㈠ 测试误差产生原因与处理方法
任伟 张广玉 赵桂君
(国土资源部实物地质资料中心,北京 101149)
摘要 误差在测定过程中是很难避免的。本文提出了误差的分类,分析了误差的产生原因和消除方法。在实际工作中,要认清误差,熟练掌握操作技术,精确校准仪器,认真细心地操作,针对产生误差的原因,正确地运用数理统计和误差理论,予以纠正,把误差减小到最低限度。
关键词 分析结果;误差
在化验过程中,由试验人员使用仪器、试剂,按照既定的分析方法,经过一定的操作步骤,如称量、熔样、溶解、分离和检测等,最后获得样品分析的各项测试结果。上述过程中,即使是最熟练的化验人员,使用最精密的分析仪器和纯度最高的试剂,也会由于仪器灵敏度的限制,人为操作因素,以及试剂纯度的相对性等原因,而无法获得最准确的试验结果。也就是说,测定的结果和被测样品实际值之间会产生一定的误差,那么,误差是如何产生,又如何处理呢? 下面就误差的分类、误差的产生原因以及消除的方法和如何统计做一简单介绍。
一、误差的分类及产生原因
一个物理量总有一个客观存在的准确数值,通常称为真值。由于种种原因,实际测定的结果不能恰好等于真值,而有一定的差距,这个差距就是检测值的误差。根据造成误差的原因不同,一般将误差分为系统误差、偶然误差和过失误差三类。
1.系统误差
系统误差的产生是由于仪器刻度不准、仪器构造的缺陷、实验方法的不可靠或个人的习惯和偏向等原因,使检测结果偏高或偏低,形成正误差或负误差。
2.偶然误差
偶然误差是由一些来源不十分清楚的偶然因素产生的。所谓偶然,就是它们对试验结果的影响不定,有时使结果偏高,有时使结果偏低,偏离的幅度也变化不定,有大有小。因此,对偶然误差无法控制,也无法校正。实践证明,多次检测值的偶然误差服从一定的分布规律,其分布是正态分布,平均值为零。
3.过失误差
过失误差是由试验过程中人为的差错引起的,人为差错主要有仪器的不正当使用,违反操作规程,以及由粗心大意引起的差错,如液体溅失、异物污染、错误读数、记录和计算错误等,此类误差无规律可循。
二、误差的避免和消除
首先我们应该认识到,误差是测定过程中很难避免和消除的,是客观存在的。但是随着科学技术的发展,测量条件的提高,误差可以越来越小。在实际操作中,我们也可以利用一些方法来减小误差。
1)对试验仪器方法进行严格检查和校对。使用未经校正的仪器或玻璃器皿,如砝码、天平、滴定管、移液管等,都会有同符号、同值的系统误差出现;在实验方法方面,也会因为不同的样品处理方法而产生误差。因此在检测之前应该对所用仪器和试验方法做必要的校准和严格的检查。
2)细心操作。操作间环境的变化、天平的变动性、仪器的示值偏移、读数的估计值等会使检测结果产生不可预见的误差。这更要求我们应该熟练掌握实验技术,认真细心地操作,纠正操作中的个人不良习惯和偏向,消除主观上的粗心大意。
3)在每一批检测样品中加测一定数量的平行双样、密码样和标准样品,以增加检测结果的准确度。
4)利用数理统计方法处理误差问题。我们在日常工作中发现,大多数误差集中在零左右,越大的误差出现的频率越低。多次测定的正误差和负误差能互相抵消。因此,根据这种情况,可利用正态分布的特性对误差进行统计推断。判断测试结果的正确性,查找产生误差的原因,予以纠正,使误差减小到最低限度。
另外,我们还应该理解测量不确定度的概念,它是表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。从词义上理解,测量不确定度意味着对测量结果的可信性、有效性的怀疑程度或不肯定程度,是定量说明测量结果质量的一个参数。
