导航:首页 > 研究方法 > 铈分析方法

铈分析方法

发布时间:2022-02-11 09:16:37

❶ 钢铁五元素分析方法的国标号是多少

钢铁分析方法通常分为化学分析法和仪器分析法。化学分析法有重量法和滴定法。目前使用仪器分析方法有吸光光度计、原子发射光谱法、原子吸收光谱法、极谱法、原子荧光光谱法、红外吸收法、X-身线荧光光谱法、电感耦合等离子体-原子发射光谱法(ICP-AES)、辉光放电、发射光谱法(GD、OES)及电感耦合等离子体、质谱法(ICP-MS)等。执行国家标准号码是一个系列:
GBT2022320钢铁及合金化学分析方法合集
GB-T 223.1-1981 钢铁及合金中碳量的测定 (0.1~5.0%)
GB-T 223.2-1981 钢铁及合金中硫量的测定 (0.003%以上)
GB-T 223.3-1988 钢铁及合金化学分析方法二安替比林甲烷磷钼酸重量法测定磷量 (0.01~0.80%)
GB-T 223.4-2008 钢铁及合金 锰含量的测定 电位滴定或可视滴定法
GB-T 223.5-2008 钢铁 酸溶硅和全硅含量的测定
GB-T 223.6-1994 钢铁及合金化学分析方法 中和滴定法测定硼量 (0.50~2.00%)
GB-T 223.7-2002 铁粉 铁含量的测定 重铬酸钾滴定法 (大于96%)
GB-T 223.8-2000 钢铁及合金化学分析方法 氟化钠分离—EDTA滴定法测定铝含量 (0.50~10.00%)
GB-T 223.9-2008 (GB-T 223.10-2000) 钢铁及合金 铝含量的测定铬天青S分光光度法
GB-T 223.10-2000 钢铁及合金化学分析方法 铜铁试剂分离—铬天青S光度法测定铝含量 (0.015~0.50%)
GB-T 223.11-2008 钢铁及合金 铬含量的测定 可视滴定或电位滴定法
GB-T 223.12-1991 钢铁及合金化学分析方法 碳酸钠分离—二苯碳酰二肼光度法测定铬量 (0.005~0.500%)
GB-T 223.13-2000 钢铁及合金化学分析方法 硫酸亚铁铵滴定法测定钒含量 (0.100~3.50%)
GB-T 223.14-2000 钢铁及合金化学分析方法 钽试剂萃取光度法测定钒含量 (0.0050~0.50%)
GB-T 223.15-1982 钢铁及合金化学分析方法 重量法测定钛 (1.00% 以上)
GB-T 223.16-1991 钢铁及合金化学分析方法 变色酸光度法测定钛量 (0.010~2.50%)
GB-T 223.17-1989 钢铁及合金化学分析方法 二安替比林甲烷光度法测定钛量 (0.10~2.400%)
GB-T 223.18-1994 钢铁及合金化学分析方法 硫代硫酸钠分离—碘量法测定铜量 (0.10~5.00%)
GB-T 223.19-1989 钢铁及合金化学分析方法 新亚铜灵—三氯甲烷萃取光度法测定铜量 (0.010~1.00%)
GB-T 223.20-1994 钢铁及合金化学分析方法 电位滴定法测定钴量 (3.00%以上)
GB-T 223.21-1994 钢铁及合金化学分析方法 5—Cl—PADAB分光光度法测定钴量 (0.0050~0.50%)
GB-T 223.22-1994 钢铁及合金化学分析方法 亚硝基R盐分光光度法测定钴量 (0.10~3.00%)
GB-T 223.23-2008 (GB-T 223.23-1994 GB-T 223.24-1994) 钢铁及合金 镍含量的测定 丁二酮肟分光光度法
GB-T 223.25-1994 钢铁及合金化学分析方法 丁二酮肟重量法测定镍量 2%) 以上
GB-T 223.26-2008 (GB-T 223.27-1994) 钢铁及合金 钼含量的测定 硫氰酸盐分光光度法
GB-T 223.28-1989 钢铁及合金化学分析方法 α—安息香肟重量法测定钼量 1.00~9.00%)
GB-T 223.29-2008 钢铁及合金 铅含量的测定 载体沉淀-二甲酚橙分光光度法
GB-T 223.30-1994 钢铁及合金化学分析方法 对—溴苦杏仁酸沉淀分离—偶氮胂Ⅲ分光光度法测定锆量 (0.0050~0.30%)
GB-T 223.31-2008 钢铁及合金 砷含量的测定 蒸馏分离-钼蓝分光光度法
GB-T 223.32-1994 钢铁及合金化学分析方法 次磷酸钠还原—碘量法测定砷量 (0.010~3.00%)
GB-T 223.33-1994 钢铁及合金化学分析方法 萃取分离—偶氮氯膦mA光度法测定铈量 (0.0010~0.20
GB-T 223.34-2000 钢铁及合金化学分析方法 铁粉中盐酸不溶物的测定 (0.10~1.00%)
GB-T 223.35-1985 钢铁及合金化学分析方法 脉冲加热惰气熔融库仑滴定法测定氧量 (0.002~0.10%)
GB-T 223.36-1994 钢铁及合金化学分析方法 蒸馏分离—中和滴定法测定氮量 (0.010~0.50%)
GB-T 223.37-1989 钢铁及合金化学分析方法 蒸馏分离—靛酚蓝光度法测定氮量 (0.0010~0.050%)
GB-T 223.38-1985 钢铁及合金化学分析方法 离子交换分离—重量法测定铌量 (1.00%以上)
GB-T 223.40-2007 (GB-T 223.39-1994) 钢铁及合金 铌含量的测定 氯磺酚S分光光度法(0.01~0.50%)
