核心。

因此,从海洋的潮汐波到能让我们彼此交流的电磁波,π都与波有密切联系。在更深的层次上,π出现在海森堡测不准原理和薛定谔波动方程中。简而言之,π织就了我们对宇宙内部工作原理的一切解释。

⑧ 兀是怎样被发现和计算出的

圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。

在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。

公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。

祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.这个数,从此也把它称为"卢道夫数"。

⑨ π的如何

在数学史上,圆周率π的精确度,始终引起人们极大的关注,并成为衡量一个国家数学发展水平的标志.纵观π的计算史,其计算方法大致可分为:几何法、解析法、实验法、电子计算机计算法.

一、几何法 在公元前240年左右,阿基米德在他的《圆的度量》一书中首先采用”穷竭法”求π的值.“穷竭法”即用圆的内接和外切正多边形周长逼近圆周长.他作出了正96边形,并由此得到π的值为

术”即用圆的内接正多边形的面积逼近圆的面积.他算到了正192边形

祖冲之在刘徽工作的基础上,求出圆内接正12288边形和正24576边形的面积,得到

3.1415926<π<3.1415927.

祖冲之的π值纪录,保持了将近一千年.直到公元1427年中亚数学家阿尔·卡西计算了圆内接和外切正3×228边形的周长后,得到π值的17位小数.公元1610年,德国人鲁道夫花费了毕生精力,计算了正262边形的周长后,得到π的35 位小数值.鲁道夫的工作,表明了几何法求π的方法己走到尽头.1630年格林贝格(Grien berger)用几何法计算π至 39位小数.这是几何法的最后尝试,也是几何法的最高纪录.

二、解析法 圆周率计算上的第一次突破,是以手求π的解析表达式开始的.着名法国数学家韦达(1540—1603)做出了开创性的工作.在《数学定律,应用于三角形》一书中,得到了

他计算出3.1415926535<π<3.1415926537.显然他的π精确度不是当时世界领先水平,但利用一个无穷级数去刻划π值却开创了一个崭新的方向.

1671年,英国圣安德鲁大学教学教授格雷戈里(1638—1675)提出了着名的级数:

但他并未注意到,当x=1时,这一级数为:

格雷戈里的工作具有普遍性,成为解析法求π值的基础.在后来的二百多年里,许多人利用这一公式稍作修改并进行大量计算.不断刷新π值的世界纪录,1706年,英国的梅钦(1680—1751)利用格氏级数及其

破π的百位大关.继此之后,利用反正切展开式计算π的公式相继出现,π的位数也直线上升.1948年1月,英国的弗格森(D.F.Fergnson)与美国的伦奇(J.W.Wrench)用解析法得到π的 808位准确值,创造了甲级数方法的最高纪录,结束了用级数方法计算π值的阶段.这也是手工计算π的最高纪录,此后再没有人用手算与他们较量了.

三、实验法 1777年法国自然科学家蒲丰(1707—1788)出版了《能辨是非的算术实验》一书,提出了着名的“蒲丰实验”:在画有一组距离为a的平行线的平面上,随意投下长度为l(l<a)的针.若投

1901年意大利数学家拉兹瑞尼用蒲丰的方法,仅投针3408次就轻松地得到π=3.1415929.这与π的精确值相比,一直到小数点后第七位才出现不同.

尽管这一方法远不如解析法便捷,且π的精确度也大为逊色.但它揭示了分析方法与概率方法之间的联系,向人们暗示了数学本质的某种统一性,促使人们深入探讨π的种种性质.开辟了π研究的新方向.

四、电子计算机计算法

自从第一台电子计算机ENIAC在美国问世之后,立刻取代了繁杂的π值的人工计算,使π的精确度出现了突飞猛进的飞跃.1949年,美国人赖脱威逊利用ENIAC计算机花了70个小时把π算到2034位,一下子就突破了千位大关,1955年,一台快速计算机竟在33个小时内。把π算到10017位,首次突破万位,1996年东京大学的一组数学家曾花了36个小时,在计算机上算出了π的32.3亿位小数.但是将前纪录保待了4年之久的美国数学家丘德诺夫斯基兄弟采用了新方法又获得了超过40亿位数的π.现在人们利用电子计算机将π算到了小数点后42.9亿多.如果把这一串数字打印出来,每厘米打印六个数字,那么整个数字的长度接近7200千米.比从德国柏林到美国芝加哥的距离还长.

不过电子计算机只是工具,它仍需用解析法的公式,可算是解析法的延伸和发展.其实这时π的计算变成了算法的精巧构思和机器速度的较量.除了显示电子计算机威力和检验机器效果之外,π的位数已无任何现实价值.

从π的计算可以看出,计算方法的每一次创新,都带来π的位数的巨大突破,但每一种方法都有上限:几何法因人们测量误差而不可能超过百位;解析法又因计算量聚增而局限于千位之内;实验法的指导意义大于它的实用价值;电子计算机同样受机器速度的影响,而不可能无限制地算出π值.

3.141592654.....答案补充 3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 870193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 45432

阅读全文

与研究兀的方法相关的资料

热点内容
瘢痕妊娠治疗方法 浏览:169
井水检测水质最简单的铁方法 浏览:44
正确竖叉方法图解 浏览:881
一周岁宝宝锻炼方法 浏览:664
课堂教学上有哪些方法与策略 浏览:535
比杜邦分析好的方法 浏览:933
运动中正常人的心率的计算方法 浏览:285
电脑优化硬盘的方法 浏览:91
常见的门安装方法有 浏览:90
打铁棍的使用方法视频 浏览:510
如何学好初三化学的方法和技巧 浏览:336
供给润滑油的方法有哪些 浏览:541
葱爆蛋的制作方法视频 浏览:221
油性擦色宝使用方法 浏览:227
分析复调方法 浏览:910
fluent计算方法 浏览:364
椭圆暖气片安装方法 浏览:145
如何自己惩罚自己的方法 浏览:489
新客户开发率测量方法 浏览:19
经常失眠快速入睡的方法 浏览:461