导航:首页 > 研究方法 > 简述聚类分析目的及基本方法

简述聚类分析目的及基本方法

发布时间:2024-11-20 10:53:45

⑴ 一文总结聚类分析步骤!

一、聚类

1.准备工作

(1) 研究目的

聚类分析是根据事物本身的特性研究个体分类的方法,聚类分析的原则是同一类别的个体有较大相似性,不同类别的个体差异比较大。

(2) 数据类型

1)定量:数字有比较意义,比如数字越大代表满意度越高,量表为典型定量数据。

2)定类:数字无比较意义,比如性别,1代表男,2代表女。

PS: SPSSAU会根据数据类型自动选择聚类方法。

K-modes聚类: 数据类型仅定类时。

2.上传数据到SPSSAU

登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

3.SPSSAU操作

(1)拖拽分析项

1) SPSSAU进阶方法→聚类。

2)检查

检查分析项是否都在左侧分析框中。

3)进行拖拽

(2)选择参数

聚类个数: 聚类个数设置为几类主要以研究者的研究思路为标准,如果不进行设置,SPSSAU默认聚类个数为3,通常情况下,建议设置聚类数量介于3~6个之间。

标准化: 聚类算法是根据距离进行判断类别,因此一般需要在聚类之前进行标准化处理,SPSSAU默认是选中进行标准化处理。数据标准化之后,数据的相对大小意义还在(比如数字越大GDP越高),但是实际意义消失了。

保存类别: 分析选择保存‘保存类别’,SPSSAU会生成 新标题 用于标识,也可以右上角“我的数据”处查看到分析后的“聚类类别”。

新标题类似如下:Cluster_********。

4.SPSSAU分析

(1)聚类类别基本情况汇总分析

使用聚类分析对样本进行分类,使用Kmeans聚类分析方法,从上表可以看出:最终聚类得到4类群体,此4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。整体来看, 4类人群分布较为均匀,整体说明聚类效果较好。

(2)聚类类别汇总图分析

上图可以直观的看到各个类别所占百分比,4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。

(3)聚类类别方差分析差异对比

使用方差分析去探索各个类别的差异特征,从上表可知:聚类类别群体对于所有研究项均呈现出显着性(p<0.05),意味着聚类分析得到的4类群体,他们在研究项上的特征具有明显的差异性,具体差异性可通过平均值进行对比,并且最终结合实际情况,对聚类类别进行命名处理。

(4)聚类项重要性对比

从上述结果看,所有研究项均呈现出显着性,说明不同类别之间的特征有明显的区别,聚类的效果较好。

(5)聚类中心

5.其它说明

(1)聚类中心是什么

聚类中心是聚类类别的中心点情况,比如某类别时年龄对应的聚类中心为20,意味着该类别群体年龄基本在20岁左右。初始聚类中心基本无意义,它是聚类算法随机选择的聚类点,如果需要查看聚类中心情况,需要关注于最终聚类中心。实际分析时聚类中心的意义相对较小,其仅为聚类算法的计算值而已。

(2)k-prototype聚类是什么?

如果说聚类项中包括定类项,那么SPSSAU默认会进行K-prototype聚类算法(而不是kmeans算法)。定类数据不能通过数字大小直接分析距离,因而需要使用K-prototype聚类算法。

(3)聚类分析时SSE是什么意思?

在进行Kmeans聚类分析时SPSSAU默认输出误差平方和SSE值,该值可用于测量各点与中心点的距离情况,理论上是希望越小越好,而且如果同样的数据,聚类类别越多则SSE值会越小(但聚类类别过多则不便于分析)。

SSE指标可用于辅助判断聚类类别个数,建议在不同聚类类别数量情况下记录下SSE值,然后分析SSE值的减少幅度情况,如果发现比如从3个聚类到4个类别时SSE值减少幅度明显很大,那么此时选择4个聚类类别较好。

二、分层聚类

1.准备工作

(1)研究目的

从分析角度上看,聚类分析可分为两种,一种是按样本(或个案)聚类,此类聚类的代表是K-means聚类方法;另外一种是按变量(或标题)聚类,此类聚类的代表是分层聚类。

(2)数据类型

2.上传数据到SPSSAU

登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

3.SPSSAU操作

(1)拖拽分析项

1) SPSSAU进阶方法→分层聚类。

2)检查

检查分析项是否都在左侧分析框中。

3)进行拖拽

(2)确定参数

SPSSAU会默认聚类为3类并且呈现表格结果,如果希望更多的类别个数,可自行进行设置。

4.SPSSAU分析

(1)聚类项描述分析

上表格展示总共8个分析项(即8个裁判数据)的基本情况,包括均值,最大或者最小值,中位数等,以便对于基础数据有个概括性了解。整体上看,8个裁判的打分基本平均在8分以上。

(2)聚类类别分布表分析

总共聚类为3个类别,以及具体分析项的对应关系情况。在上表格中展示出来,上表格可以看出:裁判8单独作为一类;裁判5,3,7这三个聚为一类;以及裁判1,6,2,4作为一类。