GB-T 223.41-1985 钢铁及合金化学分析方法 离子交换分离—连苯三酚光度法测定钽量 (0.50~2.00%)
GB-T 223.42-1985 钢铁及合金化学分析方法 离子交换分离—溴邻苯三酚红光度法测定钽量 (0.010~0.50%)
GB-T 223.43-2008 (GB-T 223.44-1985) 钢铁及合金 钨含量的测定 重量法和分光光度法
GB-T 223.45-1994 钢铁及合金化学分析方法 铜试剂分离—二甲苯胺蓝Ⅱ光度法测定镁量 (0.010~0.10%)
GB-T 223.46-1989 钢铁及合金化学分析方法 火焰原子吸收光谱法测定镁量 (0.002~0.100%)
GB-T 223.47-1994 钢铁及合金化学分析方法 载体沉淀—钼蓝光度法测定锑量 (0.0003~0.10%)
GB-T 223.48-1985 钢铁及合金化学分析方法 半二甲酚橙光度法测定铋量 (0.0002~0.010%)
GB-T 223.49-1994 钢铁及合金化学分析方法 萃取分离—偶氮氯膦mA分光光度法测定稀土总量 (0.0010~0.20%)
GB-T 223.50-1994 钢铁及合金化学分析方法 苯基荧光酮-溴化十六烷基三甲基胺直接光度法测定锡量 (0.0050~0.20%)
GB-T 223.51-1987 钢铁及合金化学分析方法 5—Br—PADAP光度法测定锌量 (0.0015~0.005%)
GB-T 223.52-1987 钢铁及合金化学分析方法 盐酸羟胺—碘量法测定硒量 (0.05~1.00%)
GB-T 223.53-1987 钢铁及合金化学分析方法 火焰原子吸收分光光度法测定铜量 (0.005~0.50%)
GB-T 223.54-1987 钢铁及合金化学分析方法 火焰原子吸收分光光度法测定镍量 (0.005~0.50%)
GB-T 223.55-2008 (GB-T 223.56-1987) 钢铁及合金 碲含量的测定 示波极谱法
GB-T 223.57-1987 钢铁及合金化学分析方法 萃取分离—吸附催化极谱法测定镉量 (0.00005~0.010%)
GB-T 223.58-1987 钢铁及合金化学分析方法 亚砷酸钠—亚硝酸钠滴定法测定锰量 (0.10~2.50%)
GB-T 223.59-1987 钢铁及合金化学分析方法 锑磷钼蓝光度法测定磷量 (0.01~0.06%)
GB-T 223.59-2008 钢铁及合金 磷含量的测定铋磷钼蓝分光光度法
GB-T 223.60-1997 钢铁及合金化学分析方法 高氯酸脱水重量法测定硅含量 (0.10~6.00%)
GB-T 223.61-1988 钢铁及合金化学分析方法 磷钼酸铵容量法测定磷量 (0.01~1.0%)
GB-T 223.62-1988 钢铁及合金化学分析方法 乙酸丁酯萃取光度法测定磷量 (0.001~0.05%)
GB-T 223.63-1988 钢铁及合金化学分析方法 高碘酸钠(钾)光度法测定锰量 (0.010~2.00%)
GB-T 223.64-2008 钢铁及合金 锰含量的测定 火焰原子吸收光谱法
GB-T 223.65-1988 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钴量 (0.01~0.5%)
GB-T 223.66-1989 钢铁及合金化学分析方法 硫氰酸盐—盐酸氯丙嗪—三氯甲烷萃取光度法测定钨量 (0.0020~0.100%)
GB-T 223.67-2008 钢铁及合金 硫含量的测定 次甲基蓝分光光度法
GB-T 223.68-1997 钢铁及合金化学分析方法 管式炉内燃烧后碘酸钾滴定法测定硫含量 (0.0030~0.20%)
GB-T 223.69-2008 钢铁及合金 碳含量的测定 管式炉内燃烧后气体容量法
GB-T 223.70-2008 钢铁及合金 铁含量的测定 邻二氮杂菲分光光度法
GB-T 223.71-1997 钢铁及合金化学分析方法 管式炉内燃烧后重量法测定碳含量 (0.10~5.00%)
GB-T 223.72-2008 钢铁及合金 硫含量的测定 重量法
GB-T 223.73-2008 钢铁及合金 铁含量的测定 三氯化钛—重铬酸钾滴定法
GB-T 223.74-1997 钢铁及合金化学分析方法 非化合碳含量的测定 (0.030~5.00%)
GB-T 223.75-2008 钢铁及合金 硼含量的测定 甲醇蒸馏-姜黄素光度法
GB-T 223.76-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钒量 (0.005~1.0%)
GB-T 223.77-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钙量 (0.0005~0.010%)
GB-T 223.78-2000 钢铁及合金化学分析方法 姜黄素直接光度法测定硼含量 (钢0.0005~0.012%) (非合金钢0.0001~0.0005%)
GB-T 223.79-2007 钢铁 多元素含量的测定 X-射线荧光光谱法(常规法)
GB-T 223.80-2007 钢铁及合金 铋和砷含量的测定 氢化物发生-原子荧光光谱法
GB-T 223.81-2007 钢铁及合金 总铝和总硼含量的测定微波消解-电感耦合等离子体质谱法
GB-T 223.82-2007 钢铁 氢含量的测定 惰气脉冲熔融热导法。