“合理”是指应考虑到各种因素对测量的影响所做的修正,特别是测量应处于统计控制的状态下,即处于随机控制过程中。“相联系”指测量不确定度是一个与测量结果在一起的参数,在测量结果的完整表示中应包括测量不确定度。实际上由于测量不完善和人们认识不足,所得的测量值具有分散性,即每次测得的结果不是同一个值,而是以一定的概率分散在某个区域内的许多个值。虽然系统误差是一个不变值,但由于我们不能完全认知或掌握,只能认为它是以某种概率分布在某个区域内的,而这种概率分布本身也有分散性。测量不确定度就是说明被测量之值分散性的参数,它不说明测量结果是否接近真值,为了表征这种分散性,测量不确定度用标准偏差来表示。实践中测量不确定度主要来源于以下几个方面:①测量的方法不理想;②取样的代表性不够;③对测量过程中受环境影响的认识不全;④对仪器的读数存在人为偏移;⑤测量仪器的分辨力和鉴别力不够;⑥用于数据计算的常量和其他参量不准;⑦近似完全相同的条件下,重复观测值的变化。
由此可见,测量不确定度一般来源于随机性和模糊性,前者是因为条件不充分,后者是因为概念不明确。另外,我们还需要正确认识误差和测量不确定度的区别。简单地说,误差表明测量结果偏离真值,是一个差值,非正即负;测量不确定度表明被测量之值的分散性,是一个区间,为正值。
在化学分析中,每种分析方法都有规定的允许差,即一个既定的分析试验方法的标准差是固定的,要想提高分析结果的准确度,需要降低标准差。同一化验室的允许差又叫重复性限(常以r表示),是指同一化验室内在相同条件下对同一试样所做重复测定结果极差的允许界限;在不同化验室间的允许差又叫再现性临界差(常以R表示),是指两个化验室测试同一样品所得结果差值的允许界限。r的确切含义是:多次重复测定所得结果的极差不超过r的概率为95%。如极差超过r,就认为可疑,需要增做测定。R的含义与r相似。由此看出,r和R的确定不能过严或过宽。过严则造成过多的返工,从而浪费人力和物力;过宽则容易放过意外差错,从而降低实验结果的可靠性。
三、误差的统计
日常工作中,我们经常需要借助数理统计方法来处理和解决一些问题,例如,确定各种实验方法的允许误差,寻找两种指标的相互关系,判断两种实验方法能否相互代替等有关试验误差和数据处理的问题,都需要用数理统计方法来得出科学可靠的结论。数理统计是以概率为主要理论基础,运用统计方法,对数据进行整理分析并做出判断和推理的一门科学。它的应用范围很广,例如实际生产、科学实验、社会调查等等。对于不确定性事件,就每一次观测或试验结果来看都是可疑的,但在大量观测或试验下却呈现某种规律性(统计规律性)。数理统计就是从一个侧面,来研究这类不确定性事件的规律性。
数理统计所处理的是少量的、部分的、不完全的标本或材料。为了对总体进行了解和预测,就需要做出推理和判断,这就是数理统计的主要任务。例如在找矿过程中,要勘查一个新矿区的级别和储量,我们不可能取出全部矿体进行检测,因此就需要在矿区内进行定点钻孔,采取岩心样品(标本),然后对取到的样品(标本)进行分析检测,得出数据,并计算出一些必要的“统计量”,如总和、平均值等;再运用数理统计的定律或公式对实验结果做出判断、解释或推理。从而推断出矿区的级别和储量,依此来评价矿种的利用价值和开采价值。
这种推断显然会有一定的误差,因此需要运用数理统计方法来估计这种误差的大小,提高推断的可靠程度。在数理统计中,最能表征一组检测值的尺度被称为中心趋势和离散度。中心趋势表示多个检测值的集中点。离散度表示多个检测值的差异或分散程度。用这两个尺度再加上检测值的数目,就可以量化地表达一组检测值的特征。表示中心趋势的统计量主要有算术平均值和中位数,表示离散度的统计量有极差、算术平均偏差和标准偏差。
1.算术平均值
算术平均值是最常用的一种平均值。如对一件样品进行n次检测,得到一组检测结果分别为X1、X2……Xn,则算术平均值X由下式计算:
国土资源部实物地质资料中心文集(17)
在一般试验中,都取多次测定的算术平均值作为最终结果。
2.中位数
按大小排列的一组检测值中居于中央的检测值称为中位数,用Me表示。如果观测值的数目为偶数,则居中的检测值有两个,这时以两者的平均值作为中位数。
3.限误差(极差)
极差是指一组检测值中最大值和最小值之差,用R表示。它是一个最简单的表示离散度的统计量,但极差只取决于两个极端值,同测定次数及其余所有中间值都无关,因而不能全面地反映观测值的离散情况。