(PS:聚类类别与分析项上的对应关系可以在上表格中得到,同时也可以查看聚类树状图得出更多信息。至于聚类类别分别应该叫做什么名字,这个需要结合对应有关系情况,自己单独进行命名。)

(3)聚类树状图分析

上图为聚类树状图的展示,聚类树状图是将聚类的具体过程用图示法手法进行展示;最上面一行的数字仅仅是一个刻度单位,代表相对距离大小;一个结点表示一次聚焦过程。

树状图的解读上,建议单独画一条垂直线,然后对应查看分成几个类别,以及每个类别与分析项的对应关系。比如上图中,红色垂直线最终会拆分成3个类别;第1个类别对应裁判8;第2个类别对应裁判5,3,7;第3个类别对应裁判1,6,2,4。

如果是聚为四类;从上图可看出,明显的已经不再合适。原因在于垂直线不好区分成四类。也即说明有2个类别本应该在一起更合适(上图中的裁判1与6/2/4);但是如果分成4类,此时裁判1会单独成一类。所以画垂直线无法区分出类别。因而综合分析来看,最终聚类为3个类别最为适合。

当然在分析时也可以考虑分成2个类别,此时只需要对应将垂直线移动即可。

5.其它说明

(1)针对分层聚类,需要注意以下几点:

(2)什么时候做因子分析后再做聚类分析?

如果题项较多,可先做因子分析,得到每个维度(因子)的数据,再进行聚类。

三、总结

聚类分析广泛的应用于自然科学、社会科学等领域。在分析时可以比较多次聚类结果,综合选择更适合的方案。

以上就是聚类分析步骤汇总,更多干货请前往官网查看!

⑵ 聚类分析法

聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。

聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。

(一)系统聚类法

系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。

1.数据标准化

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。

假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。

表4-3 聚类对象与要素数据

对于第j个变量进行标准化,就是将xij变换为x′ij

(1)总和标准化

区域地下水功能可持续性评价理论与方法研究

这种标准化方法所得的新数据x′ij满足

区域地下水功能可持续性评价理论与方法研究

(2)标准差标准化

区域地下水功能可持续性评价理论与方法研究

式中:

由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有

区域地下水功能可持续性评价理论与方法研究

(3)极差标准化

区域地下水功能可持续性评价理论与方法研究

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。

上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。

2.相似性统计量

系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。

相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。

(1)距离系数

常采用欧几里得绝对距离,其中i样品与j样品距离dij

区域地下水功能可持续性评价理论与方法研究

dij越小,表示i,j样品越相似。

(2)相似系数

常见的相似系数有夹角余弦和相关系数,计算公式为

1)夹角余弦

区域地下水功能可持续性评价理论与方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相关系数

区域地下水功能可持续性评价理论与方法研究

式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;

为i样品第k个因子的均值,

为j样品第k个因子的均值,

;n为样品的数目;k为因子(变量)数。

3.聚类

在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。

(1)直接聚类法

直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。

(2)距离聚类法

距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:

区域地下水功能可持续性评价理论与方法研究

当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。

最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。

图4-1 地下水质量评价的聚类谱系图

(二)模糊聚类法

模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。

1.数据标准化

在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。

2.标定与聚类

所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。

聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。

聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。

(1)模糊等价关系方法

所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。

基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。

第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。

第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即

R2=R·R

R4=R2·R2

这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。

第三步:在不同的截集水平下进行聚类。

(2)最大树聚类方法

基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。

图4-2 最大聚类支撑树图

第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。

以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。

第二步:由最大树进行聚类分析。

选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。

在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。

(三)灰色聚类法

灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。

灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。

灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。

1.确定聚类白化数

当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。

2.确定各灰色白化函数

建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求标定聚类权重

根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。

区域地下水功能可持续性评价理论与方法研究

式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。

图4-3 白化函数图

注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。

4.求聚类系数

σik=∑fjk(dij)ηjk (4-26)

式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。

5.按最大原则确定聚类对象分类

由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。

用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。

聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。

阅读全文

与简述聚类分析目的及基本方法相关的资料

热点内容
手机网络卡有什么物理方法 浏览:665
方法的字样大图片 浏览:829
分析速算方法大全 浏览:349
西方文论对分析方法的改变 浏览:786
快速登录刺激战场并下载的方法 浏览:839
蛇舌草的食用方法 浏览:132
铬标准溶液用于哪些方法 浏览:579
映泰h61b主板cpu安装方法 浏览:403
哪里挣钱最快的方法 浏览:376
胜利万用表使用方法 浏览:905
减肥器械使用方法 浏览:685
如何用双螺纹钩针起针方法视频 浏览:348
热水器循环泵使用方法 浏览:244
线束线圈怎么缠绕方法 浏览:827
苹果手机冷门维修方法 浏览:995
电极除颤仪的使用方法 浏览:809
伶羊角如何煮水方法 浏览:833
灰指甲如何治疗方法有效 浏览:535
如何解决赌博软件不给钱的方法 浏览:758
检测方法验证记录案例 浏览:526