❷ 常见元素化学分析方法的目录

1金(Au)
1.1甲酸还原磷钼酸分光光度法测定矿石中的金
1.2硫代米蚩酮分光光度法测定硅酸岩中的痕量金
1.3原子吸收分光光度法测定矿石中的微量金
1.4酚藏花红分光光度法测定铜合金中的金
1.5二正辛基亚砜萃取?原子吸收分光光度法测定矿石中的微量金
2银(Ag)
2.1高锰酸分光光度法测定铁中的痕量银
2.2曙红?银?邻菲咯啉分光光度法测定镁合金中的银
2.3EDTA络合滴定法测定银合金中的银
2.4原子吸收分光光度法测定铁矿中的银
2.5硫氰化物容量法测定银合金中的银
2.6镉试剂A?吐温80分光光度法测定照相定影液废水中的银
3铝(Al)
3.1偶氮氯膦Ⅰ分光光度法测定金属铜中的铝
3.2铬偶氮酚KS分光光度法测定铁锰矿石中的铝
3.3EDTA络合滴定法测定钛中的铝
3.4铬天青S分光光度法测定铁合金中的铝
3.5原子吸收分光光度法测定金属材料中的铝
3.6CAS?TPB分光光度法测定金属镍中的微量铝
4砷(As)
4.1砷化物分光光度法测定高纯金属中的微量砷
4.2砷钼酸?结晶紫分光光度法测定岩石矿物中的砷
4.3孔雀绿分光光度法测定矿石中的微量砷
4.4二乙基二硫代氨基甲酸银分光光度法测定水中的微量砷
4.5碘量法测定合金中的砷
4.6钼蓝分光光度法测定合金中的砷
5硼(B)
5.1亚甲基蓝?1,2?二氯乙烷萃取分光光度法测定合金中的微量硼
5.2酸碱滴定容量法测定硼合金中的硼
6铍(Be)
6.1容量法测定合金中的铍
6.2铬天青S分光光度法测定合金中的微量铍
6.3甲基百里酚蓝分光光度法测定铍青铜中的铍
6.4铍试剂Ⅲ分光光度法测定合金中的微量铍
6.5偶氮氯膦Ⅰ分光光度法测定矿石中的微量铍
7铋(Bi)
7.15?Br?PADAP分光光度法测定铅中的铋
7.2二硫代二安替比林甲烷分光光度法测定矿石中的铋
7.3碘化钾分光光度法测定纯金属中的铋
7.4硫脲比色法测定铅合金中的铋
7.5双硫腙?苯萃取分光光度法测定高温合金钢中的铋
8钡(Ba)
8.1EDTA络合滴定法测定铌矿石中的钡
8.2二甲基偶氮磺Ⅲ分光光度法测定碱土金属中的微量钡
8.3重量法测定矿石中的钡
9碳(C)
9.1库仑法测定金属中的碳
9.2气体容量法测定金属中的碳
9.3非水滴定法测定钢铁中的碳
10钙(Ca)
11铜(Cu)
12钴(Co)
13铬(Cr)
14镉(Cd)
15铈(Ce)
16稀土总量
17氯(Cl)
18铁(Fe)
19氟(F)
20锗(Ge)
21镓(Ga)
21?5罗丹明B?苯?乙醚萃取分光光度法测定煤中镓
22汞(Hg)
23铱(Ir)
24铟(In)
25钾(K)、钠(Na)
26锂(Li)
27镁(Mg)
28锰(Mn)
29钼(Mo)
30氮(N)
31镍(Ni)
32铌(Nb)
33钕(Nd)
35铅(Pb)
36钯(Pd)
37铂(Pt)
38铷(Rb)、铯(Cs)
39铼(Re)
40铑(Rh)
41钌(Ru)
42硫(S)
43硅(Si)
44硒(Se)
45锡(Sn)
46锑(Sb)
47锶(Sr)
48钪(Sc)
49碲(Te)
50钛(Ti)
51钍(Th)
52钽(Ta)
53铀(U)
54钒(V)
55钨(W)
56钇(Y)
57锆(Zr)
58锌(Zn)
参考文献

❸ 铈量法的简介

即采用四价铈盐溶液作滴定剂的容量分析方法。1861年由 L.T.兰格建立。在酸性溶液中,Ce4+与还原剂作用,被还原为Ce3+,E°(Ce4+/Ce3+)=1.61伏。在1~8Μ高氯酸溶液中,E=+1.70~+1.87伏;在 1~8Μ硝酸溶液中,E=-1.44~-1.42伏;在盐酸溶液中,Ce4+不很稳定,会缓慢地将Cl-氧化为Cl2,随着酸度的增高,氧化速率也增高,但在硫酸存在下,氧化速率会减低。所以,实际上常用硫酸铈的硫酸溶液作滴定剂,它非常稳定。而在硝酸或高氯酸溶液中,在光的作用下,Ce4+会缓慢地被水还原,使其浓度逐渐下降。Ce4+易水解而生成碱式盐沉淀,因此不适合在弱酸性或碱性溶液中滴定。
在铈量法中,虽然Ce4+具有黄色,Ce3+为无色,但由于Ce4+的黄色不够深,不能作为指示滴定终点的自身指示剂,要选用适当的氧化还原指示剂,如邻二氮菲-亚铁指示剂,铈量法的滴定曲线见图[0.1Ce滴定0.1Fe]

❹ 铈是一种稀土元素,在元素周期表中铈元素的某些信息如图所示,下列有关铈的说法正确的是 A.元素符

A

❺ 【求助】如何分析滴定硝酸铈铵和硝酸混合液各组分的含量

四价铈的测定:准确移取25.00 mL硫酸亚铁铵标准溶液于250 mL锥形瓶中,滴加2滴0.25%邻二氮杂菲指示剂,加人5 mL 6 mo/L H2SO4,用含有四价铈的溶液进行滴定。当溶液由橙黄色变为淡绿色时,即为终点。可计算出硝酸铈铵的含量。

❻ 二氧化铈在还原气氛中供氧生成氧化铈反应化学方程式

(1)根据废玻璃粉末的成分(含SiO 2 、Fe 2 O 3 、CeO 2 等物质),可知能与氢氧化钠反应的是二氧化硅,其离子方程式为SiO 2 +2OH - ═SiO 3 2- +H 2 O,
故答案为:SiO 2 +2OH - ═SiO 3 2- +H 2 O;
(2)经分析滤渣A的成分是Fe 2 O 3 、CeO 2 ;第②步反应Fe 2 O 3 与稀硫酸作用生成Fe 2 (SO 4) 3 ,洗涤滤渣B的目的显然是为了除去 Fe 3+ ,检验铁离子是否洗净的方法是取最后一次洗涤液,加入KSCN溶液,若不出现红色,则已洗净;否则未洗净,
故答案为:Fe 3+ ;取最后一次洗涤液,加入KSCN溶液,若不出现红色,则已洗净;否则未洗净;
(3)第③步反应CeO 2 与H 2 O 2 和稀H 2 SO 4 反应生成Ce 3+ ,Ce元素由+4价变为+3价,被还原;则H 2 O 2 应被氧化生成O 2 ,然后配平得出第③步反应的化学方程式 2CeO 2 +H 2 O 2 +3H 2 SO 4 ═2Ce 2 (SO 4 ) 3 +O 2 ↑+4H 2 O,