4.算术平均偏差
算术平均偏差是表示各检测值偏离平均值的一种尺度,用δ表示。它的定义是:各检测值同平均值之差的绝对值的平均值,其数学表达式为:
国土资源部实物地质资料中心文集(17)
同极差相比,算术平均偏差对离散度显然有更好的表现能力,它既考虑了检测值的次数n,又考虑了所有的检测值。
5.标准偏差(标准差、均方根偏差)
它的定义是:各检测值同平均值之差,取平方,求平方的总和,然后平均,再开平方根,取其正值,用σ表示。其数学表达式为:
国土资源部实物地质资料中心文集(17)
用标准偏差表示离散度的优点是对最大偏差和最小偏差更为敏感,因此具有较强的区别各检测值的离散度的能力。
在化学分析试验中,尤其在我们的日常工作中,每天都要面对大量的分析数据,正确地理解和掌握,并合理地运用数理统计方法和误差理论,有着十分重要的意义。岩矿测试部除了对实物中心所藏样品标本进行分析化验外,还要对外单位的岩矿样品进行分析测试。在数据的补充和完善过程中,正确地运用所掌握的理论和方法,对数据进行分析整理,总结出真实、客观、可靠的测试结果,增强实物地质资料中心的可信度和竞争力,使所提供给客户的资料更具说服力,从而也将提升实物资料中心在社会中的地位。
Reason of Deviation of Test and Assay Result andsolvingmethods
Wei Ren,Guangyu Zhang,Guijun Zhao
(National Geologicalsample Center,ministry of Land and Resources,Beijing 101149)
Abstract It is difficult to avoid deviation in test and assay.The papersets forth the deviation classification,analyzes the reasons and resolutions of deviation.In practice,it is necessary to understand the deviation,professionallymaster operation techniques,precise calibrate apparatus,carefully carry operation,seek out the reasons resulting the deviation andmaking appropriate use ofmathematicalstatistics and deviation theory to correct the deviation,so as tominimize the deviation finally.
Key words analysis result;deviation
㈡ 为什么说测量误差的处理本质上就是一个随机数值的处理方法问题
面对测量误差,我们该怎么办?
在上一期,我简要介绍了测量误差的概念及其对统计分析的危害;在这一期,我将着重谈一谈针对测量误差的应对办法。
不过在进入正文之前,我首先需要强调的一点是,就目前已掌握的知识来看,测量误差只能通过更好的研究设计和更严格的调查执行来降低,而到了数据分析阶段,我们并没有太多好的办法。看到这里,可能很多只用二手数据的小伙伴要感到失望了,毕竟不是所有人都有能力和精力去搜集一手数据,那么面对有测量误差的二手数据,我们该怎么办呢?
1、挑选合适的变量
我们常说,一个数据质量不好,其实这是一个非常笼统的说法。更准确的说法是,一个数据中有些变量质量不好,但有些变量还基本能用。众所周知,目前市面上能够见到的统计数据都是由很多变量组成的,我们所谓的测量误差也是针对具体的变量而言,而非针对整个数据。所以,对数据分析者来说,一个很基本的能力就是从很多变量中挑出那些测量误差比较小、可以进行统计分析的变量。但问题是怎么挑呢?
