❶ 大白话谈布林线boll线
布林线,又名布林带,是由经济学家约翰·布林格在1980年代提出的一种技术分析工具。它与MACD、RSI、KDJ等其他指标一样,是股市分析中常用的工具之一。布林线主要由三条线组成:上轨线、中轨线和下轨线,每条线代表不同的含义,用于评估风险并确定最佳交易时机。布林线的计算主要基于收盘价,通过统计学原理中的标准差来衡量股价波动,从而形成布林通道。
上轨线(阻力线)通常被认为是股价触碰后的可能见顶回落点,提示投资者应趁高套利。中轨线(成本线)实际上是移动平均线,与MA和SMA的原理相同。下轨线(支撑线)则在股价触碰后可能产生止跌反弹效应,给投资者提供加仓买入的机会。布林线的计算公式包括中轨线、上轨线和下轨线的计算,标准差在布林线的形成中起着关键作用,决定着曲线的形态。
在股市中,布林线的上下轨线具备支撑和阻力功能。股价触碰上轨线或远离上轨线的概率较低,因此上轨线提供了阻力,提示投资者在股价触碰上轨线时卖出。相反,股价触碰下轨线或接近下轨线的概率也较低,下轨线则提供了支撑,提示投资者在股价触碰下轨线时买入。
布林通道的宽度变化反映了股价波动程度的变化,通道的缩窄意味着股价波动减小,而通道的扩张则表示波动增大。当通道由窄变宽时,投资者可以关注股价是否处于中轨线上方,以判断股市走势的强势或弱势,从而决定是否进行买入或卖出操作。同样,当通道由宽变窄时,意味着股价波动减缓,股价可能进入盘整期。
布林线存在一些潜在的缺陷。首先,它的计算仅依赖于收盘价,忽略了开盘价、最高价、最低价以及成交量、成交额、大宗交易等其他K线四要素的数据。其次,股价变化趋势的决定因素不仅包括趋势的延续,还包括决定趋势的因素的延续。因此,在应用布林线时,需要综合考虑其他技术指标和市场因素,以做出更准确的判断。
❷ 大数据是什么概念
世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。
所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
七:最后北京开运联合给您总结一下
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
1、从大数据的价值链条来分析,存在三种模式:
1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
2、未来在大数据领域最具有价值的是两种事物:
1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;
2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
大 数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不
断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于
数据的应用需求和应用水平进入新的阶段。
❸ 大白话谈大数据:数据分析方法之对比分析
对比分析是数据分析中最常用、好用、实用的分析方法,它是将两个或两个以上的数据进行比较,分析其中的差异,从而揭示这些事物代表的发展变化情况以及变化规律。
先看看思维导图:
使用分析方法(和谁比)
如何使用对比分析法,就要先考虑 和谁比 这个问题。
和自己比较
通过和自己过去的平均值相比,发现问题,围绕问题进行分析,出现的问题是自身问题导致的还是行业问题导致的,如果自己的环比出现了问题,就要从自身上找原因,提高活跃率。
和行业比较
将自己的平均值和行业平均值进行比较,和同行一比,往往会发现很多问题。
使用分析方法(如何比较)
第二个要考虑的问题就是 如何比较 ?
数据整体的大小 :用某些指标来衡量整体数据的大小,常用的数据指标为:平均值、中位数、某个业务指标
数据整体波动 :用变异系数来衡量整体数据的波动情况
趋势变化 :运用对比分析来分析趋势变化的时候,最主要的是找到合适的对比标准。找到标准,将对比对象的指标与标准进行对比,就能得出有结果了。目前常用标准是时间标准、空间标准、特定标准。
第一类时间标准 :
动作前后对比 ,可以看到动作前后的效果,如对比某次营销活动前后的对比。
时间趋势对比 ,可以评估指标在一段时间内的变化,可以通过环比,来判断短时间内趋势的变化。
与去年同期对比 ,当数据存在时间周期变化的时候,可以与去年同期对比,剔除时间周期变化因素。通过同比,来判断短时间内趋势的变化。
环比:本月和上个月比较,短时间的比较
同比:本年和上一年比较,长时间的比较
第二类空间标准 :
A/B测试 ,在同一时间维度,分别让组成成分相同的目标用户,进行不同的操作,最后分析不同组的操作效果,A/Btest我接下去也会讲。
相似空间对比 ,运用两个相似的空间进行比较,找到二者的差距,比如同类型甲APP(贝壳)乙APP(自如)的年留存率情况,明显看出哪个APP的留存率更高,日常生活中相似空间比较常用的就是城市、分公司之间的对比。
先进空间对比 ,是指与行业内领头羊对比,知晓差距多少,再细分原因,从而提高自身水平。如淘宝和京东的对比。
第三类特定标准 :
与计划值对比 ,目标驱动运营,在营销中会制定年、月、甚至日的目标,通过与目标对比,分析自己是否完成目标,若未完成目标,则深层次分析原因。目标驱动的好处,就是让运营人员一直积极向上努力的去完成目标,从而带动公司盈利。
与平均值对比 ,与平均值对比,主要是为了知晓某部分与总体差距。
与理论值对比 ,这个对比主要是因为无历史数据,所以这个时候只能与理论值对比。理论值是需要经验比较丰富的员工,利用工作经验沉淀,参考相似的数据,得出来的值。
对比分析方法原则
对比分析需要坚持可比性原则:对比对象相似,对比指标同质
对比对象相似 :进行比较的时候注意,比较规模要一致,对比对象越相似,就越具有可比性,比如说不能用你的工资和思聪的零花钱进行比较,这样不公平。如果要比,就和你出生,教育背景相似的人进行比较。当然这只是个不恰当的例子haha
对比指标同质: 同质可以表现在下面三点:
1.指标口径范围相同 ,比如甲 APP 与乙 APP 的用户年留存率比较,如果用甲 APP 18年的用户留存率,那乙 APP 也需要是18年的,不能拿乙17年的与甲18年的比较。
2.指标计算方法一样 ,也就是计算公式相同,比如一个用除法、一个用加法进行计算。
3.指标计量单位一致 ,不能拿身高和体重进行比较,二者常用单位一个是厘米,一个是千克。
分析方法应用
举一个例子吧,A/Btest
什么是A/B测试呢?为统一个目标制定两个版本,这两个版本只有某个地方不一样,其他地方保持不变,让一部分用户使用A版本,一部分用户使用B版本,A版本为实验组,B版本为对照组,两个版本运行一段时间后,分别统计两组用户的表现,然后对两组数据进行对比分析,选择效果好的版本,正式发布给全部用户。
当然现实中的A/Btest也远没有这么简单,我接下去会写一篇文章专门讲讲A/Btest的,挖坑+1 hahaha
最后打个小广告,我的公众号(顾先生的数据挖掘)
喜欢的小伙伴可以关注下,你的关注是我最大的动力。