❼ 三氯化铈的化学分析检验方法或国标编号

化合物一般没办法检测吧,只能用原子光谱或ICP-MS检出铈元素的含量来推断三氯化铈的含量,即使用离子色谱分离和定量三价的铈,也不一定是以三氯化铈的形态存在。

❽ 任务稀土分析方法的选择

任务描述

含稀土元素的矿物种类很多,组分也很复杂。稀土分析包括非常丰富的内容,几乎涉及化学分析和仪器分析的各个领域,是分析化学中一个难点。稀土元素的分析可分为两大类,一是稀土总量的测定,其中包括稀土元素分组含量的测定;二是单一稀土元素含量的测定。要掌握好稀土元素分析,必须对稀土元素的基本性质、稀土矿石的特点、稀土元素的分析方法等有比较全面的了解,这样才能在接收稀土样品后,根据样品的特点及其分析任务选择合理的分析方法,正确派发分析检验单。

任务分析

一、稀土元素在地壳中的分布、赋存状态及稀土矿石的分类

稀土元素在地壳中的总质量分数为0.0153%,含量最大的是铈(占0.0046%),其次是钇、钕、镧等。含量最小的是钷,然后是铥、镥、铽、铕、钬、铒、镱等。稀土元素在地壳中主要呈三种状态存在:

(1)呈单独的稀土矿物存在于矿石中,如独居石、氟碳铈矿、磷钇矿等。

(2)呈类质同象置换矿物中的钙、锶、钡、锰、锆、钍等组分存在于造岩矿物和其他金属矿物及非金属矿物中,如萤石、磷灰石、钛铀矿等。

(3)呈离子形态吸附于某些矿物晶粒表面或晶层间,如稀土离子吸附于黏土矿物、云母类矿物的晶粒表面或晶层间形成离子吸附型稀土矿床。

离子吸附型矿是我国独有的具有重要工业价值的稀土矿。离子吸附型稀土矿中75%~95% 的稀土元素呈离子状态吸附于高岭土和云母中,其余约10% 的稀土元素呈矿物相(氟碳铈矿、独居石、磷钇矿等)、类质同象(云母、长石、萤石等)和固体分散相(石英等)的形态存在。离子吸附型稀土矿中的稀土氧化物含量一般为0.1% 左右,有的可高达0.3% 以上。根据离子型稀土矿中稀土元素的配分值可将其分为下列类型:富钇重稀土矿、富铕中钇轻稀土矿、中钇重稀土矿、富镧钕轻稀土矿、中钇轻稀土矿、无选择配分稀土矿。离子型稀土矿不用经过选矿,用NaCl、(NH42SO4、NH4Cl等溶液渗浸就可以将稀土元素提取到溶液中,再将溶液中的稀土转化成草酸盐或碳酸盐,最后灼烧得到稀土氧化物。

二、稀土元素的分析化学性质

(一)稀土元素的化学性质简述

稀土元素位于元素周期表的ⅢB 族,包括钪(Sc)、钇(Y)和镧系元素镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu),共17种元素。它们的原子序数分别为21,39 和57~71。其中镧、铈、镨、钕、钷、钐、铕为轻稀土,钆、铽、镝、钬、铒、铥、镱、镥、钇为重稀土。稀土元素是典型的金属元素,其金属活泼性仅次于碱金属和碱土金属,近似于铝。稀土金属在空气中不稳定,与潮湿空气接触会被氧化而变色,因此需要保存在煤油中。稀土金属能分解水,在冷水中作用缓慢,在热水中作用较快,放出氢气。稀土金属与碱不起作用。

(二)稀土元素主要化合物的性质

(1)稀土氧化物。在稀土分析化学中,稀土氧化物是一类非常重要的化合物。各种稀土元素标准溶液基本上是用高纯的稀土氧化物配制而成的。稀土氢氧化物、草酸盐、碳酸盐、硝酸盐及稀土金属在空气中灼烧均可获得稀土氧化物。经灼烧后,多数稀土元素生成三价氧化物,铈为四价氧化物CeO2,镨为Pr6O11,铽为Tb4O7。稀土氧化物不溶于水和碱性溶液中,能溶于无机酸(氢氟酸和磷酸除外)。

(2)稀土草酸盐。稀土草酸盐的溶解度较小,这是草酸盐重量法测定稀土总量的基础。随着原子序数的增大,稀土草酸盐的溶解度增大,因此当用重量法测定重稀土元素时较轻稀土的误差大。在800~900℃灼烧稀土草酸盐可使其完全转化为稀土氧化物。

(3)稀土氢氧化物。一般情况下,稀土氢氧化物为胶状沉淀。不同稀土氢氧化物开始沉淀的pH不同,并且随原子序数的增加而降低,碱性越来越弱。稀土氢氧化物主要用于稀土元素与铜、锌、镍、钙、镁等元素的分离。

(4)稀土卤化物。稀土卤化物中,氟化物难溶,可用于稀土元素的分离与富集。其他卤化物在水中有较大溶解度并且易潮解。稀土氟化物可以溶解于 H2SO4或 HNO3-HClO4中。

三、稀土矿石的分解方法

(1)酸分解法。由于稀土矿物的多样性与复杂性,它们的分解方法各不相同。大部分稀土矿物均能被硫酸或酸性溶剂分解,如硅铍钇矿、铈硅石等可以用盐酸分解,而独居石、磷钇矿等用浓盐酸分解不完全,而必须采用热硫酸分解。对难溶的稀土铌钽酸盐类矿物则可用氢氟酸和酸性硫酸盐分解。

密闭或微波消解是分解稀土矿石的非常有效的方法,该法具有速度快、分解完全、空白低、损失小等优点。微波消解一般使用硝酸+氢氟酸。

(2)碱熔分解法。碱熔分解法几乎适用于所有的稀土矿,该法一般使用过氧化钠或氢氧化钠(或氢氧化钠加少许过氧化钠)。其优点是熔融时间短,水浸取后可借以分离磷酸根、硅酸根、铝酸根和氟离子等阴离子,简化了以后的分析过程。