我个人认为,在挑选变量时需要遵循两个原则。
第一,客观的比主观的好,具体的比抽象的好,单一维度的比多维度的好。因为相比单一维度的、具体的客观概念,那些包含多个维度的、比较抽象的主观概念更难测量,所以对这些概念进行统计分析更可能受测量误差影响。从这个角度来说,性别、年龄、民族、婚姻状况等基本的人口学变量是相对安全的变量,在分析时应该多用;而满意度、幸福感、社会融合等变量很难测准,在分析时就应该少用。但少用并不意味着不能用,毕竟很多重要的社会学问题,如满意、幸福、公平等都是抽象的理论概念,那么对这类变量该怎么办呢?这就涉及到挑选变量的第二个原则。
第二,如果研究必须使用抽象程度比较高的变量,那么最好将之作为因变量,而不要作为自变量。在上一期我们讲过,当因变量有测量误差时,最主要的危害是降低模型和统计检验的效率,但对回归系数的估计没有太大影响。而统计检验效率的降低可以通过增大样本容量来弥补,目前我们分析使用的数据样本量通常都比较大,所以综合来看,使用有测量误差的因变量不会导致毁灭性的结果。但是,当自变量有测量误差时,情况就不一样了,它会显着低估模型的回归系数,这对任何一个回归分析来说都是不能接受的。总而言之,当我们要研究满意、幸福、公平、信任等抽象问题时,比较合适的研究路径是将这些变量作为因变量,分析它们的影响因素;而不要将它们当作自变量,研究它们的社会后果。
2、改进现有的测量
如果一项研究不能巧妙地避开有测量误差的变量,那么就只能面对它。通常来说,变量的测量误差是很难纠正的,除非在研究设计时就考虑到了测量误差问题。
举例来说,自评健康是健康研究领域常用的一个变量。测量自评健康的常规方法是使用5分Likert量表(非常健康、比较健康、一般、不太健康、非常不健康)让受访者对自己的健康状况打分。这种问法操作简单,但问题在于不同受访者对健康的评价标准往往是不一样的,有些人明明健康状况很糟糕,但依然会认为自己身体很好;而有些人即使身体很好也认为自己的健康状况不行。纠正这个问题的一个办法是锚定法(anchor vignette),即在询问自评健康的同时给受访者一些情境,让受访者评价出现在这些情境中的个体的健康状况,然后根据这些情境题确定受访者的健康评判标准(锚点),再以这个标准去纠正原有的自评健康测量。目前通过锚定法来纠正自评健康测量问题的研究设计已经得到了非常广泛的应用,比如在“中国健康养老追踪调查(CHARLS)”中就采取了这种设计。此外,一些调查在询问满意度、幸福感、自评阶层地位时也采用了这种设计。《社会》杂志今年最新的一期(2017年第6期)就刊登了一篇使用锚定法测量中国民众主观社会地位的论文,感兴趣的读者可以去查阅这篇文章。
如果研究设计使用多个指标去测量一个变量,那么就可以使用结构方程模型(SEM)改善对该变量的测量。结构方程模型包括测量模型和结构模型两部分,其中结构模型与一般意义上的回归没有本质区别,唯一的不同点是参与回归的变量既可以是观测变量,也可以是潜变量(latent variable),而潜变量是通过测量模型得到。通俗来讲,潜变量就是我们想要测量的目标变量,但是因为测量误差,我们只能得到它的多个观测指标。单独来看,每个观测指标都是有缺陷的,但综合多个指标我们就能提取出它们共有的部分(即潜变量),然后以之为基础就可以分离出测量误差。目前,结构方程模型在心理学领域已经得到了非常广泛的应用,心理学在测量诸如幸福、满意、焦虑、抑郁等概念时通常会采用一个包含数个题目的量表,基于这个量表就可以借由结构方程模型生成对应的潜变量,然后去探讨各潜变量之间的因果关系。相比之下,社会学在研究类似问题时大多还是使用单一测量指标,这样就不能有效分离出测量误差,这不得不说是一个遗憾。
3、大数据
通过前文的介绍,我们知道,如果能在调查时进行更加精巧的研究设计,就可以通过锚定法或结构方程模型缓解变量的测量误差问题。但直到目前为止,我们依然是在传统数据搜集的话语下讨论测量误差问题,实际上,随着信息技术特别是互联网技术的迅猛发展,社会科学采集数据的渠道已经发生了非常明显的变化。既然如此,数据采集技术的革新能否缓解传统的测量误差问题呢?更进一步,大数据有助于降低测量误差吗?