(3)离子型稀土矿的盐浸取法。离子型稀土矿的送检样品除了通过化学法提取并经其他处理过程得到的混合稀土氧化物外,也有一部分是稀土原矿。离子型稀土原矿一般要求测定离子相稀土总量和全相(离子相和矿物相等)稀土总量。全相稀土总量的测定,其样品分解方法同其他稀土矿的方法相同。而离子相稀土总量的测定有其特有的样品处理方法——盐浸法。

用于离子型稀土矿浸出的浸矿剂为各种电解质溶液,浸矿过程为离子交换过程,遵循离子交换的一般规律。盐浸法的实质是用一定浓度的盐溶液作为浸矿剂(实为解析剂)使被吸附于矿土中稀土阳离子解吸,进而转入浸出液中。适当浓度的各种电解质(酸、碱、盐)溶液均可作为离子型稀土矿的浸出剂。常用的浸矿剂有:氯化铵、氯化钠、硫酸铵、盐酸、硫酸等。

影响浸出率的主要因素是浸矿剂的类型、浓度和pH值。稀土浸出率随浸出剂浓度的增加而增加。但此时非稀土杂质的浸出率也相应增加,因此必须通过实验选择合适的浸出剂浓度。

稀土离子在水中水解的pH值为6~7.5。因此,稀土浸出液的pH值必须小于6。pH值太低,浸出剂的酸度太高,此时虽可获得较高的稀土浸出率,但非稀土杂质的浸出率也相应提高,有可能对后续的测定产生干扰;相反,浸出液的pH值太高,稀土离子会水解析出沉淀,使浸出率下降。一般浸出液的pH值控制在4.5~5.5 范围可获得比较理想的结果。

在稀土分析中,综合考虑稀土浸出率、杂质浸出率、浸出液pH值的控制难易等因素,一般选择硫酸铵(2%)作为离子型稀土矿的浸出剂。

四、稀土元素的分离富集方法

稀土元素的主要分离富集方法见表6-1。

表6-1 稀土元素的主要分离富集方法

五、稀土元素的分析方法

稀土分析的主要任务是稀土总量的测定、混合稀土中单一稀土元素含量的测定及铈组稀土或钇组稀土量的测定。由于稀土元素的化学性质十分相似,因此稀土分析是无机分析中最困难和最复杂的课题之一。为了测量各种含量范围、不同形态的稀土元素总量和各种单一稀土元素,几乎采用了所有的分析手段。下面介绍稀土分析最常用的分析方法。

(一)化学分析法

稀土元素的化学分析法包括重量法和滴定法,主要用于稀土总量的测定。

1.重量法

重量法用于稀土含量大于5% 的试样的分析,是测定稀土总量的古老的、经典的分析方法。该法虽然流程长、操作繁琐,但其准确度和精密度均优于其他方法,因此国内外常量稀土总量的仲裁分析或标准分析方法均是采用重量法。

能用于稀土沉淀剂的有草酸、二苯基羟乙酸、肉桂酸、苦杏仁酸等,其中草酸盐重量法因其具有准确度高、沉淀易于过滤等优点而被广泛采用。该法是将草酸盐沉淀分离得到的沉淀灼烧成氧化物进行称量。

2.滴定法

滴定分析法测定稀土主要是基于氧化还原反应和配位反应。对于稀土矿物原料分析、稀土冶金的流程控制和某些稀土材料分析,配位滴定法常用于测定稀土总量。氧化还原滴定法常用于测定铈、铕等变价元素。单一稀土的滴定法的测定范围和精密度与重量法相当,而操作步骤比重量法简单,常用于组分较简单的试样中稀土总量的测定。对于混合稀土总量的测定来说,由于试样的稀土配分不清楚或多变,给标准溶液的标定带来困难,并由此而造成误差。因此,混合稀土总量的滴定法主要用于生产过程的控制分析。稀土元素的氧化还原滴定法主要用于Ce4+、Eu2+的测定,由于其他稀土元素和其他不变价元素不干扰测定,因此该法具有较好的选择性。

总铈的氧化还原滴定法的一般程序是先将Ce3+氧化成Ce4+,然后用标准还原滴定剂滴定Ce4+。Ce3+的氧化常用的氧化剂有过硫酸铵、高氯酸、高锰酸钾。滴定Ce4+常用的还原剂是Fe2+,最常用的指示剂是邻菲罗啉和苯代邻氨基苯甲酸或两者的混合物。也有用硝基邻菲罗啉和邻菲罗啉与2,2′-联吡啶混合指示剂。由于上述指示剂本身具有氧化还原性,因此应注意扣除指示剂的空白值。铕的氧化还原滴定一般是在盐酸介质中用锌汞齐将Eu3+还原成Eu2+,在二氧化碳或其他惰性气氛中用Fe3+将Eu2+定量氧化成Eu3+,再用重铬酸钾滴定所产生的Fe2+;或用FeCl3直接滴定Eu2+。也有人用重铬酸钾定量将Eu2+氧化成Eu3+,再用亚铁滴定剩余的重铬酸钾。在上述这些方法中,Eu3+的定量还原是影响结果的关键。此外,控制好锌粒的大小及纯度,掌握好溶液流经锌柱的流速才能得到理想的结果。

稀土元素的配位滴定是用氨羧络合剂为滴定剂,它与三价稀土离子形成一定组成的稳定配合物。稀土元素的EDTA配合物较稳定,其lgK值在15~19 之间,形成稀土配合物的稳定常数彼此相差不大,一般只能滴定稀土总量。

二甲酚橙、偶氮胂Ⅲ、偶氮胂Ⅰ、铬黑T、紫脲酸铵、PAN、PAR、次甲基蓝、溴邻苯三酚和一些混合指示剂都可作为配位滴定法测定稀土的指示剂。其中最常用的是二甲酚橙,滴定的适宜酸度是pH值为5~6。

(二)仪器分析

稀土元素的仪器分析方法主要有可见分光光度法、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、X射线荧光光谱法(XRF)。各自的应用情况见表6-2。

表6-2 仪器分析法在稀土元素测定中的应用

六、稀土矿物的分析任务及其分析方法的选择

稀土矿物的分析任务主要有两个方面:稀土总量的测定和各单一稀土含量的测定。样品主要有以下几类:稀土原矿、稀土精矿、稀土氧化物、稀土渣、草酸稀土、碳酸稀土、氯化稀土、氟化稀土等。

对于稀土原矿,样品处理方法可以采用碱溶、复合酸溶或微波消解,测定方法主要有分光光度法,ICP -AES,ICP -MS,XRF,INAA。分光光度法一般只能测定稀土总量,铈组稀土或钇组稀土,而不能对单一稀土的测定。而其他几种方法可以方便地测定各单一稀土含量,将各单一稀土含量加和后即为稀土总量。其中以ICP-MS和INAA的灵敏度最高,ICP-AES居中,XRF次之。ICP-MS和INAA虽然有很好的分析性能,但因仪器设备昂贵,运行成本高,现在还很难普及,特别在中小型企业未能广泛应用。XRF的缺点是灵敏度差,对痕量稀土元素的测定比较困难。相比之下,ICP-AES在稀土分析领域获得了非常广泛的应用,在国内已经越来越普及。该法具有灵敏度高、容易建立方法、分析速度快等优点。但其对痕量稀土的测定还必须采取一定的富集方法。值得一提的是,对于我国特有的南方离子型稀土矿,检测项目还包括离子相稀土含量的测定和全相(离子相和矿物相)稀土含量的测定。

稀土精矿、稀土氧化物、草酸稀土、碳酸稀土、氯化稀土、氟化稀土中稀土总量的测定基本上采用草酸盐重量法。滴定法在混合稀土总量的测定中并不普及。稀土精矿可采用碱溶或酸溶法分解试样,应视样品性质而定。草酸稀土和碳酸稀土一般应先于900℃马弗炉中灼烧成氧化物后再进行分析,稀土氧化物用盐酸、硝酸即可完全分解。氯化稀土可直接用盐酸分解,而氟化稀土则必须加高氯酸冒烟处理方能完全为酸所分解。高含量稀土矿物中稀土配分量的测定是一项非常重要的项目,目前能用于稀土配分测定的是ICP-AES和XRF法。XRF测定稀土配分具有准确、快速和直接分析的特点,被人们作为标准分析方法和仲裁方法。ICP-AES测定稀土配分具有制样简单、分析速度快、线性范围宽等优点,已经获得了越来越广泛的应用,成为一种可以与XRF 相媲美的另一种重要的分析技术。

综上所述,对于稀土矿物中稀土元素的测定,因综合考虑样品性质、稀土含量范围、分析目的、分析成本等各方面因素,结合实验室的自身条件,选择合适的分析方法。

技能训练

实战训练

1.实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成稀土矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

❾ 硅铈钛矿分析

硅铈钛矿Ce4Fe2Ti3[Si2O72O8的主成分Ce2O3、La2O3的含量分别可达23.58%和22.24%,SiO2含量为18.16%,TiO2含量为17.62%,FeO和Fe2O3含量为8.27%和2.85%,CaO含量为3.39%,Al2O3含量为2.52%,还有少量的MgO、Y2O3、UO3、ThO2、ZrO2、Nb2O5和Ta2O5等。

70.4.4.1 封闭溶样-微量分析法

5mg试样经氢氟酸-硝酸封闭溶样后,测定Si、Al、Ti、TFe、Mg、Ca、Mn、K、Na、REEs、Th、Zr、U、Nb和Ta等元素。分析流程见图70.16。

分析步骤

(1)试样溶液的制备

称取5mg试样(精确到0.001mg)放入溶样罐中,加入1mLHNO3和2mLHF,盖上内盖,旋紧外盖。置于已升温至120℃的烘箱中,保温2h。取出,冷却。将溶液及沉淀转入已盛有2.5gH3BO3的200mL聚氟乙烯烧杯中,用水冲洗数次,加入10mL(1+1)HCl,低温电热板加热至沸。取下、冷却。将溶液转入100mL容量瓶,用水稀释至刻度,摇匀,转入干燥的塑料瓶中,制得溶液(A)。

移取50.0mL溶液(A)于聚四氟乙烯杯中,加入5mLHClO4,置于中温电热板上蒸发冒烟2次,残渣用5mL(1+1)HCl和几滴H2O2溶解后转入50mL容量瓶中,用水稀释到刻度,摇匀,制得溶液(B)。

(2)硅的测定

移取5.0mL溶液(A),用硅钼蓝光度法测定硅。

图70.16 硅铈钛矿酸溶法分析流程

(3)铌和钽的分离

移取20.0mL溶液(A)置于150mL烧杯中,加入8滴(1+1)H2SO4,蒸发至冒烟。取下,加入10mL60g/L草酸、4mg铋盐、0.2mg铁盐,用氨水调节至pH8~9,在电热板上保温微沸10min,放置2h。用中速滤纸过滤,10g/L草酸(pH8~9)洗涤沉淀和烧杯各8次。将沉淀转入100mL烧杯中,准确加入20mL60g/L酒石酸溶液,微热溶解沉淀,冷却,干过滤,溶液测定铌和钽。

(4)铌的测定

移取5.0mL溶液用5-Br-PADAP光度法测定。

(5)钽的测定

移取5.0mL溶液于25mL无硼比色管中,加入2mL1.5g/L孔雀绿-10g/L草酸溶液、3mL苯和3mL37g/LNH4F-(3.3+96.7)H2SO4溶液,盖上玻塞摇动100次,静置分层后目视比色测定。

校准系列0~3.0μgTa2O5

(6)钍的测定

移取5.0mL溶液(A)于50mL烧杯中,加入10mL(1+1)HCl混匀,转入已预先用(1+2)HCl平衡好的743多孔性阳离子树脂交换柱上。待溶液流尽后,用20mL(1+2)HCl洗1次,用10mL20g/LNH4Cl转型,再用10mL洗。然后准确用14mL40g/L草酸洗脱钍于25mL烧杯中,浓缩至约10mL,移入25mL比色管中,加入10mLHCl,摇匀,放置冷却。准确加入2mL1g/L偶氮胂Ⅲ溶液,用水稀释到刻度,摇匀。用1cm比色皿,于波长640nm处测量吸光度。