㈢ 平行度平行度误差检测方法
在传统平行度误差检测方法中,主要涉及面对面平行度、线对面平行度和线对线平行度的误差测量。首先,面对面平行度误差的检测通过在平板上滑动百分表或千分表,找到指示表读数的最大值和最小值来实现。线对面平行度误差的检测则需要使用心轴模拟被测要素,将心轴装入孔内,形成稳定接触,然后在平板上前后滑动表架,找到指示表指针转动的往复点后停止滑动进行读数。对于线对线平行度误差的检测,心轴需要同时模拟被测要素和基准要素,通过找正基准心轴与平板工作面平行,然后在平板上前后滑动表架,调整可调支承以确保指示表在基准心轴上素线左右两端的读数相等。
随着科技的进步,新型平行度误差检测方法引入了现代测量技术,如偏摆仪、百分表、数据采集仪、天准影像测量仪和天准三坐标测量机。新型方法的核心在于自动化的数据采集和处理,通过数据采集仪从百分表中自动读取测量数据的最大值和最小值,并由软件自动计算出平行度误差。数据采集仪还能自动判断测量结果是否在平行度公差范围内,一旦超出公差值,系统会自动发出报警信号。相比于传统方法,新型方法的显着优势在于:
1. 避免了人工读数产生的误差,通过自动读取和计算,提高了测量精度和效率。
2. 自动化数据处理过程,无需人工干预,减少了人为错误和提高了数据处理的准确性。
3. 实时测量结果报警机制,一旦测量结果超出平行度公差范围,系统会立即发出报警,确保及时发现和处理不合格产品。
新型平行度误差检测方法不仅提高了检测的准确性和效率,还显着减少了人为因素的影响,对提高产品质量控制和生产效率具有重要意义。随着技术的不断进步,未来平行度误差检测方法将更加智能化、自动化,为制造业带来更大的便利和发展空间。
㈣ 面对面的平行度测量方法
面对面的平行度测量方法传统方法
1、测量面对面平行度误差
公差要求是测量面相对于基准平面的平行度误差。基准平面用平板体现,如下图所示。测量时,双手推拉表架在平板上缓慢地作前后滑动,用百分表或千分表在被测平面内滑过,找到指示表读数的最大值和最小值。
2、测量线对面平行度误差
公差要求是测量孔的轴线相对于基准平面的平行度误差。需要用心轴模拟被测要素,将心轴装于孔内,形成稳定接触,基准平面用精密平板体现,如下图所示,测量时,双手推拉表架在平板上缓慢地作前后滑动,当百分表或千分表从心轴上素线滑过,找到指示表指针转动的往复点(极限点)后,停止滑动,进行读数。在被测心轴上确定两个测点a、b,设二测点距离为12,指示表在二测点的读数分别
3、测量线对线平行度误差
公差要求是测量孔的轴线相对于基准孔的轴线的平行度误差。需要用心轴模拟被测要素和基准要素,将两根心轴装于基准孔和被测孔内,形成稳定接触,如下图所示:测量前,要先找正基准要素,找正基准心轴上素线与平板工作面平行。实验时用一对等高支承基准心轴,就认为找正好了。也可以用一个固定支承和一个可调支承基准心轴,双手推拉表架在平板上缓慢地作前后滑动,调整可调支承,当指示表在基准心轴上素线左右两端的读数相同时,就认为找正好了。
新型方法
测量仪器:偏摆仪、百分表、数据采集仪、影像测量仪、三坐标测量机
测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件自动计算出平行度误差,最后数据采集仪会自动判断所测零件的平行度误差是否在平行度公差范围内,如果所测平行度误差大于平行度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:
数据采集仪连接百分表测量平行度误差示意图
数据采集仪连接百分表测量平行度误差示意图
优势:
1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差;
2)无需人工去处理数据,数据采集仪会自动计算出平行度误差值。
3)测量结果报警,一旦测量结果不在平行度公差带时,数据采集仪就会自动报警。