(7)铁的测定

移取5.0mL溶液(A)用1,10-邻二氮菲光度法测定。

(8)铝的测定

移取5.0mL溶液(B)放入50mL分液漏斗中,加入1mL(1+99)乙酸、2mL10g/L盐酸羟胺、1滴百里酚蓝指示剂、用6mol/LHCl和(1+1)氨水调至黄色,加入2mL1,10-邻二氮菲溶液,5mLpH6.2乙酸-乙酸铵缓冲溶液(275mL冰乙酸和310mL氨水混合后用水稀释至1000mL),放置10min,准确加入10mL20g/L8-羟基喹啉-氯仿,萃取1min,分层后将有机相转入预先盛有无水Na2SO4的干燥比色管中。用1cm石英比色皿,于波长390nm处测量吸光度。

校准曲线0~40μgAl2O3

(9)钛的测定

移取5.0mL溶液(B),用变色酸光度法测定。

(10)锆的测定

移取5.0mL溶液(B),用二甲酚橙光度法测定。

(11)铀的测定

移取10.0mL溶液(B),用TBP-苯萃取,偶氮胂Ⅲ光度法测定。

(12)RE2O3、∑Ce2O3、∑Y2O3的测定

移取5.0mL溶液(B)于25mL容量瓶中,用水稀释至刻度,摇匀。分取10.0mL溶液放入60mL分液漏斗中,加入2mL200g/L磺基水杨酸、2mL50g/L盐酸羟胺溶液、1滴变色点为pH5.1的混合指示剂,用(1+1)氨水和(2+98)HCl调节至刚呈红色。加入3mLpH5.5~6的乙酸-乙酸铵缓冲溶液,用25mL0.01mol/L的PMBP-苯萃取1min。分层后放弃水相,准确加入25mL!(CHOOH)=0.44%反萃取1min。待水相澄清后放出5mL于10mL容量瓶中,加入1mL1g/L偶氮胂Ⅲ溶液,用!(CHOOH)=0.44%稀释至刻度,摇匀。用2cm比色皿,于波长640nm处测量吸光度。计算RE2O3含量。

再放出5.0mL反萃取液于10mL容量瓶中,加入0.1mL0.4mol/LEDTA-Cd溶液、0.5mL0.5g/L偶氮胂M溶液,用!(CHOOH)=0.44%稀释至刻度,摇匀。用2cm比色皿,在波长640nm处测量吸光度。计算∑Ce2O3含量。

∑w(Y2O3)=w(RE2O3)-∑w(Ce2O3)

校准曲线稀土标准配制可依据Ce2O3、Y2O3含量(也可用统一标准法)配制。

(13)锰、钙、镁、钾和钠的测定

用溶液(B)直接原子吸收光谱法或电感耦合等离子体发射光谱法测定。

70.4.4.2 碱熔-微量分析法

5mg试样碱熔后制成(5+95)HCl溶液,分别用光度法测定Si、Al、Ti和Fe;用原子吸收光谱法测定Ca和Mg。再分取部分溶液经萃取和反萃取的多次分离,测定RE2O3、U、Th和Zr。分析流程见图71.17。

图70.17 硅铈钛矿碱熔法分析流程

试剂

Cd-0.2mol/LEDTA称取58.6g二水合乙酸镉溶于1000mL水中,与0.2mol/LEDTA等体积混合。

苯甲酰苯胲溶液(1g/L)称取0.1g苯甲酰苯胲溶于100mL(7+3)苯-乙酸正丁酯中。

测铀混合配位剂称取49g顺丁烯二酸酐和5gEDTA于1000mL烧杯中,加300mL水,在搅拌下加入30mL氢氧化铵,微热溶解,用水稀至500mL。

一氯乙酸缓冲溶液(pH2.5)将94.5g一氯乙酸溶于少量水中,加30mL氨水,用水稀释至1000mL。

分析步骤

称取5mg试样(精确至0.001mg)放入预先准确加有0.3gNa2O2的铂坩埚中,混匀。加1粒NaOH,于(520±10)℃高温炉中熔融20min,取出,冷却后,放入聚四氟乙烯烧杯中。加入30mL沸水浸提,洗出坩埚。加热煮沸10~20min,取下烧杯。在铂坩埚内,准确加入13mL(1+1)HCl,温热后移入主液烧杯中。洗净坩埚,冷却后移入100mL容量瓶中,用水稀释至刻度,摇匀,制得溶液(A)。

(1)硅的测定

移取10.0mL溶液(A),用硅钼蓝光度法测定。

校准曲线0~150μgSiO2(在校准系列中加入250μg稀土氧化物)。

(2)铝的测定

移取10.0mL溶液(A),用铬天青S-CPB光度法测定。

校准曲线0~20μgAl2O3(在校准系列中加入250μg稀土氧化物,10mL空白溶液)。

(3)钛的测定

移取10.0mL溶液(A)用变色酸光度法测定。

校准曲线0~100μgTiO2

(4)全铁的测定

移取10.0mL溶液(A),用1,10-邻二氮菲光度法测定。

校准曲线0~100μgFe2O3

(5)钙、镁的测定

移取10.0mL试液(A)加入0.5mL50g/LLa(NO3)2溶液,用原子吸收光谱法测定。

校准曲线0~30μgCaO,0~10μgMgO。

(6)铀、钍、稀土、锆(铪)的萃取分离

移取10.0mL溶液(A)于60mL分液漏斗中,加入1mL400g/L磺基水杨酸溶液、1mL40g/L抗坏血酸和2mL28g/LPMBP丙酮溶液,摇匀,放置2min~3min。加1滴0.5g/L二甲基黄指示剂,用(1+1)氨水和(5+95)氨水仔细中和至恰好变黄,立即加入5mLpH5.5乙酸-乙酸钠缓冲溶液和20mL苯。振荡200次,放置澄清,放出水相。用10mL稀释5倍后pH5.5缓冲溶液洗有机相一次,再用水洗一次,弃尽水相。

(7)稀土总量和轻稀土总量的测定

在PMBP-苯有机相中加入15mLpH2.5甲酸溶液,振荡200次,待分层后,将水相经棉花过滤入50mL容量瓶中。再重复反萃取二次,水相合并。用pH2.5甲酸溶液洗3次分液漏斗和棉花,每次约1mL,洗液合并于50mL容量瓶中,并用反萃取液稀释至刻度,摇匀,制得溶液(B)。

移取10.0mL溶液(B)于50mL容量瓶中,加4mL0.6g/L偶氮胂M溶液,用pH2.5甲酸稀释至刻度。摇匀后移取25.0mL上述已显色溶液于50mL容量瓶中,准确加入0.2mLCd-EDTA溶液,以pH2.5甲酸溶液稀释至刻度,摇匀。用2cm比色皿,在640nm处测量轻稀土总量吸光度。

将剩余显色溶液,用2cm比色皿,于波长640nm处测量稀土总量吸光度。

重稀土总量=稀土总量-轻稀土总量

稀土总量校准曲线在60mL分液漏斗中,分别加入0~60μg稀土总量,0~10μg铀和钍,0~10μg氧化锆的标准溶液。用水稀至10mL,与试样相同条件萃取与测定。

轻稀土总量校准曲线0~50μg轻稀土总量与试样相同条件萃取和测定。

(8)氧化铈的测定

移取20.0mL溶液(B)于50mL小烧杯中,蒸发至小体积,分别加3mLH3PO4、1mLH2SO4、5mLHClO4、5mLHNO3和2mLHCl,盖上表皿,加热煮沸5min。洗去表皿,继续加热至冒烟6~7min,取下冷却。溶液移入50mL比色管中,用水稀释至25mL,冷却后加入1mL1g/L四价钒溶液,摇匀。放置5min,加10mLHCl、10mL1g/L苯甲酰苯胲溶液,振摇200次。分层后取有机相,用1cm比色皿,于波长510nm处测量吸光度。

校准曲线0~100μgCeO2,同试样处理。

(9)铀的测定

用水洗一次经pH2.5甲酸反萃取稀土总量之后的PMBP-苯有机相,放净水相,加入15mL(2+98)HCl,振荡200次。待分层后,擦干漏斗颈,将水相经棉花过滤入25mL容量瓶中。用(2+98)HCl洗2次漏斗和棉花,每次约1mL。合并水相,加入1mL40g/L抗坏血酸溶液、2mL混合配位剂、1滴1g/L百里酚蓝指示剂,以(1+1)氨水中和至刚变黄。加2mLpH2.5一氯乙酸缓冲溶液,摇匀。加入0.5mL2g/L偶氮胂Ⅲ溶液,以水稀释至刻度,摇匀。用3cm比色皿,在波长640nm处测量吸光度。

校准曲线0~10μgU,随试样步骤同样处理。

(10)氧化钍的测定

分离铀后的有机相中加入15mL4mol/LHCl,振荡200次。擦干漏斗颈,待两相澄清后,水相经棉花过滤入25mL容量瓶中,用4mol/LHCl洗2次分液漏斗和棉花,每次约1mL左右。合并水相,加入1mL40g/L抗坏血酸溶液和2mL100g/L草酸溶液,摇匀。加入1mL1g/L偶氮胂Ⅲ溶液,用4mol/LHCl稀释至刻度,摇匀。用3cm比色皿,于波长640nm处测量吸光度。

校准曲线0~10μgThO2,随试样步骤同样处理。

(11)氧化锆(铪)的测定

经反萃取钍后,加15mL(1+1)盐酸萃洗有机相,放净水相。加15mLHCl,振荡3min,待两相澄清后,擦干漏斗颈,将水相放入25mL干容量瓶中。用HCl洗漏斗2次,准确加入6mL0.5g/L偶氮胂Ⅲ溶液,用HCl稀释至刻度,摇匀。用3cm比色皿,于波长650nm处测量吸光度。

校准曲线0~10μg,随试样步骤同样处理。

(12)铌和钽的测定

称取2mg(精确至0.01mg)试样于铂坩埚中,加入0.3gK2S2O7,在喷灯上先小火后高温熔至透明。冷却后,加入3~4mL60g/L酒石酸溶液,1滴(1+1)H2SO4,温热使盐类溶解,移入10mL无硼比色管中,用60g/L酒石酸溶液稀释至刻度,摇匀。用干移液管移取该溶液5.0mL,用氯代磺酚C光度法测定铌。

在无硼比色管中,余下的5mL溶液,用丁基罗丹明B光度法测定钽。

(13)氧化亚铁的测定

称取5mg(精确至0.01mg)试样,用1,10-邻二氮菲光度法测定。

与铈分析方法相关的资料

热点内容
海藻的种植方法图片 浏览:343
手机二手资料的方法 浏览:603
有两根棍子倒库最简单又准的方法 浏览:728
硬水转换成软水的简单方法 浏览:242
溃疡快速痊愈方法 浏览:461
诗歌鉴赏常用的方法有几种 浏览:424
花式裁员的最佳方法 浏览:596
不断探索新形态教学方法 浏览:568
高考填报志愿计算方法 浏览:454
中医治疗癫痫有哪些好的方法 浏览:758
危险化学品应急处理方法有哪些 浏览:964
排列a33的计算方法 浏览:722
二升三年级数学解决方法 浏览:256
腰椎肿瘤最快治疗方法 浏览:224
2岁宝宝过敏痒如何处理方法 浏览:282
做红酒糯米酒的方法步骤 浏览:535
苹果ipad手写在哪里设置方法 浏览:840
教你如何祛斑的小方法 浏览:611
自制灯笼的方法简单漂亮 浏览:481
虾的培训方法和步骤 浏览:620
© Arrange www.lostcanyon.org 2012-2022
温馨提示:资料来源于互联网,仅供参考